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Abstract

We examine two pipeline structures that are employed in commercial microprocessors. The first is
the load-use interlock (LUI) pipeline, which employs an interlock to ensure correct operation dur-
ing load-use hazards. The second is the address-generation interlock (AGI) pipeline. It eliminates
the load-use hazard, but has an address-generation hazard, which requires an address-generation
interlock for correct operation. We compare the performance of these two pipelines on existing
binaries and on applications that have been recompiled with a local code scheduler that under-
stands the difference in the pipeline structures. Under the assumption of perfect branch predic-
tion, the AGI pipeline outperforms the LUI pipeline on the SPEC92 integer benchmarks, even on
binaries that have been compiled for the LUI pipe. When branch prediction is considered, the AGI
pipeline performs significantly better than the LUI pipeline if branch prediction is more than 80%
accurate and the data cache access time is greater than two cycles. Recompiling the benchmarks
with a new local code scheduler optimized for the AGI pipeline provides little additional perfor-
mance improvement.
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1 Introduction

Although pipelining is a widely used technique for speeding up instruction execution, the exist-
ence of dependences between instructions means that pipelines cannot run at 100% efficiency.
Nevertheless, the improvement in speed through pipelining usually offsets any loss in perfor-

mance[17].

This paper will examine three types of “hazards” that can reduce the efficiency of a pipeline:
branch, load, and address-generation hazards. In particular we will compare two pipeline organi-
zations employed in several commercial machines that make different trade-offs between these

three hazards. The first, which we shall refer to as the load-use interlock (LUI) pipeline, issues and
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completes its instructions in-order. It is subject to branch hazards and load hazards, but not address-

generation hazards. The second, which we shall refer to as the address-generation interlock (AGI)
pipeline, also issues and completes its instructions in-order but differs from the LUI pipeline in that
the execute stage is placed later in the pipeline to avoid load hazards. However, this difference re-
sults in address-generation hazards and increases the penalty for branch hazards. In this paper we
will report on experiments to determine if these penalties are outweighed by the benefits of elimi-

nating load hazards.

The MIPS R2000 and R3000 use a precursor to the LUI pipeline. This precursor does not em-
ploy hardware interlocks for loads or branches. Instead, NOPs are inserted after loads and branch-
es, as required, to ensure correct operation. Load interlocks were added in the R6000, a short-lived
ECL implementation of the MIPS instruction-set architecture (ISA) [16]. Load interlocks were also
subsequently employed in the R4000, R4200, and R4400 [12]. The AGI pipeline is used in the Intel

1486 and Pentium and the Cyrix M1 1 as well as in the R8000[2][31[6] [7]. The R8000, which was
originally referred to in the literature as the TFP, also implements the MIPS ISA [5] [8]. All four
processors with AGI pipelines are designed to preserve binary compatibility with earlier LUI mi-
croprocessors. A large body of software exists in the form of binaries optimized for the LUI pipe-
line structure, and it is not known how much performance is degraded when these binaries are run
on the rearranged pipeline. To be acceptable, any reduction must be small to avoid the cost of re-

compiling applications.
There are two questions that this paper attempts to answer:

1. How does the AGI pipeline affect performance on binaries created for an LUI pipeline?

2. Does the AGI pipeline improve performance if the compiler performs local code scheduling
specifically for this organization?

This paper is organized as follows. The next section discusses pipeline hazards in more detail
and previous work on methods to reducing their negative %ffect on performance. With this as back-
ground, Section 3 describes the LUI and AGI pipeline organizations. The compiler and simulation
tools are described in Section 4. Experimental results are presented in Section 5 followed by some

concluding remarks in Section 6.

1.The M1 executes the Intel instruction set, but has one extra address calculation stage than the other pipelines.
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2 Pipeline hazardslww |

2.1 Branch hazards

We define the scope of a branch to be the number of instructions that can be issued before the
branch is resolved. A branch hazard occurs when an instruction in the scope of the branch
depends on the outcome of the branch. Although a processor may stall the issue of new instruc-
tions until it resolves a branch instruction, the introduction of pipeline bubbles caused by this

approach can reduce performance to an unacceptable level.

Branch hazards can be eliminated statically by having the compiler schedule independent in-
structions in the scope of a branch. Alternatively, the pipeline may dynamically eliminate branch
hazards by predicting the outcome of the branch, allowing control-dependent instructions to enter
the pipeline, and squashing them if the branch has been mispredicted. These approaches are not

mutually exclusive, and it is not unusual for some combination to be employed.

Both approaches to removing branch hazards have shortcomings. It is not always possible to
eliminate branch hazards by reordering code. It may be necessary to insert NOPs so that any in-
structions that cause branch hazards are moved beyond the scope of the branch. As noted, this is
the solution taken by the R2/3000. However, the presence of NOPs in the execution stream reduces
efficiency. Branch prediction can also introduce inefficiency when a prediction fails and instruc-

tions that execute as a result of mispredictions must be squashed.

2.2 Load hazards

Load hazards are a result of data dependences rather than control dependences. They occur
when the instructions immediately following a load depend on the value retrieved by the load in-
struction. We define the scope of a load to be the number of instructions that can be issued before
the data retrieved from memory by the load becomes available to later instructions. Because the
amount of time required to access a value that may reside in any level of a memory hierarchy may
vary, the scope of a load instruction may also vary. A load hazard occurs when an instruction in

the scope of a load uses directly or indirectly the value read by the load.

In a pipeline that supports out-of-order execution, an instruction that depends on an outstand-

ing load operation can simply be buffered at a reservation station until all of its operands are avail-



able and it can be sent to a function unit. In a pipeline that only allows in-order execution of in-

structions, there are three approaches to tolerating a load hazard: 1) reorder instructions so that
there are no instructions that cause load hazards after the load; 2) stall the pipeline when an instruc-
tion that causes a load hazard is fetched until the load is completed (load-use interlock); and 3) use
some form of load prediction to prefetch load data and effectively remove dependences that arise

from the load.

All three approaches to removing load hazards have shortcomings. It is not always possible
to eliminate load hazards by reordering code. It may be necessary to insert NOPs so that dependent
instructions that cause hazards are moved beyond the scope of the load. Such a processor must still
have some interlock to handle the case when the load instruction misses in the first level of memory
and extra cycles are required to fetch the missing data. Once again, this is the solution taken by the
R2/3000 and again, the presence of NOPs in the execution stream reduces efficiency. The use of
load-use-interlock stalls avoids the code expansion of NOPs, but it too reduces efficiency. Finally,
loads are much more difficult to predict and the last method is rarely used [4]. Again these ap-

proaches are not mutually exclusive.

2.3 Address-generation hazards

Address-generation hazards occur when a value is computed for a register that is used to form
the address of the data retrieved by a load instruction. For the purposes of this discussion we con-
sider only the base-register-plus-offset address mode for load instructions. In this case, the scope
of address generation is the number of instruction slots between an instruction that modifies a reg-

ister and its earliest availability for use as a base register in an address calculation.

As in the case of any data hazard, a machine that supports out-of-order execution of instruc-
tions can simply buffer the dependent instruction until all operands become available. For a pipe-
line that does not allow this model of execution, there are two approaches to tolerating an address-
generation hazard: 1) insert instructions so that there is sufficient time to finish modifying the ad-
dress register before its use by the load instruction; and 2) stall the pipeline until address generation
is completed (address-generation interlock). In principle, address generation could also be predict-
ed but it is never done. Removing address-generation hazards by stalling is, as with the other haz-

ards, a source of inefficiency.
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2.4 Other hazards

In addition to the hazards that we are concerned with in this paper, there are others that have
only a small impact on the performance of LUI or AGI pipelines, or that are avoided altogether in
the LUI and AGI pipelines. In the first category are instructions that store values to memory. Dur-
ing a store operation, the memory system does not return a value to the CPU, so subsequent instruc-
tions can usually be issued without delay. A hazard can occur if, before the store completes, a load
instruction is issued that retrieves data from the memory location that is the target of the store. Mi-
croarchitectural features such as write buffers or write caches with hazard detection logic have

been used to solve this problem [11]. In this paper, the effects of store hazards are ignored.

In the second category are hazards resulting from true data dependences on instructions that
perform ALU operations: if the results of an instruction are required by a succeeding instruction,
and if the second instruction issues before the first instruction computes its result, then a hazard
occurs. The LUI and AGI pipelines avoid this class of hazards by implementing ALU operations
that only require one cycle and by employing bypass paths that send a value from one pipeline

stage directly to another stage.

Within the scope of this paper, we shall not be concerned with machines that issue more than
one instruction at a time, typified by superscalar or VLIW architectures. Of course, their individual
execution pipes are likely to be of the LUI or AGI type, and future studies might investigate their
relative merits in this setting where the matter of instruction dependence becomes much more com-

plex. For two excellent discussions on this, the reader is referred to [10] and [18].

;,s/i:rg\cioﬁé  werk

Previous vtz;%k has proposed both static and dynamic techniques of eliminati%g the hazards
st

1@3 +hrat instructions/dependent on load instructions eause. Static techniques involve code scheduling

in which the compiler attempts to hide the latency of load instructions by scheduling them well be-
fore their results are needed. In [14], Krishnamurthy presents a survey of techniques for local code
scheduling. Global code scheduling techniques, such as superblock[9] and hyperblock[15] sched-

uling, allow code motion between basic blocks.




Austin, et al. classify load instructions into three categories [1]:

1. Global pointer references to global variables,
2. Stack pointer references to variables on the stack frame, and

3. General pointer references which cover all other loads, including references to pointers and
arrays.

They notice that the offsets for global and stack pointer references are often quite large. The off-
sets are small—the most common offset is zero—for general pointer offsets. Negative offsets
arise from negative array references and are most unusual. Because of loop optimizations such as

strength reduction, most loads that perform array references within loops have zero offsets.

Because many offsets have small values, a logical OR operation will have the same effect as
the full address calculation in most cases. Of course, this method fails for negative offsets and
whenever there is a carry in any part of the addition. Their method rapidly predicts the set index
into the first level cache by OR-ing together the appropriate bits in the base register and the offset
instead of performing the full addition. They propose circuitry that will do this during the instruc-
tion fetch stage of the “classic five stage pipeline,” (see below) so that during the ALU operation
stage, the processor can access the cache while it computes the full effective address. The processor

saves a cycle if the prediction is correct. If the prediction fails, the load must be reissued.

Because this only works if there are no carries between the bits of the effective address cal-
culation, they propose that the compiler and linker align the global pointer, objects on the heap,
and the stack frames to large powers of two. This eliminates carries in many address calculations.
These software and hardware optimizations increase data memory allocation up to 20% and mem-

ory system usage by up to 50% for some benchmark programs.

Iliffe describes a “forward looking” architecture that immediately issues a memory load
whenever the processor forms a potential address instead of waiting for an actual load instruction
to be encountered in the instruction stream [13]. In Iliffe’s proposal, all registers are tagged. A po-
tential address is created through normal machine instructions that have a destination tagged as an
address register. As soon as the processor writes a value to an address register, the machine issues

a load to that address.

Sohi and Davidson describe the Structured Memory Access architecture, or SMA[22]. This




machine has an address processing unit that can accept a pattern in memory and issue loads to all

addresses in the pattern before the values are actually used. This feature works well to exploit the

natural regularity of memory accesses to structures like vectors and multidimensional arrays.

Golden and Mudge propose a microarchitectural cache called a load target buffer (LTB)
which is indexed with the program counter during the instruction fetch stage of a pipeline[4]. If the
LTB indicates that the current instruction is a load, the processor immediately issues a request to
the memory system using a prediction of the required address. The LTB makes this prediction us-
ing a history of memory locations accessed by a given load instruction, and can successfully predict

the targets of load instructions which have constant-stride reference patterns.

3 Two pipeline organizations
3.1 The load-use interlock pipeline

The LUI pipeline is shown in Figure 1. This has been referred to as the “classic five stage RISC
pipeline” [20]. Each box represents a single machine cycle and a list of the functions that are per-

formed during that cycle. Figure 1 labels the five stages with their primary function:

e [F — instruction fetch

¢ RD — register read and decode

¢ EX — execute the ALU operation

« MEM — data cache access

e WB — write back to the register file

The bypass paths are also shown. The number of cycles spanned by the path indicates how long
the bypass operation takes.

Figure 1 shows that conditional branches are not resolved until the end of the first half of the
EX stage. This results in a branch scope of one cycle, during which a branch hazard can occur. This
is solved by the inclusion of a branch-delay slot in the MIPS ISA. Correct operation requires that
the instruction in the branch-delay slot must be able to execute independently of the result of the

branch. If an independent instruction cannot be found, a NOP is inserted into the branch-delay slot.



IF RD EX MEM WB

« update program | finish instruc- |+ calculate effec- |°® memory access |° writeback to reg-

counter in first tion fetchin first | tive address ister file
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« fetch instruction |* decode instruc- | form ALU oper-
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cycle from register o resolve
file in second branches in first
half cycle half cycle

? A

branch resolution bypass

ALU bypass

Figure 1:The LUl Pipeline

The five stages and bypass paths are shown. The actions in the EX stage that are underlined are moved into
the MEM stage in the AGl pipeline. See Figure 3.

ioad-use bypass

IF RD EX | MEM | ===- | MEM| WB

T 44— N —»
ALU bypass

branch resolution bypass

Figure 2:The LUI-N Pipeline
The extra memory cycles and the corresponding increase in the load-use bypass are shown.

During a load instruction, the effective memory address is computed during the EX stage and
sent to the memory system. If the request hits in the first level cache, the result is available at the
end of the MEM stage, where it may be forwarded back to the EX stage. The forwarding path spans

two cycles, indicating that the MEM stage result is not available to the instruction that immediately



follows it in the pipeline, but to the second instruction after the load. Any instruction immediately

after a load that uses the result of that load creates a load hazard. In such cases, the pipeline stalls
for one cycle. Of course, if the instruction misses in the cache, the delay is much greater and the

pipeline stalls for many cycles.

In the early MIPS machines (R2000 and R3000), as noted earlier, the absence of a load-use
interlock is handled by requiring that the compiler guarantee that the instruction after a load is not
dependent on the load. This instruction occupies the load-delay slot. If the compiler cannot find an

independent instruction, it puts a NOP instruction in the load-delay slot [12].

In high clock rate microprocessors, even the on-chip primary cache can take more than one
cycle to access. This paper will also consider a generalization of the LUI pipeline to systems with
multiple-cycle data éache access times. These pipelines will contain additional MEM stages. A
data cache with an access time of N cycles will be paired with a LUI pipeline with N MEM stages,
and will be referred to as an LUI-N pipeline (see Figure 2). In an LUI-N pipeline, the scope of a
load is N instructions and its load-use interlocks can last from 1 to N cycles. If the first dependent
instruction in the load scope is k instructions after the load, then the interlock will stall the pipeline

for (N-k)+1 cycles.

3.2 The address-generation interlock pipeline

The AGI pipeline is shown in Figure 3. In this pipeline, the load-use interlock has been eliminated
by delaying the EX stage by one cycle and combining it with the MEM stage. Combining the EX
and MEM stages requires an extra adder, which is dedicated to computing the target address of
memory operations. This address calculation is performed in the AD stage before the EX/MEM
stage. In contrast, the LUI pipeline has only a single adder in the EX stage, which is used for both
integer arithmetic instructions and address calculations. In the AGI pipeline, when an instruction
that is dependent upon a load in the previous cycle reaches the EX/MEM stage, the results of the
load are available from the ALU bypass. However, branch resolution now occurs one stage later
because a conditional branch instruction may require a result from the instruction that immedi-

ately precedes it. This result will not be available until the end of the EX stage.

There are two disadvantages to this arrangement. First, an address-generation interlock is re-



address-generation bypass

Y
IF RD AD EX/MEM wB
« update program |° finish instruc-  |* calculate effec- |° execute — per- |* writeback to reg-
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Figure 3:The AGI Pipeline

The five stages and bypass paths are shown. The actions in the EXYMEM stage that are underlined are
moved from the EX stage in the LUi pipeline. See Figure 1.

quired when a load instruction requires the register result of an uncompleted instruction to calculate
the target address in memory. Second, the branch scope is now two cycles because branch resolu-
tion occurs in the first half of the EX/MEM stage of the pipeline. This means that in addition to the
branch-delay slot, a second instruction will issue before the branch is resolved. We assume that this

instruction is chosen by a prediction scheme, and that it may have to be squashed if the branch has

been mispredicted. This contrasts with the LUI pipeline which, because of the branch-delay slot, 7L

o llay

needs no branch prediction strategy.

As cache access time grows beyond a single cycle, delay stages can be added to the AGI pipe-
line between the AD and EX/MEM stages. A processor that takes N cycles to access the cache will
require N-1 extra MEM stages. We refer to this as an AGI-N pipeline, as shown in Figure 4. In an
AGI-N pipe, N instructions must be squashed every time a branch is mispredicted, and address-
generation interlocks can last from 1 through N cycles. If the first dependent load instruction is is-
sued k cycles after the instruction that generates its base register, then the interlock will stall the

pipeline for (N-k)+1 cycles.

10
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address-generation bypass

< N >

EX/

IF RD AD | MEM | ===~ MEM wB

ALU bypass

branch resolution bypass

Figure 4:The AGI-N pipeline showing the bypass paths
The extra memory cycles and the corresponding increase in the address-generation bypass are shown.

The code fragment written in MIPS assembly language shown in Figure 5 further illustrates
the difference between the two pipeline organizations. NOPs in load-delay slots have been re-
moved—Iload-use interlocks are modeled instead. The code is taken from the program egntott,
a SPEC92 integer benchmark. In this example, instruction I3 depends on instruction I2, which in
turn depends on instruction I1. Because the branch instruction I3 depends on 12, a load-use inter-
lock will occur in an LUI pipeline. This interlock does not occur in the AGI pipeline. Instead, an
address-generation interlock will stall the pipeline since I1 calculates a value for the base register
of the load instruction I2. In addition to the address-generation interlock, the AGI pipeline may
face an additional possible performance loss if the branch is mispredicted. In the case of the LUI
pipeline, the NOP in the branch-delay slot covers the branch penalty. For every memory access
stage in the AGI pipeline, an additional instruction must be squashed after a mispredicted branch.
For example, in an AGI-2 pipeline, both I4 and I5 would be squashed if the branch instruction I3
were incorrectly predicted not-taken. Note that for both the LUI and the AGI pipeline, the instruc-
tion after the branch occupies a branch-delay slot. Only the additional instructions in the branch

scope for the AGI pipeline are speculatively executed.
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I1:
I2:
I3:

I4:

I5

move
1w
beq
nop
move
s jal

a3, a0
vl,4(a3)
vl,zero,0x400328

a0,vl
copy._bnode

+H=

move the value in register a0 into register a3
# use it as the base register to load register vl
# conditionally branch on vl == 0

# vl I= 0, so put the value in vl into a0
# and call copy. bnode(a0)

Figure 5: A MIPS assembly language fragment

This code fragment illustrates a load-use hazard and an address-generation hazard.

4 The compiler and simulator

This paper considers programs compiled for the MIPS I instruction set architecture-—the version
of the architecture that does not support load-use interlocks. This architecture was chosen for sev-

eral reasons:

benchmark programs are executed to completion using one of the “reference” input files provided
by SPEC except x1isp, which uses the “short” input file. The benchmarks are compiled three
times. The MIPS C Compiler creates one version of each program. The MIPS C Compiler heavily
optimizes the code and assumes a single load-delay slot. In effect, this provides a binary that is op-
timized for load instructions that have a scope of one cycle on a cache hit. GCC is used to create
two versions of each benchmark: one optimized for the AGI pipeline and one optimized for the

LUI pipeline. The versions differ in the cost function given to GCC’s scheduling algorithm.

priorities are scheduled first. Several factors determine the priority of an instruction, but the most

» The MIPS architecture has been implemented with a LUI pipeline and with an AGI pipe-

line. The R series machines all have LUI pipelines and the TFP has an AGI pipeline.

¢ The Gnu C Compiler (GCC) is available for the MIPS architecture [23]. GCC is in the pub-
lic domain and the source codes are easily available, so the compiler may be modified.

» The MIPS is a load/store architecture, so all memory operations are contained in explicit
load and store instructions. This simplifies the creation of compilers that optimize for the

two different pipeline structures.

The experiments use the SPEC 92 integer benchmarks, summarized in Table 1. All of the

GCC’s scheduler assigns a priority to each instruction in a basic block. Instructions with high

12



Bench- |Input File | Base Execu- | Average
mark tionTime in Basic
Name Cycles Block
’ Size

compress reference 79 192 765 5.1
eqntott reference 1381970038 3.0
espresso bea.in 493 384 704 5.6
gee stmt.i 133778 490 5.0
sc loadal 436 172 261 4.6
xlisp short 1171 528 797 3.0

Table 1: The SPEC92 integer benchmarks and their characteristics

The reference input files provided by SPEC are used for all of the benchmarks except xlisp, which uses the SPEC-pro-
vided short input file due to simulation time considerations. When several SPEC reference input files are available, the
experiments use the file listed in the table. The base execution time is the time required to execute the benchmark to
completion on a processor with a zero-cycle cache access time.

important is the scope of an instruction. An instruction with a large scope that produces results used
by a later instruction is assigned a high priority equal to the number of instructions in its scope.
Once the instructions are prioritized, GCC attempts to schedule each instruction so that the pipeline

will never interlock. For a discussion of scheduling techniques for pipelined processors, see [14].

To provide a binary that optimizes for load-use hazards, one version of each benchmark is
produced in which GCC is told that two instructions are required between a load and its use for
interlock-free execution. To create a version optimized to reduce address-generation hazards, the
scheduler is told that the scope of address generation is two cycles. The study includes the MIPS
C Compsilae: chrsion because it is the standard compiler for systems using the MIPS processors.
€omparimg the code produced by GCC with the MIPS C Compiler’s versiongprovides a confidence
check that the code ##=#s produced by GCC for the AGI pipeline is equally well optimized.

Each version of the program is then instrumented to produce an instruction and data trace by
pixie. A simulator based on the xsim tool developed by Smith consumes the trace [21]. The sim-

ulator models a machine with the following characteristics:

» There are no load-delay slots. Other delay slots, mainly those required by the MIPS archi-
tecture for integer multiply and divide instructions, are present in the machine model. This

13



includes a single branch-delay slot for both the AGI-N and the LUI-N pipeline.

« All operations except data cache accesses complete in a single cycle.-
» There is a single execution pipeline.

« All memory references hit in the instruction and data caches.
 Instruction fetch requires a single cycle.

Load-delay slots have been eliminated in newer RISC architectures, such as the Alpha, in fa-
vor of load-use interlocks. As cache access times get longer, code expansion caused by NOPs in
unfilled delay slots becomes a problem [19]. Typical RISC integer instructions complete in a single
cycle, except integer multiplication and division, which usually take more than one cycle. The
MIPS ISA requires delay slots in the scope of these instructions, which must be filled by indepen-

dent instructions or NOPs.

5 Experimental results

5.1 Experiments on an ideal pipeline

In the figures in this section, the x-axis shows the access time of the data cache in cycles. The y-
axis shows an execution time that is normalized to the run time of code compiled by the MIPS C
Compiler for a machine with an LUI pipeline and a zero-cycle cache access time (N = 0). In other
words, all memory references are immediately available so there are no load-use hazards or
address-generation hazards in the reference machine. The third column of Table 1 lists these base
execution times for each benchmark in cycles. The harmonic means of the experimental results
for all benchmarks are presented in Figures 6-9. Results for individual benchmarks are shown in
Figures 10-15. High numbers indicate poor performance. When the benchmarks egntott and
x1isp are simulated for large cache access times, their run times overflow the cycle-counting
capabilities of the simulator. Because of this, some of the experiments are missing from Figure 12
and Figure 15 for cache access times of six and seven cycles. To make the comparison between
pipelines fair, x1isp and egqntott are removed from the harmonic mean calculations for these

two cache access times.

The first experiment compares how the benchmarks perform on code compiled by the MIPS

C Compiler for the MIPS R2000 performs on an LUI and an AGI pipeline for varying cache access

14
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Data Cache Access Time in Clock Cycles

Figure 6:The harmonic mean of all benchmarks — 1-cycle i-Cache

This figure assumes perfect branch prediction. Notice that the improvement between GCC-LU| and GCC-AGI-Perfect
is about the same as the improvement between LUl and AGI-Perfect. Informing GCC’s local scheduler of the need to
avoid address-generation interlocks has little effect. The AGI pipeline shows better performance than the LUI pipeline
in all cases.

times. The results assume perfect branch prediction in the AGI case. These bars are labeled “LUI”
and “AGI - Perfect” Figure 6. For low cache access times, there is very little difference between
the two pipeline organizations. As the access time increases beyond about 3 cycles, the perfor-
mance benefit of the pipeline with an address-generation interlock begins to appear. The AGI-3
pipeline completes the benchmarks almost 10% faster than the L.UI-3 pipeline. The performance

gap continues to grow as the cache access time gets larger.

This first experiment answers the question about the performance of existing binaries. For our
sample set of benchmarks, the AGI pipeline actually performs slightly better than the LUI pipeline

on binaries compiled for an LUI pipeline.

The next set of experiments considers code compiled by GCC for LUI pipelines against code
compiled by GCC for AGI pipelines. The programs are run on the pipelines for which they were
compiled with the assumption of perfect branch prediction. In Figure 6, these experiments are la-
beled “GCC-LUI” and “GCC-AGI-Perfect.” Once again, a small benefit is seen through the use of
AGI pipelines for small cache access times. As cache access times increase, AGI pipelines again

provide a larger speedup.
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Informing GCC’s local scheduler of the new pipeline structure does not seem to affect exe-

cution time to a large extent. The percenrglange between the GCC-LUI experiments and the GCC-
AGI experiments are similar to those between the LUI and the AGI-Perfect experiments. This may
be because GCC’s scheduler works only within a single basic block. For the benchmarks under
consideration, the basic block size tends to be small, as small as 3 in the case of x1isp, so mod-
ifying the code scheduling costs may not have a large effect. The limited improvement obtained
from the compiler suggests that more aggressive global scheduling techniques may be needed.
However, the performance of the Gnu C Compiler versus the MIPS C Compiler—compare LUI
vs. GCC-LUI—makes it clear that, for our machine model, GCC is as good as one of the best com-

mercial compilers. This gives support for our remaining results with GCC.

This set of experiments gives a limited answer to the second question posed in the introduc-
tion. Simply altering the local scheduling algorithm does not significantly improve the compiler’s
ability to produce efficient code for the AGI pipeline. However, the performance of the AGI pipe-
line is already better, as shown above. More sophisticated compiler techniques may provide further

improvement.

The final set of results, labeled “GCC-AGI-X%” represent AGI pipelines with X% branch
prediction over all branches, including unconditional jumps and calls. These results are summa-
rized in Figure 7. Because the MIPS branch delay slot is included in the simulator, all of the results
for LUI pipelines are valid for any branch prediction accuracy. The branch penalty is accounted for
by the instruction in the delay slot, which may be a NOP. In contrast, an AGI-N pipeline must
squash N extra instructions when a branch is mispredicted. A branch penalty is approximated by
assessing a fixed number of cycles for each mispredicted branch and adding it to the total execution
time of the benchmark. The penalty for machines with LUI and AGI pipelines are calculated with

the following formulas:

PenaltyLUI = (Ni_ 1) x (1-b) be

PenaltyAGI = (Nd+Ni—1) X (1-b) be

where Ny is the date cache access time and N; is the instruction cache access time in machine

cycles, b is the branch prediction accuracy expressed as a probability, and Cj, is the dynamic
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Figure ﬂ: Harmonic mean of ail benchmarks. I-cache access time = 1 cycle.

This figure shows the results when branch prediction is taken into account. The AGl pipeline suffers from reduced per-
formance when accurate branch prediction is not available.

branch count of the program. In accordance with the pipeline structures described above, N;=1 for

both pipelines.

For machines with accurate branch prediction, the AGI pipeline still outperforms the LUI
pipeline. Once the accuracy of branch prediction drops down to around 80%, the two types of ma-
chines perform equivalently. At lower levels of branch prediction accuracy, the early branch reso-

lution of the LUI pipeline allows it to run programs more quickly.

5.2 Pipelines with multi-cycle instruction cache access time

The experiments so far assume that the instruction cache can be accessed in a single cycle—the
pipelines described in Section 3 have a single IF stage. As the I-cache latency increases, the pen-
alty for a mispredicted branch increases, because more time is required to fetch the correct

instruction from the memory system. In other words, the scope of a branch instruction grows.
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The results labelled MCC have been compiled by the MIPS C Compiler. The results labelled GCC have been compiled
by the Gnu C Compiler. The AGI pipeline still requires good branch prediction to outperform the LUI pipeline.

In an LUI system with a multi-cycle I-cache access time, the branch penalty is no longer com-

pletely hidden by a single branch delay slot. As a consequence, the requirement that an AGI pipe-

line have accurate branch prediction to outperform an equivalent LUI pipeline may be eased. Fig-

ure 8 shows this is not the case. In this figure, the I-cache access time has been set to equal the D-

cache access time. The LUI pipeline experiences a branch penalty in this experiment, but it is less

affected by poor branch prediction than the AGI pipeline. Branch prediction still must be better

than about 80% accurate for the AGI pipeline to have a performance advantage for machines with

slow caches. On machines that have fast caches or poor branch prediction, both pipelines have sim-

ilar performance.
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A chip designer may decide to optimize the speed of the I-cache over the speed of the D-cache

in order to ensure a steady supply of instructions. The initial set of experiments representga machine
of this type—the I-cache has an access time of one cycle but the D-cache access time varies. If the

I-cache access time is increased to two ¢ dcles the performancczé)enalty for a branch miss $n the

AGI pipelines increases by one cycle ang, in the LUI plpehne,[mcreases to one cycle because the lceose

single branch delay slot cannot hide two cycles of I-cache latency. Figure 9 gives performancelﬁ"“o‘w N ated

amachine with varying access times for the D-cache but an I-cache access time fixed at two cycles.
Once again, the same trend appears. For machines with poor branch prediction or a fast data cache,
the LUI pipeline runs faster than the AGI pipeline. When the data cache access time increases and
branch prediction becomes more accurate, the AGI pipeline becomes more efficient than the LUI

pipeline.

5.3 Pipeline performance on individual benchmarks

Because significant performance improvement is seen in some of the benchmarks, even without
sophisticated compiler support, one can examine the properties of the benchmark itself to see
where the improvements occur. Figures 10-15 show the results of all experiments on a machine
with a 1-cycle I-cache access time for each benchmark. Programs that rely heavily on dynamic
data structures see a particularly large benefit from the AGI pipeline. For example, in the bench-
mark sc, which performs spreadsheet calculations, the AGI pipeline outperforms the LUI pipe-
line even with poor branch prediction. espresso and gcc also realize significant performance
benefits. In these programs, the processor reads from records with many fields. A base register
pointing to the beginning of the record needs to be set up, but only once. Once this register is ini-
tialized, the values in the fields can be loaded using constant offsets. Only the instruction that sets
the base register can cause an address-generation interlock, while each load instruction that fol-
lows it has the potential of causing a load-use interlock. Using an AGI pipeline seems to be a good

way to increase performance on these “pointer-chasing” benchmarks.

6 Conclusions

A number of processors have recently been announced that eliminate the load-use interlock by
overlapping the execute stage of the pipeline with cache access rather than address generation.

These AGI machines are designed not only to execute code compiled specifically for them, but
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Figure 9: Harmonic mean of all benchmarks. I-cache access time = 2 cycles.

The results labelled MCC have been compiled by the MIPS C Compiler. The results labelled GCC have been
compiled by the Gnu C Compiler.

also to run codes compiled for older, LUI, implementations of similar architectures. When good
branch prediction methodologies are available, the rearranged pipeline provides improved perfor-
mance for machines with moderate to large cache access times, even if existing binaries are used.
When a branch-delay slot can hide instruction cache latency in an LUI pipeline, high branch pre-
diction accuracy is required for the AGI pipeline to have a performance benefit. As the I-cache

access time grows, this trend remains the same.

Simply modifying the compiler’s local scheduler shows only a small increase in the benefits

of the AGI pipeline. Because basic blocks can be quite short in nonscientific programs, the local
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scheduler does not have many instructions to work with. Global scheduling techniques may be able

to further improve the performance of the AGI pipeline structure because these methods make
more instructions available to be placed between the dependent instructions that cause the inter-

lock.

Two questions remain unanswered. First, in the experiments described in this paper, perfect
caches are assumed. In the presence of cache misses, the average time to fetch an instruction and
operate on data memory will increase. Cache misses may be distributed such that the effect on
these experiments is merely to increase the effective latency to the cache. However, they may be
distributed such that pipeline behavior changes noticeably as cache access time and miss rates

change.

Second, we have simulated machines that have a single execution pipeline. In a processor
with multiple pipelines, each stall cycle can delay the completion of many instructions rather than
just one. This may also affect the performance difference between the two pipelines. We leave the

study of these two issues as future work.
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Pipelined computer architecture has received considerable attention since the 1960s
when the need for faster and more cost-effective systems became critical. The
merit of pipelining is that it can help to match the speeds of various subsystems
without duplicating the cost of the entire system involved. As technology evolves,
faster and cheaper LSI circuits become available, and the future of pipelining,
either in a simple or complex form, becomes more promising.

This paper reviews the many theoretical considerations and problems behind
pipelining, surveying and comparing various representative pipeline machines that
operate in either sequential or vector pipeline mode, the practical solutions
adopted, and the tradeoffs involved. The performance of a simple pipe, the physical
speed limitation, and the control structures for penalty-incurring events are
analyzed separately. The problems faced by the system designers are tackled,
including buffering, busing structur. branching, and interrupt handling. Aspects
of sequential and vector processing ure studied. Fundamental advantages of vector
processing are unveiled, and additional requirements (costs) are discussed to
establish a criterion for the tradeoff between sequential and vector pipeline
processing. Finally, two recent machines (the Cray-1 and the Amdahl 470 V/6
systems) are presented to demonstrate how complex pipeline techniques can be
used and how simple but advantageous pipeline concepts can be exploited.

Keywords and Phrases: computer architecture, pipelining, sequential processing,

vector processing
CR Categories: 5.24, 6.33

1. INTRODUCTION

The principle of pipelining has emerged as a
major architectural attribute of most
present computer systems. In particular,
super machines such as the Texas Instru-

* Research sponsored by US Army Research
A-ARO-D-31-124-73-G157.

ments TI ASC, Burroughs Pere, IBM
System/360 Models 91 and 195, Cray Re-
search Cray-1, CDC 8rar-100, Amdahl
470 V/6, CDC 6600, and CDC 7600 have
distinct pipeline processing capabilities,
either in the form of internally pipelined
instruction and arithmetic units or in the
form of pipelined special purpose functional
units [1-4].
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Pipelining is onc form of imbedding
parallelism or concurrency in a computer
system. It refers to a segmentation of a
computational process (say, an instruction)
into several subprocesses which are executed
by dedicated autonomous units (facilities,
pipelining segments). Successive processes
(instructions) can be carried out in an
overlapped mode analogous to an industrial
assembly line. So, very loosely, pipelining
can be defined as the technique of decom-
posing a repeated sequential process into
subprocesses, each of which can be executed
efficiently on a special dedicated auto-
nomous module that operates concurrently
with the others.

As an illustration, consider the process of
exccuting an instruetion. Normally it in-
volves fetching the instruction, decoding the
operations involved, and fetching the
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operands before it is finally executed. If
this process is decomposed into these four
subprocesses and executed on the four
modules shown in Figure 1(b), four suc-
cessive independent instructions may be
executed in parallel. Specifically, while the
EXEC module is executing the first in-
struction, the Operand Fetch (OF) module
fetches the operand needed for the second
instruction, the Instruction Decode (ID)
module prepares the different operations
for the third instruction, and the Instruction
Fetch (IF) module fetches the fourth in-
struction. The overlapped execution among
the four modules is best depicted by a
space-time diagram. As drawn in Figure
1(c), the horizontal axis represents the time
and the vertical axis the space (modules).
From this diagram one can observe how
independent instructions are executed in
parallel in a pipelined processor.

Some theoretical developments and im-
plications of pipelining are reviewed in
this section. A top-down, level-by-level
characterization of pipeline applications in
computers and the associated configuration
control are explained in Section 1.2, Pipeline
Characteristics. To reveal the fundamental
advantages of pipelining, the space-time
measure model is employed to illustrate the
ideal throughput (performance) of a pipe-
lined system with no external restrictions
or dependencies. This pictorial measure
applies to a pipeline of any level operating
in an ideal environment. Besides the ideal
performance, the limitation of this tech-
nique to the lowest level in a computer,
namely the logic gate level, is surveyed.
Here a practical limitation to the ultimate



speed achievable arises because the tech-
nique requires the insertion of latches of
finite delay. It is shown that this delay
plays a significant role in determining the
bound on the fastest speed achievable.

On the other hand, when a pipeline
operates on tasks with precedence con-
straints, the space-time measure for the
ideal situation is not directly applicable.
Section 1.3, Performance Characteristics,
analyzes the performance of such a pipe
when the precedence relationships are in
the form of a tree. Appropriate bounds are
provided which reflect that the pipe some-
times has a throughput rate close to its
gegment time and at other times has a
rate close to its flush time. The dominating
role played by task relationships in an
actual pipeline is thus apparent.

After the analytical evaluation of a pipe-
line’s performance, the various applicable
control schemes are classified and com-
pared with respect to the flow of instruc-
tions and the resolution of conflicts. This
classification covers most of the schemes
existing in pipelined systems as well as
some theoretically feasible combinations.
In Section 1.4, Control Structure, Hazards,
and Penalties, three kinds of hazards are
formally classified. The detection and reso-
lution techniques for these hazards under
either “streamline” or “fully asynchro-
nous” control are analyzed according to
the incurred cost in hardware and incurred
delay penalties in runtime. Section 1.5,
Sequencing Control, presents a simple
sequencing control using shift registers as
an example of synchronous pipelines whose
collisions are predeterminable. This scheme
is useful for controlling lower level pipelines
such as arithmetic pipes for which external
conditions or precedence constraints are
rare. Finally, in Section 1.6, Software
Aspects, some software problems related
to the efficient code generation of a vector
pipeline are discussed.

In Section 2, Structure of a Pipelined

Processor, the problems and solutions as-
sociated with a sequential pipelined system
are examined more carefully. Three systems
are used as examples to make cross-com-
parisons in several practical problems.
These problems include: 1) buffering for
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smoothing congestions; 2) busing structure
to reduce delay penalties; 3) branch hand-
ling to reduce the disruption of flow; and
4) interrupt handling to ensure a proper
interrupt response and later recovery. In
Section 2.6, Pipeline Processing of Arith-
metic Operations, an example of pipelining
fast multipliers is provided to illustrate how
a lowest level pipeline can be effectively
designed. Such pipelines ean often use con-
trol schemes like the one in Section 1.6.

In Section 3, Vector Processing, many
special characteristics associated with a
vector pipelined system are analyzed sepa-
rately. Vector pipelines have become eco-
nomic ways to achieve high throughput
for application with suitable parallelism.
Specifically, jobs with identical transforma-
tions on a set of data can be carried out
with minimal control overhead (instruction)
and high speed. Two prominent machines,
the TI ASC and the CDC Star-100, are
examined. To provide a clear picture, a de-
tailed example of a typical vector instruc-
tion (format and execution) is provided.
From it one can realize how to use vector
instructions and how to achieve skewing
on data elements. An analytical comparison
between the performance of a vector pipe
and that of a sequential pipe is also fur-
nished. This comparison reveals where
vector pipelines bring in speedup; however,
the additional demands of vector pipelines
for proper instruction sets, proper choices
of algorithms, and intelligent compilers
are also exposed.

Finally, in Section 4, Overview of Two
Recent Machines, the special characteristics
of two recent pipelined computers are sur-
veyed. The chaining in the Cray-1 is an
example of pipelining applied between
vector instructions. With it a very high
throughput can be obtained. It is also in-
teresting to observe that the simple pipeline
design for the Amdahl 470 V/6 system
has proved to be a success.

1.1 Historical Perspective

Computer designers have exploited the
overlapped mode of operations since the
late fifties. We recount only some signifi-
cant milestones in its development. For a
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Figure 1d. Basic computer structure.

clear understanding of this development,
let us model the computer system by the
following subsystems (Figure 1(d)):

1) The instruction processing unit (IPU)
performs the instructions fetch and
decode, and fetches the operands (if
any) required for the instructions.

2) The execution unit (EXEC) performs
the desired operation on the operands.

3) The input/output unit (I/0) controls
the peripheral devices.

4) M represents the primary memory of
the computer system.

The earliest use of overlapped operations
between the CPU (IPU+EXEC), the
memory unit (M), and the input/output
unit (I/0) can be found in the Univac I,
developed during the early fiftics. Here the
central processor initiates an I1/O process;
then the CPU and the 1/O proceed con-
currently. When the 1/0 operation is com-
pleted, an interrupt signal is issued by the
1/0 controller to alert the CPU of the com-
pletion. This asynchronous 1/0 processing
avoids having the CPU wait for the com-
pletion of I/O tasks and improves the
throughput.

Another type of pipelining where overlap
is achieved between the instruction process-
ing unit and the execution unit, has been
exploited by later machines. For example,
the IBM 7094 used this type of overlap to
its advantage. With a 72-bit-wide memory
with a memory eycle time of approximately
2 usec, it executed on the average an in-
struction (32 bits) with 32-bit operands in
two cycles or 4 psec [22]. With an inter-
leaved and faster memory [1.4 psec cycle
time], the 7094 II achieved an average
execution rate of one instruction per cycle
of 2 usec. The Honeywell H-800 (1959)
pionecred in multiprogramming, overlap-
ping of I/0, and concurrent computing
among a number of programs resident in
the memory. Similarly, the Univac Larc
(1961) uses interleaved memory and a four-
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fold overlap (instruction fetch, indexing,
data fetch, and execution) and can run one
floating-point add per cycle of 4 usec [22].

Pipelining within the instruction process-
ing unit was implemented in the IBM 360/91
in the sixties. Some functions of the execu-
tion unit were also pipelined—for example,
the addition and the division processes.

1.2 Pipeline Characterization

Since pipelining can be applied at more
than one level, a top-down, level-by-level
characterization of pipelining can be con-
veniently established for analyzing a pipe-
lined system. A pipe can be further dis-
tinguished by its design configurations and
control strategies. These two points are
elaborated below.

1) Levels of pipelining: Pipelining at the
system level is excmplified in the design of
the instruction processing unit. The IPU
can be decomposed into various functional
segments—instruction fetch, instruction de-
code, address generation, ete. (Figure 1(b)).
1t takes one minor cycle for a task (instruc-
tion) to pass through each segment. Thus,
after a stream of tasks enters this pipeline,
the pipeline starts outputting one task per
minor cycle. Microprogram prefetch—that
is, overlap of decoding the current micro-
instruction with fetching the next micro-
instruction—is another example at this level.

The next level for the application of pipe-
lining is the subsystem level, typical exam-
ples of which are the pipelined arithmetic
units. Pipelined add, multiply, divide, and
square-root functions have been in exist-
ence in & number of contemporary com-
puter structures. Figure 1(e) is the con-
ceptual representation of the operation of
the divide unit of the IBM 360/91, where,
as D, iteratively approaches 1, N, ap-
proaches N/D, the quotient.

2) Pipeline configurations: In addition to
the hierarchical levels of pipelining, differ-
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ent design and contral strategies classify a
pipelined module into one of two forms; it
can be either a static or 2 dynamic pipe.
Sometimes a pipelined module only serves a
single dedicated funetion—for example, the
pipelined adder or multiplier in the IBM
360/91. Naturally, it can be termed a
unifunctional pipe with a static configura-
tion. On the other hand, a pipelined module
can serve a set of functions, each with a
distinguishable configuration. For example,
in the TI ASC system the arithmetic unit
in the processor is a pipe that has different
configurations (interconnections of modules)
for performing different types of arithmetic
operations. Such a pipe is called a multi-
functional pipe. A multifunctional pipe can
be either static or dynamic. In the sfatic
case, at any time instant only one config-
uration is active, therefore pipelining (over-
lapped processing) is permissible only if
the tasks (instructions) involve the same
configuration. Most, if not all, multifunc-
tional pipes in arithmetic units of exist-
ing machines fall into this classification
because static pipes are easier to control, as
will become clearer later on. Dynamic mul-
tifunctional pipes permit overlapped process-
ing among several active configurations
. simultaneously. Throughput may be further
" enhanced, but more elaborate control and
sequencing are required. This classification
of static and dynamic pipes will be very
useful when we consider and evaluate pipe-
lined processor architecture in subsequent
sections. '

1.3 Performance Considerations

In this section, the advantages, require-
ments, and limitations of pipelining are
reviewed.

1) Throughput considerations: One of the
most important performance measures of a
system is its throughput rate, defined as the
pnumber of outputs (sometimes the number
of instructions processed) per unit time. It
directly reflects the processing power of a
processor system—the higher its through-
put rate, the more powerful the system is.
Pipelining is one specific technique to im-
prove throughput, as is the use of faster
modules.
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For this discussion, let us reeonsider the
example in Figure 1. For a nonpipelined
processor, the execution time of an instrue-
tionis Ty, = f + & + & + . Therefore,
for every T, units of time an instruction is
completed; this corresponds to a throughput
rate of 1/T,,. In the pipelined case, sup-
pose b = max {§, &, &, &4} = speed of the
slowest facility in the pipeline. Then its
maximum throughput rate is 1/¢, , because
for every T, = ¢, units of time, an instruc-
tion can leave the pipeline after its execu-
tion, if instructions are independent. A
direct comparison shows that 7, < Tup;
hence the throughput rate of the pipelined
processor (1/T,) can be much larger than
that of the nonpipelined processor. If £, =
t; = t; = ¢, , then the comparison can show a
fourfold throughput improvement. From
this result we can anticipate that a high
degree of parallelism leads to a high through-
put rate.

The throughput of a pipeline is deter-
mined by its slowest facility, or “‘bottle-
neck.” The throughput can be improved by
subdivision of the bottleneck eclement
(Figure 1(g)) or by putting facilities in
parallel (Figure 1(h)). Both techniques are
useful in removing bottlenecks. However,
putting facilities in parallel creates more
problems in distribution and synchroniza-
tion of the tasks in the pipeline.

2) Efficiency considerations: Another im-
portant performance measure for a system
1s its efficiency, sometimes called its utili-
zation factor. Efficiency also dircctly re-

1 H
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Ficure . Facility 2 is the bottleneck.
2
e ey,
o33
t t t t t

Ficure 1g. Subdivision of facility 2.

Ficure 1h. Paralleling of facility 2.
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flects how effective a processing scheme is
and can be used to indicate how future im-
provements, such as removal of bottlenecks,
should progress. Like most performance
measures, it can be evaluated both analyti-
cally and experimentally by measurements.
Here an attempt is made to illustrate the
analytical efficiency of pipeline processing
via the space-time relationship introduced
earlier.

It is natural to view efficiency as the
percentage of busy (productive) periods
with respect to a certain time span. Here a
slight complication arises because a pipe-
lined processor consists of several modules,
some of which may be busy while the others
are idle. To evaluate the efficiency of the
processor system as an entity, Chen [7]
proposes a uniform space-time span index:

cfficieney of pipeline

_ total space-time span of tasks
total space-time span of facilities

where the term “task” (process) is used to
fit the loose definition of a pipeline. Some-
times the modules in the pipeline are of
different natures with different importance
(or cost) factors. A refined index which also
includes such considerations has been sug-
gested in [8]:

efficiency of pipeline

_ total weighted space-time span of L tasks
" total weighted space-time span of
nfacilities

For example, for a linear pipeline like the
one in Figure 1 (where there is no looping
inside the pipeline, so that a task will flow
through each facility only once), an analyti-
cal efficiency measure can be expressed as
follows (assuming the execution time of
each module is time invariant):
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Ficurr 2. IBM 360 Model 91 instruction se-
quencing illustration.
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7 = efficiency of linear pipe

L (Z a.-t.-)
3 (iz; + (L~ l)t,->

where {; is the speed of the slowest facility
(bottleneck); ¢; is the speed of the ith
facility in the pipeline; a; is the weight
associated with the space-time span of the
ith facility as determined by its importance,
such as cost-speed factor; L is the number
of tasks (instructions) pumped into the
pipeline in a certain period of time assum-
ing, for highest efficiency, that tasks are
pumped in continuously); and » is the total
number of facilities in the pipeline. (See
Figure 2.) .

In the ideal situation in which all modules
have the same speed, the equation simpli-
fies to

n = L/(n + (L-1));

so, when L approaches infinity (in the steady
state of processing), the efficiency may ap-
proach unity. In all others cases, as L ap-
proaches infinity, the efficiency approaches

n'—’(iast.-)/(i:a.-)t, < 1.

Two observations should be noted at
this point. First, this equation holds whether
or not there are additional buffers inside the
pipeline because of the linearity assumption.
As is demonstrated later, buffering is an
important tool for increasing throughput
in many practical pipeline designs—for
example, when two or more EXEC modules
are available and one is a bottleneck.
Second, in deriving the equation it has been
assumed that a continuous supply of tasks
(instructions) is available. In reality, execu-
tion may be discontinued for such reasons
as precedence constraints, branching, in-
terrupts, ete.

3) Clock rate and maximum speed limita-
tions: As data and control flow from one
pipe segment to another, the propagation
delay through each segment and the pos-
sible signal skews have to be carefully
balanced to avoid any improper gating in a
high speed situation. In the maximum sp



pipeline design, all segments have to be
synchronized by the same clock for propa-
gating the data through the pipe.

The study of a maximum clock rate
serves to place a practical bound on the
throughput achievable in a pipeline system
limited by the propagation delays of the
logic gates used. Several studies have been
carried out to examine this problem under
various assumptions of timing parameters.
In all cases, three necessary conditions of
signal balancing exist:

1) The data must be gated by a clock
wide enough to insure a properly
stabilized output;

2) The clock should not be too wide to
allow data to pass through two or
more segments within the same clock;
and

3) The data that passes through a seg-
ment should arrive at the next seg-
ment before the next clock begins.

Initially Cotten [27] tested this data rate
and latching problem by using a hypo-
thetical circuit as in Figure 3. The clock for
various segments may have a skew S., de-
fined as the time difference between the
arrival of the same pulse at different gates.
The latch register is assumed to be com-
posed of two gate levels with feedback con-
nections. Then, under conditions 1) and
2), Cotten’s clock requirements are:

01' - Sc 2 3tmx - tmin ] (1)
CT + Sc S 4tmin ’ (2)
where Cr = clock width, S. = clock skew,

toex = maximum single gate delay, and
tmin = Mminimum single gate delay.

Register 2

Register 1

CT skew
generator

Sampling ___J:‘r—l":
Clock - J’

skew in clock sampling
Figure 3. Clock rate conditioning.
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These two requirements can be combined
to form . :

Btmu - tmin + So S CT S 4tmin - Sc- (3)

Although here a segment of the pipe has
been assumed to be composed of two gates,
one can further the derivation by including
condition 3). Then a third constraint exists
as

Cr + Cl‘ 2 2tmsx + Tmux + Sc’ (4)

where C» = inverted clock width and
Twx = maximum propagation delay
through the segment (excluding the latch).

Under Cotten’s assumptions, the com-
plete set of constraints for a general pipe
segment is:

3tmnx - tmin + Sc S CT

S Tmin + 2tmin - Sc (5)

and
2nax + Tmax -+ Sc .<_ CT + Csr. (6)

Consequently the minimum clock period
can be derived to be (Cr + Cp), which
satisfies the above constraint and also
Cr + Cp» 2> 2 min Cy (that is, the period
must be long enough to allow the data to
propagate through a latch and then remain
stable for min Cy). Under zero skew and

tmnx = {min = t,
Cr+ Cp 2 4.

This marks the highest frequency pos-
sible in an ideally synchronized system. If
S, is nonzero, then Cr + Cr > 4 + S., and
the frequency has to be decreased.

Besides the positive clock skews, other
skews may exist, such as skew between
Cyr and C#. In {28], Hallin and Flynn pro-
pose another set of constraints that in-
cludes the skew, called ¢, and any uncer-
tainty thereof:

To > +S:+e+ U (N
Uu + 8. < Cr < Tpr+d 8)

where Tp = propagation delay of a seg-
ment; ty = propagation delay of a gate;
¢ = skew between Cr and C»p; U, = un-
certainty in the clock width; and d = mini-
mum length pulse to change a gate output.
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While Equations (7) and (8) include the
additional terms of ¢ and U, , the distinc-
tions of the minimum and maximum values
of all propagation delay parametershave been
ignored. Yet those distinctions are of prime
importance in verifying the functioning of
the circuit. One can further the derivation of
the corresponding constraints, keeping con-
ditions 1), 2), and 3) satisfied, under different
sets of skews that may appear in the circuit.
In any case, the (4¢) period always places an
absolute lower bound if a register latch is
composed of two gates. If a gate delay is
2.5 nsec, the maximum frequency will be
100 megacycles, corresponding to a segment
time of 10 nsec.

4) Design optimizaiion: Design optimi-
zation for pipeline systems shares most of
the fundamental difficulties of any system
design. One such difficulty is to abstract a
proper objective for optimization. No gen-
eral objective is sufficient to describe in-
dividual situations, so individual objectives
have to be formulated and solved.

One common approach is to look at the
cost-effectiveness, or the cost-speed product.
A given processor pipe can be segmented in
various ways, resulting in different cost and
speed parameters. In a synchronous pipe,
such as a multiply or add pipe, a first order
model of optimization may be used. The
pipe is partitioned into k segments, and the
resulting throughput and cost are:

segment time = T/k + \
cost = ak + B

where T = time for the nonpipelined case;
A = latch time; o = cost of each segment
(assumed to be the same); and 8 = initial
cost. Thus

- cost-speed product = (7/k + N)(ak + 8).

Lemma. Under the first order model, the
optimal segmentation for a pipe is k£ =
(8T/a))! (assuming a continuous space for
optimization).

This result can be derived directly from
minimizing the cost-speed product. It is
useful for homogeneous straight-line pipes
such as a pipelined adder where each seg-
ment cost and speed can fit into the char-
acterization. For other cases, the first order
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model does not apply very well; then the
segment speed f(T, k) + X and the cost
g(a, k) + B for some discrete functions f
and g specified by an alternative scheme are
available. Consequently, minimizing the
cost-speed product here corresponds to
minimizing (8f + fg + Ag), for which an
integer programming algorithm is necessary
to efficiently enumerate partially all pos-
sible schemes. An example of pipelining a
processor can be found in {29].

As mentioned earlier, cost-effectiveness
may not be a good objective. In some cases,
the design objective is to minimize the cost
while satisfying some speed constraint or
vice versa. This is typically the case because
the throughput of a pipe sometimes is not
restricted simply by its segment speed, but
also by other outside parameters such as
memory speed. In other words, the local
optimization has to be performed relative
to the global system, leading to integer
programming problems that involve semi-
exhaustive algorithms for optimization.
For example, for a linear pipe, a dynamic
programming formulation of complexity
O(M?N) is applicable where N is the num-
ber of segment nodes and M is the cost
constraint. However, for systems that are
not linear more complex iterative algorithms
are needed.

5) Bounds on execution time and efficiency:
For the purpose of establishing some upper
bounds of a pipe in executing certain typical
but related set of operations, the following
theoretical model can be used. Here a pipe
is characterized by the number of segments
it contains, where each segment has the
same synchronized speed.

Ideally, when the work to be accomplished
has no internal precedence constraints, the
maximum throughput can be attained with
one output per segment clock. The exist-
ence of precedence requirements inhibits the
continuous initiation of the pipe, resulting in
lower throughput. The most common type
of precedence structure is that of a tree.

One special problem of interest is: Given
a pipe of m segments, what is the time
bound needed to compute the sum (or
product) of n numbers, assuming that each
segment time is 1 unit? If n > 2m and is a
power of 2, the pipe is kept busy until



(m — 1) computations are left, with the
needed (intermediate) results residing in
the m segments. They will take an additional
(m loggm + m — 1) units to complete. So
altogether, the (n — 1) computations take
(n + m logam — 1) units. On the other
hand,if 2 £ n < 2m, (n/2 + mlogan — 1)
units are required. The corresponding effi-
ciencies, defined by the ratio of the total
busy segment times to the total segment
time span, can then be derived easily as
(n—1)/((n — 1) + mlogam) and (n — 1)/
(m/2 + m logam — 1), respectively. This
implies that for n >> m the pipe of m seg-
ments functions almost like a nonpiped
processor with speed of one segment time
instead of m segment cycles (the total time
is O(n), not O(mn)). However, for smaller
n the time is O(m log: n).

The previous special case assmues a set
of uniform operations on a set of data,
merging them into one result where the exact
order of merging is unimportant. In the
case where a specific tree is to be followed
(the precedence structure is fixed), other
Jower bounds can be derived in a similar
fashion. It can be shown that, for a general
tree (not necessarily binary), if each node 7
is labeled by £(7) corresponding to its dis-
tance from the root, then execution of the
nodes according to priorities in descending
order of {(7) in a pipeline environment with
identical pipeline characteristics is optimal.
Therefore the shortest execution time can
be achieved if the nodes are executed ac-
cording to priorities corresponding to their
level labels. However, if the pipes have
different structures and/or capabilities, the
problem becomes NP-complete. Without
going into the latter case, the time bound
for the former case can be derived, given a
tree structure and a pipe structure (latency
and flush time). -

First let L; be the number of nodes of the
tree with label j where ! > j = 0. For the
gimple case that there exists a Jo such that
for £ 23 > jo, Li 2 m and for j < jo,
L; £ m, the time bound is given by

jott

2. L+ mGo + 1) — 1,

=
and this time bound is exact (from the
optimality of the level algorithm). This
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asserts that once the ‘‘critical level” j,
is reached, the rest of the tree of j, levels
needs precisely m(jo + 1) — 1 to flush. So
the time complexity is O(mjo) if the former
term is less significant.

Generalization of the simple case will
lead to a more complex bound. One way to
derive the bound is to chop L,'s into pairs
of sections, each of which corresponds to a
simple case as depicted in Figure 4. Then if
L/ is the number of nodes left at level j
when all nodes at level j first become either
ready or initiated (since some may have
already been computed or initiated), the
bound is

] is
}:1[ E L; + m(j; — j.’+1)] +m —1.
L I™ri-1

In deriving these bounds, it has been
assumed that each node takes the same
processing structure and has the same flush
time. On the other hand, if more than one
pipe exists, the bounds are much more
complicated. First, the control of multiple
pipelines, specifically the routing of inter-
mediate results, is a practically unsolved
problem. While the short-circuit (short-
stop) path exists from the output of a pipe
to its own input, the disjoint and direct
update paths between pipes either incur
too much cost or cause too much inter-
ference. Aside from this practieal restric-
tion, theoretically, with multiple pipes,
similar time bounds are derivable. In the
case of computing the sum or product of n
numbers in a system with p pipes, assume
n = p{ forsome £. If £ > 2m (integer powers
of 2), then the time bound is [¢ + m (log: m
4+ log,¢) — 1). If ¢ < 2m, it is [¢/2 +
m (logan + loga &) — 1.

jn-l

TTT g2

jiﬂ

__________ - — = ji

S & & b b

Figure 4. Partitioning into simple cases.
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Speedup is achievable since £ < n. For a
general tree, the routing problem may be
more severe and cause more interference.
If one ignores these difficulties, bounds simi-
lar to those derived for single pipe may be
obtained.

1.4 Control Structure, Hazards, and Penaities

The control structure of an overlapped or
pipeline system is often overlooked in the
literature. Yet it plays such a significant
role in characterizing the system under
study that it determines the resulting opera-
tional efficiency.

In an overlapped pipeline system, two
major control structures can be distin-
guished, and these have been implemented
on several systems. The first and simpler
kind involves a streamline flow of instruc-
tions through the system, with one instruc-
tion (task) following another, such that the
completion ordering of the instructions is
the same as their initiation ordering. There-
fore if the system is depicted by a sequence
of functional modules, the instructions flow
through them one after another, with simple
interlocks between two adjacent segments
to allow the transfer of data control from
one segment to the next. Interlock is neces-
sary because the pipe is asynchronous, and
some segments may have speeds different
from others or variable depending on the
control information. When a bottleneck ap-
pears dynamically at a segment, the input
will be halted temporarily until the seg-
ment is free again.

The second type of control structure is
more flexible and powerful, but also more
expensive. Here the system can be viewed as
fully asynchronous, so that completion
ordering of the instructions need not be the
same as their initiation ordering. In fact,
when an instruction is held up because of
some hazard condition, the next instruction
may be allowed to go ahead. Such a scheme
is desirable whenever the system has mul-
tiple (either physical or virtual) execution
units or facilities running in parallel (be-
sides the pipelining employed). Then the
gystem resources can be better utilized,
despite the occurrence of some undesirable
events. Besides, in some cases the execution
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time of one instruction may be very differ-
ent from that of another, and it is only
natural to allow a subsequent short instruc-
tion to finish ahead of a preceding (but in-
dependent) long instruction.

The first type of control structure is used
by such systems as the IBM 7094 and
360/75, and even the apparently more power-
ful TI ASC. Representative of the second
type of control structure are the CDC
6600, the IBM 360/91, and the Star-100
systems.

We now look at the fundamental problems
to be solved by either type of control as
well as the means and complexities involved.
For any asynchronous system, three sources
of control problems exist: 1) Read after
write, 2) write after write, and 3) write
after read. Their significance is worth more
elaborate explanation.

Read After Write

Because of the simultaneous execution
(though in different pha-~cs) of several ac-
tive instructions, the data needed by these
instructions has to be guaranteed to be
correct. For two “active” instructions, say
i and j (j being an immediate successor of
%), if ¢ writes into a region and j needs to
fetch some control or data from the same
location in that region, a “read after write”
phenomenon occurs. (The term “region”
is a flexible term that refers to any storage
element, e.g., a register or main memory,
as depicted in Figure 5(a).) To synchronize
i and j properly, j has to defer fetching that
value until < has completed; otherwise, the
wrong information (data or control) is
used and the control scheme fails.

Write After Write

Quite analogously, if the instructions ¢ and j
write into the same region, even if ¢ com-
pletes after j (this may occur when 7 is a
long instruction or when something delays
1), the resulting value stored in the region
should reflect the result of instruction j, not
i. So, to guarantee correct execution, the
control structure has to resolve any such
oceurrence.
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Write After Read

This problem is less severe and rarely occurs
except in some special cases. It involves the
completion of a read before the next write
to the same region takes place. Usually, if a
read is initiated (to the memory), even if
memory interference delays the actual read,
a subsequent write to the same location will
still follow the read. For register reference,
the interference problem is less severe (re-
solved faster). A potential situation where
such & problem may need further control is
when the read and write requests have
separate request queues; requests on both
queues then have to be synchronized for the
write after read to guarantee that the write
follows the read.

These three basic problems need specific
controls. We explore these problems realiz-
ing that the type of control structure of the
machine does play a deciding role in de-
terming how they are resolved.

1) Read After Write

The read after write problem can be further
decomposed into three subproblems, de-
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pending on the location of the region and
the value type (control or data).

a) Instruction hazard: An instruction
hazard occurs when the instruction to be
initiated (decoded, ete.) is fetched from a
location that is yet to be updated by some
uncompleted instruction downstream. The

“instruction initiation must be halted until

the read after write problem is resolved.

b) Register hazard: In this case the region
of conflict is in the register, the contents of
which are needed either to compute an ef-
fective address or to form one of the operands
needed. Again, the instruction (j) involved
has to be deferred until the previous write
(into the register) is completed.

¢) Operand hazard: Similarly, if the con-
flict is at a memory location, an operand
hazard occurs. The resolution is to wait
until the previous write is completed. Some-
times this process can be speeded up by
providing a short-circuit path from the
write buffer to the segment needing the
operand so that the read from memory is
avoided completely. These solutions are
explained later.

These three hazards need separate de-
tectors and resolvers. The location of a
detector and the complexity of a resolver
decide the penalty {time delay in initiation)
that is incurred by the hazard. A formalism
of such control complexity and penalties is
developed in [32]. As an example, suppose
that (under a streamline control structure)
an instruction hazard is to be detected at
segment ¢ of an N-segment pipe such that
each segment can hold at most one instruc-
tion. To detect the hazard, N — ¢ store ad-
dress registers have to be installed, one at
every segment after ¢ (assuming that a
store address has been developed after seg-
ment Z + 1). The instruction to be initiated
at segment 7 has to be checked first by com-
paring the program counter (the address of
that instruetion) with the contents of the
N — ¢ store address registers. A simple
detection and resolution scheme is depicted
in Figure 5(b). Upon the detection of that
hazard, the instruction (at segment 7) is
halted while the instructions downstream
continue to flow. Finally the detection
yields a null signal when the conflicting
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(predecessor) instruction exits from the
pipe. Then the updated instruction can be
fetched from the memory (after store) or
directly from the store buffer. In the former
case, it incurs an additional penalty, al-
though it is cheaper to control (since the
read request is not generated until the write
is initiated, as the detection signal switches).
In the latter case, a tagging and direct route
has to be established from the write buffer
to segment 7.

The penalty for an instruction hazard,
which is the additional delay to the initi-
ation of the instruction at segment 7 which
otherwise would not oceur, is

N

2 b+ b,
=it
where {; is the execution time of segment j
and {,; is the update time for an instruc-
tion hazard with one minor cycle for routing
using time less than or equal to £, < 2im,
the memory cycle time.

Similarly, a register hazard must be de-
tected before a register value is used (other-
wise, a roll-back scheme of instruction
processing is needed). If the hazard is de-
tected at segment k, the detection and reso-
lution scheme is similar except that it now
takes (N — k) register-address registers for
comparison. The penalty for a register haz-
ard is

N

2 ti+ be,

=k
where 4, is the update time for a register
hazard, usually around one or two minor
cycles.

Finally, the operand hazards, similar to
instruction hazards, can be detected by
comparison with the already existing storage
address registers downstream. Usually the
location of this detector is further down-
stream than the one for instruction hazards
because operand fetch can be carried out
later than instruction control setup. Sup-
pose it is detected at segment ¢, the penalty
is

N
2ottty
=2

where f,, is the update time for operand
hazard, which usually is equal to ¢, .

Computing Surveys, Vol. 9, No. 1, March 1977

To sum up, the total control cost of the
detector and resolver for all three types of
hazards is: max (N — i, N — () storage
address registers; (¥ — 1) + (N — ¢) +
(N — k) comparators (parallel comparison);
and N — k register address registers for a
streamline processing system. The penalties
are as previously specified.

In some cases more than one instruction
may be allowed to reside in a segment (addi-
tional buffering) whose speed is highly vari-
able (in which case buffering will help to
smooth cut the flow). The extension of the
previous lemma will be omitted here. How-
ever, similar control and resolution schemes
may be used.

For fully asynchronous systems, the de-
tection and resolution control is more com-
plex, since initiation is not halted when a
read after write occurs. Rather, the in-
struction is paused, but subsequent inde-
pendent instruction(s) may proceed, thus
bypassing the instruction that has to wait
for the previous write. The ways to aec-
complish this bypassing can be divided into
two strategies: centralized and decentralized.
A typical representative of the centralized
policy is the scoreboard used in the CDC
6600, which contains information about each
execution unit, the operand availability of
the registers, and the status of each facility.
The decentralized policy is represented by
the common data bus (CDB) used by the
IBM 360/91, in which tags are used, in
addition to the detection necessary for in-
struction hazard detection at the IPU.

First the instruction hazard can be de-
tected in a similar way by comparing its
address with all store addresses yet to be
completed. Usually register or operand
hazards do not halt the instruction stream;
for example, an instruction needing a yet-
to-be-written operand can be continually
forwarded to an execution unit to wait
until the write is completed while subse-
quent instructions proceed. So, besides the
ordinary detection, the resolution needs
additional control hardware and time. The
CDB of the 360/91 represents such a flex-
ible tagging scheme. A tag is associated with
any instruction needing such an operand,
and it reflects the source of that operand.
By updating the tags and routing operands



according to tag values, the read-after-
write can be monitored properly. A CDB
can be depicted by S sources (that generate
or forward operands) and 7' sinks (that need
the operands). Thus the added control
involves O(T') tag registers, each of length
log: S, in addition to the comparison circuit
to route operands (7' comparators plus
gating control).

A centralized scheme involves similar
complexity. The disadvantage of the cen-
tralized scheme is that it can reinitiate (up-
date) only one sink at a time so that the
delay ¢, can be longer than that in the de-

centralized case with parallel updating.

(same tag).

The penalty of hazards in fully asyn-
chronous systems is less severe and less well
defined. One possible way to view this
penalty is to represent it by the waiting
time of the instruction causing the hazard,
which is a random variable depending on
the completion time of its predecessor in-
struction. Such a stochastic characterization
is omitted here.

9) Write After Write

The write after write problem does not
exist in steamline systems, provided the
write buffer is served sequentially. However,
in fully asynchronous systems, write after
write hurts the processing continuity in
some cases, such as in the 6600. It can be
detected in & manner similar to that used
for the read after write, but resolution differs.
In the 6600, after its detection, instruction
initiation pauses until the previous write is
completed. So no additional hardware is
needed. In the 360/91, write after write
does not cause a pause, because the de-
centralized tags used in the CDB will auto-
matically guarantee the precedence of the
two writes. Thus, as a byproduct of the
solution for read after write, this problem is
also resolved.

3) Write After Read

As mentioned earlier, the write after read
problem occurs only if the read and write
queues are not synchronized. If they share
the same queue, this problem does not arise.
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1.5 Sequencing Control

Pipelines for arithmetic processing such as
those used for multiplication and division
are characterized by the following attri-
butes: the speed of each segment is fixed;
there are no additional buffers between
segments; and the execution process re-
quires internal looping, i.e. results being
fed back as inputs. The basic sequencing
control problem is to determine expedient
moments at which to introduce new inputs
from an external source so that there will be
no collision (two computations attempt to
use the same segment) and the throughput
rate will be high. Davidson {16, 17] has
developed an algorithm to sequence operands
properly. A reservation table is used to
represent the traversal path of operands
through the pipe.

We illustrate this use of a reservation
table by means of an example. Figure 6(b)
shows the reservation table of a pipeline
whose schematic is given in Figure 6(a).
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A pipeline.

Reservation table for Fig. 6a.
Shift register controller.
State diagram.
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Each segment S; requires one unit of time
for processing. The computational sequence
requires the passage of the operands in the
order S;, S;, Sy, Si, Si, and S, . In the
reservation table, an X is placed at the
intersection of a segment’s row with columns
corresponding to each time unit relative to
initiation during which that segment is
used by the computation. Consider the
case in which a computation has just begun.
To determine at which future times a new
computation may be initiated without
causing & collision, one has to analyze the
reservation table. One way to determine
whether two computations may be initi-
ated K units of time apart is to superim-
pose the reservation on itself offset by K
units of time. If an X falls on top of another,
then a collision will occur in that segment,
and K is a forbidden latency. Otherwise no
collision occurs, and K is an allowable
latency. Thus, if any pair of Xs in any row
is K units of time apart, then K is a for-
bidden latency. Therefore it is simple to
construct a forbidden list, which is a list of
all forbidden latencies for the particular
reservation table. From this forbidden list,
in which n is the largest element, it is pos-
sible to construct the collision vector, which
is & binary vector of n bits from 1 (rightmost
bit) to n (the leftmost bit). Bit ¢ is 1 if and
only if it is an element of the forbidden
list. Thus, if the collision vector is C =
Cnn—1 - * * Ca€1 , then ¢; = 1if 7 is an element
of the forbidden list; otherwise ¢; = 0. For
the degenerate case of a linear (straight
through) pipeline, there can be no collisions
and the collision vector is empty, i.e., n = 0.
The forbidden list for the pipeline in Figure
6(a) is (4, 4) and n = 4. The collision vector
is 1000.

By the use of the collision vector, a simple
control mechanism can be used to avoid
collisions. Before initiating a new computa-
tion the collision vector can be checked to
see if there are zeros in every location cor-
responding to the number of time units
that have elapsed since each previous com-
putation was initiated. Davidson devised
an ingenious shift register controller ((Fig.
6(c)) for checking this requirement. The
shift register controller is a sequential
machine and therefore may be conveniently
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described by its state diagram in Fig. 6(d).
It is assumed that computations are initi-
ated only at collision-free opportunities, and
only states that are important are repre-
sented in the state diagram. Each arc in the
state diagram corresponds to the initiation
of a computation and is labeled with the
number of time units since the previous
initiation. The initial node is coded by the
collision vector itself and is the state of the
shift register after the initiation of the first
computation. Every node has an outbound
are for each 0 in the coding of the state and
is labeled with the position subscript of its
corresponding 0. An arc with label 7 leaving
state S leads to state S’, which is S shifted
right ¢ positions and OR’d with the colli-
sion vector. In addition there is an arc
labeled (n 4+ 1)* (where n is the dimension
of the collision vector) leaving every node
and leading to the initial node, indicating
that, if more than n units of time elapse
between the initiations, then the shift
register will return to the state represented
by the collision vector itself.

Cycles in the state diagram correspond to
possible cycles of collision-free initiations
in the pipeline. A cycle may be specified
completely by the nodes passed through and
the latencies of (or the time taken by) the
arcs traversed from node to node in se-
quence. From the state diagram in Figure
6(d), it can be observed that there is a
cycle consisting of states (1010), (1101),
(1011), and (1001) with latencies of 1, 2, 3,
and 2 time units, respectively. This cycle
can be entered through the state (1000).
At each of these states a new computation
with a new set of operands can be initiated.
Since four new computations can be initi-
ated during each traversal of the cycle,
there is an average latency of two, i.e., one
result per two time units. One can find
cycles that produce maximum throughput
rates (minimum average latency cycles).
In this example, the two cycles that produce
minimum average latencies are (1000),
(1100), (1110), (1111) and (1010), (1101),
(1011), (1001), each having a latency of 2
time units.

In general, the problem of efficient se-
quencing control of a pipeline reduces to
the discovery of minimum latency cycles in



the state diagram. In the case of more com-

ex or multifunctional (assuming & certain
instruction mix) pipelines, the discovery of
the minimum latency cycles becomes quite
difficult. Nevertheless, such a shift register
eontrol is applicable to properly avoiding
any resource (facility) conflicts due to the
existence of multiple paths or loops, in a
completely synchronous sense.

16 Software Aspects

Language extensions: FORTRAN has been
axtended to support vector operations by
the inclusion of special primitives such as
vector addition and vector multiplication.
Examples of such extensions are Lawrence
Livermore Laboratory LRL-trRaN for the
Srar-100 computer [33] and Texas Instru-
pents ASC-Forrran [34] for their ASC
amputer. Compilers for these ForTRAN
etensions perform some parallelism de-
tection and cluster (group) like arithmetic
operations and machine dependent code
gptimization in the object code. The NX
compiler for ASC-FORTRAN possesses several
of these facilities,

New languages are also being developed
to support pipeline processing. SL/1 de-
veloped for STaR-100 at the NASA Langley
Center is an example [35]. APL has also
been tried to support vector operations on
wme pipeline computers.

Software costs. Software costs consist of
three components, viz., 1) the cost of
program generation and testing; 2) the cost
of compiling; and 3) the cost of program
eecution. The cost of compiling consists of
gt only the cost of translation from a high
level language to machine code, but also the
wst of code optimization of the program
for the particular machine., Obviously,
eficient code optimization reduces the execu-
tion costs.

Machine dependent code optimization is a
difficult problem. After the source program
pas been optimized, the resulting code is
often hard to follow. Also because of several
ponstandard I/0 statement types, it is
difficult to optimize I/O oriented codes. To
ilustrate the peculiarity and machine de-
pendency of the code optimization problem,
we provide a few examples.
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a) Reducing the number of multifunction
pipe Tteconfigurations by clustering like
operations (ASC).

Unoptimized Code Optimized Code
K=A+«B requires F=B/C requires
F=B/C four recon- K=A+B two recon-
L=D+E figurations P=F«C figurations
P=F+C L=D+E
H=P+A H=P+A

Note that, in a multifunctional pipe, a re-
configuration is required to change its func-
tion, which, in turn, involves a time delay.

b) Special machine instructions. A
ForTRAN program for polynomial evaluation
is shown below:

LIMIT=N+1
DO 10 J=1,M
VALUE(J) =X(J)*A(1)
DO 10 I=2,LIMIT
10 VALUE(J)=VALUE(J) + A(I)*X(J)

This is equivalent to one machine instruc-
tion in the Star-100. Therefore the com-
piler has to “recognize” the high level
language statement sequence and replace it
with the appropriate machine instruction.
¢) Vectorization. Another type of opti-
mization is to recognize sequential program
statements that represent vector operations
and translate them into powerful vector
arithmetic instructions.
FoRTRAN program: DO 10 1=4,100
C(I)=A(1)+B(I-3)

10 CONTINUE
Equivalent compiler generated text for
pipeline machines:

VECT_BEGIN
A,C: VECTOR(4.. 100);
B: VECTOR(1.. 97);
C=A+B
VECT__END.

2. STRUCTURE OF A PIPELINED PROCESSOR

In this section, the basic structures of a
pipelined processor are examined, with the
IBM 360/91 central processor used as the
example. The throughput objective of a
sequential pipe are uncovered. From the
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analysis of its structure, the problems and
requirements specific to pipelined processors,
outlined in Section 1, become more notice-
able, They are discussed, and some solutions
in existing processors are also illustrated and
compared. Attention to vector processing
capabilities is reserved for the next section.

2.1 An Example Sequential Pipelined Processor

To demonstrate the pipeline action in a
sequential processor, the IBM 360/91 [9]
is used as an illustration. The central proces-
sor was designed to upgrade computational
performance (throughput) by one or two
orders of magnitude compared to the 7090
system by means of pipelining and circuit
design.

In order to observe the important prob-
lems and characteristics associated with a
pipelined processor, the different segments
in the pipe for a floating point instruction
in the 360/91 are drawn in Figure 7. Basi-
cally most segments of the pipe have a
cycle time of 60 nsec, with the exception of
the storage referencing and execution unit.
After decoding, two parallel sequences of
operations are initiated. The first sequence
includes the effective address calculation
and fetch for the operand from memory
storage. In calculating this address, the
delay time in the segment(s) involved is
variable, depending on whether it is in-
dexed or not. The operand access segment
again has a random delay, depending on the
availability of the memory module to be

referenced. The memory system in the
360/91 is interleaved to increase the band.
width or memory supply rate. However,
because of reference conflicts due to re.
quests from other parts of the processor or
system (such as instruction fetch or I/0),
an operand fetch may have to be delayed
for a complete memory cycle or more be.
fore it is acknowledged. This wvariable
access time imposes a constraint on the effi-
ciency of the pipelined processor. A com-
pletely synchronous operation on the seg-
ments may be impossible because of these
variable waiting times. The need to be
able to reduce the memory access time so
as to match the speeds of the other segments
in the pipes remains one of the most critical
issues in pipelined processor designs. With
slow effective memory access time, the
memory access segment may be a bottleneck
of such a large magnitude that the through.
put of the processor is not much improved
by pipelining,

The second sequence of operations in-
volves the setting up of operands to be
submitted to an assigned execution station
in the execution unit. If it is a floating point
instruction, it is mapped into a pseudo
register-to-register (within the execution
unit) instruction and transmitted to the
execution unit. The execution unit then
waits for the return of the operand from
memory. When it returns, the two paralle]
sequences can merge (join) to initiate the
next stage of processing, the actual execu-
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Figure 7. Functional segments involved in a floating storage-to-register instruction in Model 91,
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The importance of reducing memory ac-
cess time has been demonstrated. Even
after the memory accessing problem has
been solved, another bottleneck in the
pipeline may emerge. This bottleneck is
the execution unit. Usually many arith-
metic operations, especially floating point
operations, require considerable delay be-
cause of their implicit internal circuit delay
requirement or iterative characteristics. If
there is only one execution station to serve
the entire instruction stream coming in, the
speed of the execution unit may not be
compatible with the input rate, thereby
unnecessarily slowing down the computa-
tion. One alterative is to provide multiple
physical execution stations to perform
different types of operations. In the 360/91,
there is a fixed point execution area and a
floating point execution area. With this
arrangement, floating and fixed point opera-
tions can be performed asynchronously but
in parallel. But within each execution area,
the multiplicity of execution stations can
be increased. This is equivalent to increasing
the throughput of the execution unit as an
entity. For example, the floating point area
in the 360/91 has two function units: a
pipelined adder and a multiply/divide pipe.

We have shown the essential structures of
a pipelined processor. Next attention will
be paid to studying some design and opera-
tional problems associated with a typical
pipeline. Included are the following topics:

1) Buffering: the concept and urgency of
buffering in a pipeline and the ways
it can be accomplished.

2) Busing structure: for communication
between segments and operand supply
to allow processing to proceed or re-
sume as quickly as possible.

3) Branching: effect of branching in
throughput and the ways to alleviate
the inefliciency in existing systems.

4) Interrupt handling: how interrupts
are handled in sequential and vector
pipes.

5) Pipeline processing of arithmetic func-
tions.

Taken together these five topic areas
represent the major design constituents to
be added to the basic structure already
discussed. Their importance and effects
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actually can decide the efficieney and per-
formance of the resulting design,

2.2 Buffering

Buffering is the process of storing results
(outputs) of a segment temporarily before
forwarding them to the next segment. It is
essential in smoothing out the flow of a
computation process when the timing for
each processing module (segment) involved
is not fixed. The impact of buffering can be
visualized in a common assembly line, say
in the car industry. Occasionally a station
(segment) of the pipe (assembly line) may
be slowed down for one of many reasons,
which could prevent the continuous input
of cars to the next station. If there is suffi-
cient storage space between this segment
and its predecessor, the latter can continue
its operation on other cars and transfer
them to the storage space until it ‘is full.
When the station resumes normal service
it can try to clear up the cars in the input
storage place, perhaps at a faster speed.

Therefore buffering may be needed be-
fore or after any segment whose processing
speed is not fixed. In a pipelined processor
this means 1) memory storage access re-
lated stations, including instruction fetch
and operand fetch, and 2) execution unit
stations. In a typieal pipe like the 360/91,
the instruction buffer can hold eight words
of instructions to be followed in the se-
quence. In the execution unit, for the fixed
point execution area, a buffer of six words
of instructions (pseudo) and six words of
operands is available, whereas in the float-
ing point area a buffer of six instructions
and six operands (from storage) is also
provided. These buffers serve the purpose
of continuing the supply of instructions or
operands to the appropriate units whenever
a variable speed occurs. Similar buffers in
other pipelined processors can be found.
In the STAR-100 system, whose configura-
tion is shown in Figure 8, a 64 quarterword
(superword) buffer exists in the stream unit
to buffer the data and to align the two
operand vectors (in vector processing mode)
for streaming in the operations involved.
In addition, there is of course the instruc-
tion buffer holding four swords of instruc-
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tions (each sword is four 128-bit words).
One sword in the instruction buffer will be
filled by one memory fetch so that the buffer
can supply a continuous stream of instrue-
tions to be executed even though memory
conflicts may occur from time to time. Simi-
larly, in the TI ASC system, whose sche-
matic diagram is shown in Figure 9, suffi-
cient buffers are installed in the IPU and
Memory Buffer Unit (MBU). The MBU
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specifieally holds eight-word X, Y, Z (two
operands, one result) buffers to serve the
arithmetic unit, and its instruction buffer
consists of two eight-word fast register
files. These examples are typical of the need
and magnitude of buffering in a pipelined
processor.

2.3 Busing Structure

Pipelining requires the concurrent process-
ing of independent instructions though they

.can be in consecutive stages of execution.

With dependent instructions, as discussed in
Section 1.4, their input and traversal
through the pipe have to be paused until
the dependency is resolved. Thus an effi-
cient internal busing structure is needed to
route the results to the requesting stations
efficiently.

In the 360/91, the common data bus
(CDB) was invented (Figure 10). The CDB
can transfer data not only to the registers
but also to the sink and source registers of
all reservation stations (the virtual execu-
tion stations). It is fed by all units that
can alter a register. To make this process
possible, tags (addresses) are assigned to
the registers. Then the processing sequence
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Fiaure 10. Floating point unit of IBM Model 91 with CDB and reservation stations.

can be described as follows. In decoding
each instruction, the busy bit of each source
register is checked. If it is zero, the inde-
pendent instruction can be transmitted to
a certain execution station, say Al (virtual
- adder 1). At the same time, the busy bit of
its sink register is set, and the corresponding
tag is set to the destination of Al (so that
the sink register will receive the result
from Al). If the busy bit is on, instead of
waiting for the source operand to be gen-
erated and stored in the register, the de-
pendent instruction is issued to an avail-
able execution station, say M1 (virtual
multiplier 1). However, the tag of the
register, rather than its content, is trans-
mitted to the reservation station M1 so that
M1 accepts data whose tag matches with
its own from the CDB. As an illustration:

ADD F1,FLB1  [(F1) 4+ (FLB1) — (F1)]
MD FLFLB2 [(F1) X (FLB2)— (F1)]

In executing the ADD, Al is used, and the
tag of F1 is set to 1000 (that of A1) and its
busy bit set to 1. In decoding the MD, the
busy bit of F1 is 1. So rather than sending
(F1) to M1, its tag (1000) is transmitted

to M1. In addition, the tag of F1 is changed
to 1010 (tag of M1). When the CDB is
broadcasting the data tagged with 1000, M1
will succeed in matching the tag and so
ingate it to the buffer and resume execution
(if FLB2 is available). Notice that the
result of ADD is not stored in F1 in reality
because that operation is redundant (the
tag of F1 is 1010 and not 1000).

A similar busing structure can be found
in other pipelined processors such as the TI
ASC and CDC Star-100. In the TI ASC
processor [13], an instruction dependency
is recognized by hardware which scans the
instruction stream and distributes the in-
dependent instructions across MBU-AU
pairs to ensure proper, yet efficient execu-
tion sequences. Update capability is in-
corporated by allowing the contents of the
Z-buffer to be transmitted to the X- or
Y-buffer in the MBU when the latter two
buffers are being used as scratch pads in
local computation. In the Star-100 system
(14], a more explicit busing structure is
maintained because of its different units.
In the floating point pipes (whose configura-
tions are drawn in Figure 11), a direct route
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called shortstop is established between the
output (transmit segment) of each pipe
and either of its inputs. This eliminates the
time necessary to store the generated re-
sult in the register file and then to read it
out again. These schemes fall into the
control characterization in Section 1.4 very
appropriately.

Although an efficient busing structure
can reduce the adverse effect of instruction
dependency, there is still a great burden on
the programmers or the compilers to produce
codes that expose sufficient parallelism to
allow overlapped processing to become bene-
ficial. If more independent instruetions are
intermixed appropriately with those de-
pendent ones, more concurrent processing
can take place while the dependency is
resolved with little incurred time (that is
the resolving of dependency is hidden be-
hind other useful processing). This is a
very important factor in deciding how
efficiently a program or an implemented

Computing Surveys, Vol. 9, No. 1, March 1977

algorithm can be executed on a pipelined
processor. Algorithm efficiency is also de-
pendent on the architectural features of
the processor on which it is executed.

2.4 Branching

Branching is more damaging to the pipe-
line performance than instruction de-
pendency. When a conditional branch is
encountered, one cannot tell which sequence
of instructions will follow until the deciding
result is available at the output. Therefore
a conditional branch not only delays further
execution but also affects the entire pipe
starting from the instruction fetch segment,
An incorrect branch of instructions and
operands fetched may create a discon-
tinuity of instruction supply.

To remedy the effect of branching, differ-
ent techniques can be employed to provide
mechanisms whereby processing can re-
sume even if an unexpected branch occurs.



In the IBM 360/91 [9], a loop mode and
back-eight test are designed with the help
of an additional branch target buffer. In
the ASC, a load lookahead [15] mechanism
(instruction) is explicitly provided, with
appropriate hardware and buffer support.
Likewise, in the STar-100 [14], the instruc-
tion stack has special branch back cap-
ability. We try to explain these schemes in
this section.

The branch-on-condition handling is best
illustrated by the 360/91. In this processor,
upon the decoding of a conditional branch
instruction, if the condition code is not yet
valid it is assumed that no branch will be
taken. However, to guard against an in-
correct guess, two instruction doublewords
will be fetched from the branch and stored
at the branch target buffer. The conditional
mode is entered where instructions are
forwarded conditionally to later segments
for processing. Operands are conditionally
set up while actual execution is prohibited.
Finally, when the branch should be taken,
the conditional instructions are deactivated
and processing is resumed using the branch
target instructions; otherwise execution
continues almost instantaneously. This pro-
cedure therefore reduces the waiting time
in the average case. To further reduce in-
struction fetching time, short loops in pro-
grams can be fruitfully exploited.

If the instructions are already in the in-
struction buffer, it is wise not to erase any
of them and to assume the branch (repeat
loop) will be successful. Then no other
memory access for instructions is needed
and less memory interference with other
parts of the processor will be created. The
way to detect these short loops and reserve
the instruction loop is by implementing a
loop mode and back-eight test.

A sequence of eight instruction double-
words or less is termed a short loop and can
be completely stored in the instruction
buffer. When a branch (backward) is ob-
tained, the back-eight test is used. If it is
satisfied, the loop mode is established.
From that point on, the complete loop is
fetched into the instruction buffer so that no
further fetching is needed until the loop
mode is removed by branching out. In con-
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ditional branches, the loop mode can be
established to replace condition mode once
a successful branch results and the back-
eight test is satisfied. This method of back-
eight test and loop mode is very useful in
systems where available memory cycles are
precious to the entire system. However, if
the memory (cache) access time is not long,
the conditional handling may be less useful
due to its overhead.

The load lookahead mechanism in the
ASC system follows a similar philosophy.
The instruction processing unit of the ma-
chine contains two instruction address
registers (Present Address, PA and Look-
ahead Address, LLA) and two instruction
files of eight words each (IXA and KB).
Each memory reference can fetch an octet
(P) of instructions to one of the instruction
files. Usually PA contains the starting ad-
dress of the next octet to be fetched and
LA supplies the address of the next octet
to be fetched. To accommodate branching
for a loop, a branch with lookahead ecan
be set up by placing the branch instruection
at the target location of a Load Look-
Ahead (LLA) instruction. An LLA enters
a count into a Lookahead Count register
(LC) and enters the address of the LLA
into a branch address register. The count
corresponds to the difference of the instruc-
tion locations of the LLA and its target
branch instruction. The count is decre-
mented by one every time an instruction
is executed following the initiation of the
LLA. When it has reached a value desig-
nating that the branch has already been
requested from memory, the control trans-
mits the contents of the PA to the LA. This
causes the fetching of the octet containing
the LLA and the loop control is reinitialized.
In this way, a lookahead loading of instruc-
tions in a loop up to 256 instructions is
allowed, and instructions will be con-
tinuously available for execution before the
branch instruction is completed.

The STar-100 processor has an instruction
stack of sixteen 128-bit words. Each quart-
ersword (i.e. four words) is loaded in one
minor cyele. Branching is allowed within
the instruction stack. The loading and
management can be as depicted in Figure
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{4-sword Instruction Stack)
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*
Branch back on any previous part of the stack.

Figure 12a. STar-100 instruction stack loading
and issuing with branch tolerance.

12(a). After the stack is loaded any branch
within the stack can be honored easily;
however, the stack is cleared whenever a
branch out of the stack occurs. The reason
for this is that the stack can be completely
filled by a request to memory (i.e. in one
memory cycle).

These methods are useful to help to
supply instructions continually to the pipe
segments even though branch instructions
are inevitable. For fixed (targeted) branches,
lookahead strategies can provide the means
to continue the instruction sequence. But
for conditional branches more elaborate
schemes to recover from unexpected
branches have to be established (such as
the conditional mode).

2.5 Interrupt Handling

Interrupts disrupt the continuity of the
instruction stream in a pipeline much as
the conditional branches. When an interrupt
oceurs while instruction 7 is being executed,
the interrupt should be serviced before any
action is applied to instruction ¢ 4 1. This
implies that either these two instructions
are to be executed sequentially or sufficient
information is set aside for the eventual
recovery of instruction ¢ + 1. The first
course defeats the purpose of pipelining.
The second approach is taken by some
architectural designs when the cost of re-
covery is not overly substantial.

During vector processing, execution of a
vector instruction may take a long time.
Therefore, as in the Star-100 processor,
special interrupt counters are available to
hold addresses, delimiters, field lengths,
etc., which are necessary to restart the
vector-type instructions after an interrupt.
This represents a recovery mechanism for
processing to proceed afterwards when an
unpredictable interrupt oceurs.

In a more general purpose pipeline, how-
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ever, many independent instructions can be
at various stages of completion in the pipe
at the same time. To recover these instruc-
tions after the interrupt imposes a complex
and costly problem. In the IBM 360/91
two types of interrupts, namely “precise
interrupts” and “imprecise interrupts,”
are used:

1) Precise interrupts are associated with
an instruction (like an illegal operation
code) and can be uncovered during the de-
coding stage. This type of interrupt can be
treated in the normal fashion. Since de-
coding is the first stage of the pipe, when
an interrupt on instruction ¢ is uncovered,
instruction ¢ -+ 1 will be prohibited from
entering the pipe; however, instructions
which precede instruction ¢ and are un-
completed in the pipe continue to be exe-
cuted. After all execution activities are
completed in the pipe, the processing unit is
switched to execute the interrupt routine.

2) Other interrupts which result from
storage, address, and execution functions
are termed “imprecise.” These interrupts
usually occur when the instruction is half-
way through the pipe and subsequent in-
structions are already admitted into the
pipe. Strict adherence to the normal in-
terrupt processing is therefore difficult.
When an interrupt of this kind is encount-
ered, further decoding is prohibited (i.e.,
no more new instructions are allowed to
enter the pipe). But instructions uncom-
pleted inside the pipe, whether they pre-
cede or follow the instruction, are completed
before the processing unit is switched to
service the interrupt.

In both cases the new status word for the
interrupt branch is fetched to the branch
target buffer while the pipe is being “emp-
tied.” Further optimization is possible by
starting the fetching of interrupt instruc-
tions if it takes a long time to clear the pipe.
This imprecise condition due to error in-
terrupts is a disadvantage of overlapped
processing when program debugging is
considered.

2.6 Pipeline Processing of Arithmetic Operations

One of the most fruitful applications of
overlapped processing to improve through-



put has been in the execution of arithmetic
operations. In vector arithmetic, for ex-
ample, the same sequence of operations
are executed repetitively, a circumstance
most congenial to pipeline implementation.

In the IBM 360/91 and its successors
the execution of multiplication and division
is pipelined [21]. Algorithms suitable for
pipeline execution of binary addition,
multiplication, division, and square root
have been discussed [22].

A close study of a typical low level pipe-
line for performing binary multiplication is
now presented.

The most common method of multipli-
cation is the pencil and paper algorithm in
which the multiplicand is shifted and, if the
corresponding bit in the multiplier is 1,
added to the partial sum until the multi-
plier is exhausted. Clearly this is not an
effective pipeline algorithm because too
many shifting and adding operations (com-
plete additions) are needed. Even if the 0s
in the multiplier are skipped, the speed of
the multiplier is too slow to match the
speed of the other parts of the system. One
could try to build a very fast multiplier
using Wallace Trees [20] of Carry-Save
Adders (CSA). But such an implementation
requires too much hardware. Obviously a
speed/cost trade-off exists here. The method
favored in the IBM 360/91 and other com-
putersis a hybrid method, in which multiples
of the multiplicand (summands) corre-
sponding to a group of multiplier bits
(generally two or three) are generated
iteratively and accumulated by CSAs.
During the last iteration, the summand
of the last group of multiplier bits and the
previously accumulated partial sum are
added by using a Full Binary Adder (FBA).
Qur example system will generate the sum-
mands corresponding to each 4-bit group of
the multiplier in real time and will use
CSAs to accumulate several partial sums
before generating the final product. Figure
12(b) shows the flow during the process of
multiplication.

Decode Phase

The multiplier bits are examined four bits
at & time starting with the least significant
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Multipiicand Multiplier

Decode

Summand generation

i

Iterative carry save
addition

1

Addition with
carry propagation

i

Product

Ficure 12b. Functions in a multiply pipe.

TABLE 1. MuLtipLier DEecobing
Multiplier Bits Operation
0000 o
0001 )
0010 20
0011 4p-0, 2040
6100 40
0101 4040
0110 80-20, 40+20
001 1 80-D
1000 80
1061 80+D
1010 80420
1011 16-40-D
1100 160-4D
1101 16D-41+D
1110 160-2D
1 160-D
4-bit group. The four multiplier bits are

expressed into the sum of at most three
numbers which are powers of two times the
multiplicand. In other words, each 4-bit
group of the multiplier is decoded into a
maximum of three binary numbers which
are powers of two times the multiplicand.
For example, if the multiplier bits are 1101,
then the decoder generates three numbers,
16D, —4D, and + D, where D is the multi-
plicand which when summed generate the
multiple 13 times the multiplicand. Table I
provides the decoding table for four bit
multiplier summand generation. Note that
the decoding process generates at most
three numbers using combinatorial logie
(in real time) and provides the three inputs
needed for a carry save adder.

Generation of Summands

The decoder generates the appropriate
multiples of the multiplicand corresponding
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Figure 12¢. Generation of gummands.
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Froure 12d. Pipeline multiplication.

to a 4-bit group of the multiplier. The inputs
to the first Carry Save Adder (CSA-1) are
shown in Figure 12(c).

Operations of the Multiplication Unit

Assume now that we wish to multiply two
16-bit positive numbers. The Carry Save
Adders and the Full Binary (carry propa-
gate) Adder are assumed to be 2-word, or
32 bits wide. Initially the adder arrays are
cleared.

During each iteration, a 4-bit group of
the multiplier in the R register is decoded
and the three inputs to CSA-1 are generated.
CSA-1 uses the inputs to generate the two
outputs (Partial Sum (PS) and Carries
Saved (CS)). These are passed on to the
next Carry Save Adder, CSA-2. The carry
save output of CSA-2 is fed back as an
input to itself during the next CSA-2 opera-
tion. The PS output of CSA-2 is introduced
as an input to CSA-3. Both outputs of
CSA-3 are fed back as inputs to itself.

The multiplier bits are decoded four bits
at a time starting with the least significant
ones. After the CSA-1 receives its inputs,
the R register is shifted right four bits, and
the decoding of the next group of four bits is
initiated. This sequence is continued until
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the final group of four bits is decoded. Ag
we supply operands to CSA-1, these operands
are accumulated. -

After supplying the final set of operands
(corresponding to the four most significant
bits of the multiplier), we have four sets of
accumulated operands in the system. Now
in the next three cycles (each cycle cor-
responds to one operation of a CSA), these
operands will be accumulated into two
operands at the output of CSA-3. Finally
these operands are channeled to the FBA
to obtain the final product. A timing dia-
gram (reservation table) is provided in
Figure 12(e) to elucidate the overlapped
operations in the system.

Performance Analysis

Let N be the number of bits in the multi-
plier, and let ¢, be the delay through a
CSA. Since the latter can be realized by
two levels of combinational logic, ¢. will be
equivalent to two logic gate delays. The
delay through the full binary adder, fgp, ,
will vary with the size of the operands and
its design. Then the total time for multipli-
cation of N bits (from the time the inputs
are introduced at the first carry save adder)
is

(multiply) = [N/4}t, + 4t. + troa.

If ¢. is equal to two gate delays of 20 nsec
each and tgs, for 32-bit operands using
carry look ahead logic is around 70 nsec,
then the total multiply time with 16-bit
operands to generate a 32-bit product is
270 nsec.

Extensions

The previous procedure using 4-bit multi-
plier groups can be extended to 8-bit multi-
plier groups, thereby almost doubling the

CSA 1 F——k—%——%

CSA 2 F— Kk

CSA 3 KK
FBA

3 %

Figore 12e. Timing diagram and reservation
table for pipeline multiplication.
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Figure 12f. Pipeline multiplication using 8-bit
multiplier groups.

throughput rate of the system. Figure 12(f)
illustrates the organization. The scheme
utilizes two 4-bit decoders, which generate
appropriate summands corresponding to
two consecutive 4-bit multiplier groups at
CSA-1 and CSA-2, The two sets of sum-
mands are combined at CSA-3 and CSA-4.
CSA-5 and CSA-6 accumulate the summands
received from each 8-bit group until all the
groups in the multiplier have been processed.
In a similar fashion as in the 4-bit group
scheme, the full binary addition is per-
formed at the last step.

Several interesting and challenging prob-
lems still remain open for investigation.
Pipelining of decimal arithmetic functions,
radix conversions, and polynomial function
evaluation are some of the many useful
applications. Also the study of multifunc-
tional pipes with respect to arithmetic ex-
pressions deserves attention.

3. VECTOR PROCESSING

One of the main requirements in justifying
the pipelining of a process is that the same
sequence of operations will be invoked
very frequently. Ideally, if a continuous
excitation of the pipeline is attained, then
the maximum throughput will be reached.
For a pipelined processor, this is equivalent
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to the need for abundant parallelism in the
instruction streams to permit almost con-
tinuous initiation of independent instruc-
tions.

This ideal situation sometimes becomes
true when the machine is processing inde-
pendent vectors, e.g. adding two vectors,
element by element, to form a result vector.
If each element of a vector has to go through
a transformation independent of the trans-
formation of other elements of the vector,
then they can be performed in an over-
lapped mode employing the pipelining
characteristics. For machines with multi-
functional pipelined execution units, the exe-
cution units can establish and retain a static
configuration throughout until the entire
vector is processed. Hence minimal control,
decoding, and reconfiguration overheads
may be achieved while the memory operands
are supplied to the execution unit in a most
efficient way. This will become more ap-
parent as our discussion proceeds.

In this section vector processing in pipe-
lined processors is studied carefully. In
Section 3.1, the components of a vector
ingtruction and the ultimate processing
procedures are demonstrated and a com-
parison of two prominent vector machines
in this aspect is included. This comparison
leads to the revelation and cvaluation of the
requirements, properties, and tradeoffs in
terms of time and space (control hardware)
overhead in vector processing as contrasted
with sequential pipeline processing. The
analysis in Section 3.2 serves to expose the
real crux of vector processing.

3.1 Vector Instruction

A vector pipe can be characterized by the
existence of one or more multifunetional
pipes in the execution unit (arithmetic and
logic unit) and the needed control and
parameter specifiers in the processor. As
mentioned in Section 1, a multifunctional
pipe can be either static or dynamic, de-
pending on its reconfiguration control. In
the static case, simpler control is required
to establish and maintain a desired con-
figuration for processing. There is a fixed
route for each operand set to traverse
throughout the computation, unless a new
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configuration is formed. While in the dy-
namic case more complicated control and
routing overhead is involved, the through-
put may be higher because of the simul-
taneous existence of several configurations.
In reality, static vector pipes are more
common, as is illustrated in the TI ASC and
CDC SraR-100 examples to follow.

For a vector that consists of the two levels
of pipeline action, appropriate vector in-
structions have to be designed and imple-
mented to denote the operations on some
ordered data in vector or array form.
Generally, in the first level, a vector in-
struction is fetched, decoded, and the
necessary control paths connected before
the needed elements of the vector are
fetched from consecutive storage locations
over a specified address range. The second
level execution unit pipe carries out the
specified operations on these elements,
normally being supervised by a control
ROM. Sometimes the results generated are
stored back to certain consecutive addresses
of a result field, and sometimes other
needed indicators are generated and stored
in the register file in the processor for future
usage. The exact procedures and mecha-
nisms to accomplish all these functions vary
from machine to machine. For later com-
parison and analysis, an example of vector
instruction execution is provided here.

Before the execution of a vector instruc-
tion starts, certain additional information
pertinent to the mode of processing has to
be furnished to the system. Such informa-
tion can be quite varied and detailed, such
as the starting (base) address of each source
vector and result vector involved (usually
two source vectors and one result vector)
and the control over what elements of the
vectors should be operated upon. The
method by which the Srar-100 handles
this is demonstrated first. The similarity
with the control of an array processing
system can be observed. Then similar and
different features in the ASC system are
noted. Finally the vector processing powers
of the two systems are compared.

The schematic diagram of the central
processing unit for the STAr-100 system is
shown in Figure 8. Basically it consists of
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four parts: 1) Storage Access Control
(SAC), 2) stream, 3) string, and 4) floating
point units operating in an overlapped,
asynchronous mode. The SAC is responsible
for sharing the magnetic core storage
among the three read and three write buses
shared by the stream and I/0 units. The
stream unit provides the basic control for
the entire processor. Internally it may be
regarded as a multisegment pipeline (second
level) as it carries out functions which in-
clude: 1) memory references; 2) buffering
and skewing of operand data; 3) buffering
and decoding instructions; 4) setting up
control signals for processing the instrue-
tion; and 5) performing simple logical and
arithmetic operations,

The string unit, as the name implies, is
used to process strings of decimal or binary
digits. It contains fast half adders and full
adders to carry out algorithms for binary
arithmetic (add, subtract, divide, and mul-
tiply). Finally, the floating point unit con-
sists of two pipes whose configurations are
shown in Figure 11. Each pipe is (static)
multifunctional as it has different con-
figurations for performing different floating
point operations. Pipe 1 performs arith-
metic operations on operands in floating
point format and address operations on
nonfloating point numbers. Pipe 2 per-
forms only two vector address type opera-
tions, in addition to other arithmetic opera.
tions. Pipe 1 and pipe 2 are quite similar in
structure except that the latter has a high
speed register divide unit and a multi-
purpose unit for some special arithmetic
such as square root, vector divide, ete.
The pipes can take on a certain configura-
tion at any time. For example, to perform
floating point addition, pipe 1 configures
itself (under microcode control, to be ex-
plained later) to activate the path: Expo-

Q 18 1516 23 24 31 32 3940 4748 5556 g3
F G X A Y 8 z c
{8X,3XH{subfunc - | {offset [(field [{offsetj(field {(CV base] (fieid
tion) for A)| length & | for B} length B} address) | length
base base base
address dd Ul
!oCy?
Hottser |
1 for €82
L

_——-

Figure 13. Veector instruction format in CDC
S1AR-100.
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Memory Words (32 bit ar 64 bit operands)

-—— Base Address

Offset

Field Length

Beginning Address

(Base Address

+ Offset)

Effective Field Length

FiGure 14. Addressing offset for vectors.

nent Compare—Coefficient Align—Coeffi-
cient Add—Normalize Count—Normalize
Shift—Transmit. With this static con-
figuration, operand pairs can be routed
through the pipe at a steady and maximum
rate. When the operand pairs can be sup-
plied fast enough and the result stored
suitably, an ideal throughput rate will be
reached.

Let us now pause to examine a vector
instruction before exploring the procedure
of its execution. An ordinary vector instrue-
tion format in the STAr-100 computer is
representable by eight fields as indicated in
Figure 13: 1) F: function code; 2) G: sub-
function code; 3) X, Y specify the registers
that hold address offsets for the two cor-
responding source vectors (the offset ope-
rates a8 depicted in Figure 13 and is useful
for skewed vectors); 4) A, B specify the
registers that hold the base addresses and
field lengths of the two source vectors; 5)
Z specifies the register holding the base ad-
dress of the control vector; 6) C specifies the
register holding the base address and field
length of the result vector; and 7) C + 1
then automatically specifies the register
holding the offset. for the control and result
vectors, This automatic assignment is im-
plied to maximize the utilization of each
instruction word which has a limited length.

From these registers, the effective starting
address and field length of each vector can
be calculated. Then the rest of the vector
can be referenced sequentially until a termi-
nation condition is reached. The control
vector is a unique feature introducing the
flexibility desired in vector processing. It
performs prohibition responsibility, analo-

us to the control unit in an array processor
such as the Irriac IV [2]. The control
vector in the StaAr-100 performs the
analogous function, but in a time stretched
fashion (compared to the simultaneous

inhibition of array elements). Each bit in
the control vector is used to specify whether
or not the corresponding result element
should be stored (for most vector instruc-
tions; in some modified cases like macros,
it has other duties, as will be explained
later). When a bit is set in the control
vector, the corresponding element of the
result vector will not be modified and
stored. Thus the nth bit read from the
control vector will be used to control the
storing of the nth element generated in
processing the vector instruction.

As an illustration consider a vector add
instruction:

VADD 4,B,C (4 + B — ()

Suppose the instruction format provides the
following information:

(4) = content of A register:
field length of A vector = 12
halfwords (32 bits each)
(B) = field length of B vector = 4
, halfwords
base il(l(lr(%ﬁ%i = :!()()()()15

(X) = offset for A vector = 4 half-
words
(Y) = offset for B vector = —4 half-
words
(Z) = base address of control vector =
40004,
(C) = base address of result vector =
30000,
field length = 12 halfwords

(C+1) = control vector and result vector
offset = 4 halfwords.

Then the starting address and effective
field length of A vector can be calculated
as shown in Figure 15.

Note that the addressing used is bit ad-
dress and a ‘1’ in the control vector per-
mits the storing of the corresponding ele-
ment in the resulting vector. For example,
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A source vector
10000 Ao - base address
10020 L)
10040 " offset
:x: :3 - Start address
4 (base address - offset)
100A0 ls
100C0 A
100€0 A, actual field length
10100 A8 = field length - offset
10120 LS = 12-4 » 8 half-words
10140 LY
10160 K3
8 source vector
1FF8o 8.4 = starting address —
LFFAQ L
1FFCO B, -of fset
1FFEQ ‘-I actual field length
20000 Bo < base address = 4 (-
20020 ﬂ] =8 half-words
20040 B,
20060 B,
€ source vector
30000 Co -~ CO -+~ base address
30020 G =4
30040 (.'2 - CZ offset
30060 6~0
30080 C‘ - C‘ - starting address
300M0 [T ~RH
300Ce Cs ~ s
300e0 54 effective
30100 CB - AB*BB field
10120 C9 - cg length control vector
010 T, A +E
e e B e

Figure 15. Example vector ADD.

40005 stores a ‘I’; so C; is transformed
into As 4+ B_; . The skewing effect is quite
apparent in this example.

The mechanism to generate the desired
output has to be explained further. After
the instruction has been decoded at the
stream unit, the appropriate microcode
sequence in the Microcode Unit (MIC) is
initiated. This microcode unit resides in
the stream unit and is responsible for vector
type operations.

When the CPU initiates an instruction
requiring microcode control, it sends the
F (function) code and a microcode puise
to the MIC. The MIC then takes over
control of the start up and termination of
the instruction. In the case of interrupts,
it also has to branch to save all the operands
and parameters necessary to resume execu-
tion afterwards. Therefore it is the heart of

Computing Surveys, Vol. 9, No. 1, March 1977

the vector processing control. In faet, it is
the central control once a vector-type in-
struction has been noticed via decoding,
Typically it controls operations including:

1) the reading of addresses from the
register file (in the stream unit) for

- the vector parameters according to
the designations specified in the in-
struction;

2) the calculation of the effective ad-
dresses, field lengths, etc. for moni-
toring the starting of the operations
involved in the vector instruction;

3) the setting up of the usage of read/
write buses as specified by the G
(subfunction) field for the operands
and results; and

4) the transfer of addresses and other
information to appropriate interrupt
count registers whenever needed.

Once the effective addresses are com-
puted, the operand elements are fetched
and paired for the operations involved, for
example, going through the second level
floating point pipe. The static configuration
of the execution pipe will remain active
until the vector instruction is terminated.
A termination is marked by either of the
following events:

1) A vector is exhausted (e.g., when the
effective field length is zero, or the
difference between the effective field
length and the number of operand
pairs encountered thus far is zero); and

2) Some other data fields or strings have
been exhausted.

From the above description, one can see
what a vector pipe really includes and how
vectors can be processed in an overlapped
manner. It is interesting to find some other
ways to achieve a vector pipe. So let us
examine a similar vector machine, the ASC
system. The ASC handles a vector instruc.
tion in a similar way, though some addi-
tional distinguishing features should be
mentioned. To facilitate understanding, the
central processor unit composition in the
ASC has to be briefly explained. Its sche-
matic diagram is provided in Figure 9. It
consists of three main components: 1) In-
struction Processing Unit (IPU); 2) Mem-
ory Buffer Unit (MBU); and 3) Arithmetic



Unit (AU). The IPU is analogous to the
stream unit in the STARr-100; the MBU is
analogous to the load/store; and the AU
actually processes the data. In vector mode
the IPU fetches and decodes the instruc-
tion and calculates the effective addresses
for the vector fields. After receiving the
needed information from the IPU, the
MBU starts fetching source operands and
pairing those to be sent into an AU pipe
(the AU can have one to four identical
pipes). Each AU pipe has different con-
figurations for performing different arith-
metic operations (including integers) as in
s typical static multifunctional pipeline.
The two levels of pipeline action are quite
apparent in this case.

A vector instruction in the ASC has some
outstanding characteristics; the instruc-
tion format is depicted in Figure 16. Par-
ticular registers for fetching operand ad-
dress and control information do not have
to be specified, however. Some registers in
the IPU, forming the Vector Parameter File
(VPF), are dedicated to vector processing.
The VPF consists of eight 32-bit registers
whose individual functions or interpre-
tations have been permanently assigned,
a8 shown in Figure 17. This fixed organiza-
tion has the advantage that registers can
be hardwired to the input of the control
ROM or other logic units for fast operation,
without having to worry about access con-
flicts among them. The first register con-
tains the operation code and the type and
length of the vector considered (single or
two-dimensional). Then the base address
snd the register containing the index (off-
get) are specified for each operand vector in
the subsequent register in the VPF. The
fifth and sixth registers are used to specify
the increment for each vector and the
pumber of iterations (field length) in this
inner loop. For the outer-loop (two-dimen-
gonal vectors), similar information about
the increments and number of iterations is
included in registers seven and eight. The
vector instruction, after having been de-

S I L R

Figure 16. Vector instruction format in TI ASC.
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Figure 17. Vector parameter file format in
TI ASC.

coded, will provide the information regard-
ing whether the parameter file has to be
loaded from main memory or retain some
previous setting for immediate usage. If a
load is needed, since the memory is inter-
leaved, one memory cycle is needed for
VPF loading. The significance of this and
the subsequent additional activities is ex-
amined more earefully in the next subsection.
Afterwards, the sequence control in the
MBU takes over (as does the MIC in
StARr-100) the fetching of operands and
the routing of operand pairs through the
AU pipe.

So the ASC has at least two distinguish-
ing features in vector processing: 1) its
dedicated use of the vector parameter file;
2) the interpretation and usage of the VPF,
allowing variable increments within the
different vectors concerned (contrary to the
sequential mode in Star-100), and two-
dimensional vectors to be explicitly handled
(inner and outer loops).

These features help to execute some
vectors more efficiently and reduce the
overhead that may have been incurred.
Observe that once a vector instruction is
initiated, the operand pairs are submitted
to the AU continuously—in most cases,
once per minor cycle (provided no severe
memory interference results from other
pipes or parts of the system or processor).
Then the maximum throughput rate may
be achieved (1 result per minor cycle is
equal to 60 nsec.). Also the sequence con-
trol for the AU is handled exclusively by
the microcode stored in the ROM in the
MBU. Therefore the MBU serves as the
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xx{ilque interface between the IPU and the

From the previous discussions, one can
visualize the concept of vector processing
and the two ways to achieve high through-
put in two similar machines. To bring out
more interesting special features in these
machines, the vector-type instruction set in
the STAR-100 is examined once again.
From it a final brief comparison of the two
systems, the Star-100 and the ASC in
this respect, is derived.

Generally speaking the STAR-100 has a
richer and more powerful vector instruc-
tion set. Two outstanding features are: 1)
vector macros instructions and 2) sparse
vector instructions.

In vector macro instructions, operations
are performed on the source vectors except
that, in some cases, no result vector is
created. Instead, the result is represented
and stored in one or two registers as specified
by the instruction.

For example, SELECT GE A > B,
ITEM COUNT TO (C) involves comparing
each element of vector field A with the
corresponding one in B. The comparison
terminates if the condition A; > B, is met
for the current 7, or one of the vector fields
is exhausted. Then the number of operand
pairs encountered thus far is stored in the
register specified by C.

In this macro operation, control vectors
ean be used not only to prohibit the storage
of result elements but also to disable the
operation on some elements. In the example,
even if A; > B, is true for some ¢, if that
comparison is disabled by the corresponding
element in the control vector, execution
will not be terminated. Thus, by using this
kind of instruction, comparison of ordered
vectors (e.g. lexicographic comparison) can
be easily handled. The item count will be
useful in some cases to indicate at which
element the condition is satisfied. On the
other hand, ordinary vector compare in-
structions also exist in the StTar-100 ma-
chine. For example, COMPARE GE A > B,
ORDER VECTOR — Z involves 1) com-
paring the two vectors element by element
and 2) storing 1 or 0 at the result vector
elements depending on the satisfaction of
the comparison condition.
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The result of each pairwise comparison
is recorded and is available for later use,
such as in sorting. Thus ordinary vector
and vector macro instructions may form a
powerful vector instruction set to be tailored
to suit some application as closely as pos-
sible. With them, many quite complex
sequential algorithms may turn out to be
very effective, as is studied later.

The sparse vector instructions in the
STAR-100 system further facilitate processing
of large vectors with a lot of zero elements
because then the vector can be packed
easily into a sparse vector to be operated
upon later. This packing can save both
memory storage space and later effective
processing time. A sparse vector can be
formed by using the following procedure, as
illustrated in Figure 18,

Step 1: Generate an order vector by
using a COMPARE instruction
to indicate zero clements.
Compress the vector into a sparse
vector by storing the chosen ele-
ments from the former to mem-
ory, according to the order vector
generated at Step 1. The order
vector has to be retained through-
out the lifetime of the sparse

Step 2:

Half-word
address  Initial Vector
n V‘
n+] v, (R}
n+2 v3 {R)
n+3 V4
0+ Vg (R) = near redundant
n+5 \l6 {R)
n+6 V7 {R)
n+7 V8
n+8 Vg (R)

Step 1: Order vector Z generated.

a1 78 ° N
+ 4
Y "al
2 Yo
Step 2: Sparse Vector Generated,
Half-word
address
P Yo
p+l V‘
pt2 VS
p+3 V8

Figure 18. Example compression of a vector
into a sparse vector field.



vector to specify the positional
significance of its elements.

Now the sparse vector can be efficiently
operated upon to generate desirable, in-
terpretable results as in other vector in-
structions, with the help of the order vector.
The advantages of sparse vectors should be
emphasized :

1) The cxplicit hardware support for
compaction of large vectors reduces mem-
ory space needed.

2) If the sparse vector has to go through
several operations or computation steps,
effective processing time can be saved as
well in that the operation on zero elements
18 no longer necessary.

3) If a variable increment for each vector
(as in the ASC) is desired, one way to im-
plement it is to use sparse vector instruc-
tions (though a more obvious way is to
include the appropriate control vector) for
the purpose of saving space and time.

While the ASC does not include sparse
vector instructions, its explicit two-dimen-
gional vectors and variable vector incre-
ments are good features which promise
high vector processing capability. Included
in the vector instruction set of both ma-
chines are some very interesting and high

Pipeline Archilecture . 91

level instructions, such as vector search,
dot product, merge, shift, and order, that
allow programmers more power in develop-
ing their programs and the system to exe-
cute the algorithms implemented with the
help of these advanced instructions more
efficiently. The ASC has also demonstrated
how a 32-bit machine can cope with vector
processing by efficiently making use of 8-bit
opcode and the other relative fields, to-
gether with a dedicated vector parameter
file. While the Star-100 shows a stronger
vector instruction set (a vector instruction
is composed of 64 bits) because the F (func-
tion) and G (subfunction) codes can be
used to specify more things, the vector
parameters to be used can be assigned to
any one of the registers (therefore not
dedicated). It is hard to say which scheme
is absolutely superior. To summarize, the
comparison of the vector processing powers
of the ASC and Star-100 is tabulated in
Table 2.

3.2 Implications, Requirements, and Tradeoffs

How vectors are processed has been demon-
strated in the previous section. Now a
closer look at some hidden or less con-

TABLE 2. CoMmpARE AND CONTRAST

STAR-100

TI ASC

Vector parameter registers to be specified.

Vector parameter file fixed, therefore easy to ref-
erence and store.

Very strong vector instruction set.

Strong vector instruction set.

Sparse vector instruction included.

Sparse vector not included.

Vector increment is fixed.

Variable vector increment allowed.

Control vector introduces flexibility similar to the
control unit in array processors. Can be used to
implement variable vector increment.

No control vector used.

Explicitly, vectors are only one-dimensional.

Two-dimensional vector explicitly accommo-
dated. Computes 2 level loops effectively.

Use microcode ¢ontrol once a vector instruction is
decoded.

Use microcode control to sequence each AU.

String unit and Floating Point unit (2 noniden-
tical pipes) will be responsible for most of the
actual proecessing of data. Therefore concur-
rency is among different execution units.

Four identical AU-MBU pairs can be installed to
carry out all kinds of arithmetic operations
(fixed or floating point). Concurrency of execu-
tion is among four identical pipes.

Floading point facility more powerful (e.g. Pipe 2
has fast divide, special multipurpose segments).

AU has to be responsible for floating point opera-
tions (consists of eight segments).

Requires set up time for vector processing

Also requires set up time (though could be less
because the fixed VPF is easier to manage).
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spicuous aspects in a vector machine is
appropriate. From the previous description,
one notices at least four aspects:

1) There is some setup time involved
before executing a vector.

2) Additional control in configuring the
execution pipe and monitoring ope-
rand admission and traversal is needed.

3) Richer instruction sets and intelligent
compilers are prerequisites for pro-
ducing optimized code for vector ma-
chines.

4) An intrinsic tradeoff between se-
quential and vector processing can be
derived from the above considerations.

These four observations are discussed in
this section.

1) Setup Time and Flush Time

As demonstrated in the ASC and Star-100
systems, each vector instruction involves a
set of vector parameter registers or control
vectors to hold the information needed be-
fore the instruction ean be initiated. The
contents of these parameter registers are
used to control the addressing operation
and storage of result operands, as well as
the final termination. In the Srtar-100
gystem, they are used by the MIC and later
by other buffers in the stream unit for the
continuous initiation of operand fetches and
execution until a termination condition is
detected by the MIC. In the case of the
ASC processor, they are used by the IPU
for address calculation, by the MBU for
_ memory references, and by the MIC (in

the MBU) for monitoring subsequent execu-
tion activities. These parameter registers
can be loaded from memory. In doing so,
many additional memory fetches (register
loading) have to be performed before the
vector instruction can be started. These
fetches represent an overhead in time—the
setup time, If the vector involved has a
relatively short field length (the number of
iterations to be executed is small), the setup
time may be comparable to the actual
processing time of the vectors.

Besides the setup time, there is another
time measure of interest: the flushing time.
The flushing time is the period of time
between the initial operation (decode) of
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the instruction and the exit of the result
(for vectors, the first result element) through
the entire pipe. Therefore it directly mea-
sures the sum of the execution time of all
the facilities that the instruction and an
operand pair have to go through. Sometimes
it is interesting to compare the flush times
of a vector pipe to those of a sequential
pipe. A vector pipe often has to perform
more activities, such as checking the termi-
nation condition, checking the control
vector, etc. (though some of them can be
overlapped with other operations). There-
fore it is not surprising to discover that a
vector pipe may have a longer flush time
than its sequential counterpart.

Here an attempt is made to compare
analytically sequential and vector pipeline
processing in terms of time efficiency. For a
vector pipe, the memory operand supply
rate is usually fast enough to meet the
speed of the execution pipe(s). For ex-
ample, in the ASC system, the eight inter-
leaved memory modules can maintain a total
data transfer rate of 400M words per sce-
ond—twice that required to support a cen-
tral processor with four arithmetic unit
pipes when processing vector instructions
[13]. Therefore, for an effective vector field
length of I, the execution time of the vector
instruction can be expressed analytically as
(assuming the bottleneck is in execution
units):

= {, + tvf + (l - l)tt

where ¢,5 is the vector instruction processing
time; ¢, is the setup time; {,; is the vector
pipe flush time including decode, address
calculation, operand fetch and paired, termi-
nation check and execution; and ¢, is the
speed of the bottleneck segment of the exe-
cution unit pipe (in the case of the ASC, all
eight segments have the same speed, namely
1 minor cycle = 60 nsec).

The same situation in a sequential pipe
can be analogously analyzed. Suppose the
same instruction has to be executed on a
vector in this case. Without vector process-
ing power, this instruction has to be in-
voked ! times; that is, it must go through
the entire pipe ! times. Even if the execution
unit is fast enough here, it is probable that

by



the fetching of operands is less efficiently
performed. (In vector machines, consecu-
tive storage locations for operands are
fetched.) The processing time of the [ in-
structions may be expressed as:

by = by + (I - 1

where ¢,, is the sequential (pipeline) process-
ing time; f,, is the sequential pipe flush
time; and # is the speed of bottleneck in the
‘pipe, most likely in fetching operands if the
execution unit is fast enough because more
interference from unstructured memory
references for instructions and operands
results,

Comparing ¢,, and ¢,, yields:

ettty + 0 —DL <ty +(U— 1)t
if and only if
Sttty — by (= D — ).

This equation reveals that, if the vector
length is reasonably large, vector processing
is beneficial, considering the time advantage.
If the setup and differential flush times are
large compared to the difference of the
speeds of the bottlenecks of the two pipes,
then a large vector field length is needed to
justify processing it in the vector form.
Usually (& — t,) has been about a tenth of
t. + toy + Lir; S0 vector processing provides
time efficiency in pipelined processors.

2) Additional Control and Hardware

Vector pipes are designed to be cost-effec-
tive. They are implemented with sufficient
flexibility and power to match the speed of
an array processor (which usually is more
expensive). For those vector machines with
multifunctional pipes, additional control to
establish the desirable configurations and
routing of the operands between pipe seg-
ments are needed. These needs are usually
fulfilled by using microcoded control to
allow flexibility and simpler circuitry. The
hardware and firmware cost so introduced
represents a portion of the cost of vector
processing. These control functions some-
times are not very conspicuous, but they
do require a considerable amount of hard-
ware support.
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In addition, some other costs arise in-
directly. The vector parameter file or
registers represent part of the indirect hard-
ware needed. Larger instruction sets to
cope with vector processing also demand
longer word lengths—a result that affects
the cost throughout the entire system. For
smaller word length machines, one can try
to get around the problem by using tech-
niques such as dedicated VPF in ASC. Be-
cause of its cost-effectiveness and speed
advantages, vector processing power may
prove adaptable to medium scale systems.

To keep up the execution speed, addi-
tional memory buffers (like the MBU) may
be necessary to maintain an effective mem-
ory supply rate. Memory management
problems, though out of the scope of this
paper, present a rich area to be explored for
vector machines. All this direct and indirect
control cost marks the space overhead in-
curred in vector processing and should be
evaluated appropriately in tradeoff con-
siderations.

3) Richer Instruction Set and Intelligent
Compilers

Once the skeleton processor is assigned, the
instruction set has to be designed carefully.
As in the case of the Star-100, suitable
higher level vector macro and sparse vector
instructions can be implemented (with
proper hardware support) so that some ap-
plication algorithms can be easily handled
(fewer instruction and operand fetches and
other conflicts). Without such well designed
instruction sets, the power of the processor
may depreciate many times because in-
efficient operations, redundant or excessive
memory references, and poorly utilized
facilities may result.

Since many of the rich instructions are.
by no means conventional, how to use them
effectively in programs becomes a prime
concern. For assembly language program
writing, the user has to familiarize himself
not only with the algorithm he is going to
implement, but first with the details of these
unconventional instructions [19]. Because of
the various architectural aspects involved,
he has to choose a suitable algorithm care-
fully. Often a theoretically fast algorithm
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will turn out to be inferior to some normally
less effective serial algorithm because of
the machine vector characteristic. As a
simple example, consider sorting methods.
In vector machines, a bubble sort is quite
inefficient because of the static multifunc-
tional pipe involved. The bubbling (com-
pare and interchange) of an item incurs too
much reconfiguration cost, memory fetch
overhead, and setup cost for the pipe.
Merge sort algorithms are better because
the machine can merge two ordered vectors
in one pass without reconfiguration and
additional setup. As in the ASC, the in-
struction vector ORDER A, B, C will try
to compare element by element and store
the smaller element in C until the entire
ordering is accomplished. For example, if
A=1,3,45789andB = 2,3,5,8, 10,
thenC = 1,2,3,3,4,5,5,7,8,9, 10. There-
fore only a simple vector instruction is
needed to merge sort two ordered vectors.
Another good alternative is to find the peak
value of an unsorted vector at every itera-
tion, remove and store it at the appropriate
place, and repeat until the vector is com-
pletely sorted. It is easy to find the peak
value of an unsorted vector by using in-
structions such as SEARCH, and therefore
selection sort represents a better strategy
(though quite similar) than the conven-
tional bubble sort. This simple example
hints how important it is to find the right
algorithms to be implemented on vector
processors.

Each system requires the installation of
intelligent language processors to fully uti-
lize its power. Additional optimization
procedures should be incorporated to ex-
ploit its vector capability. For example, the
optimized ForTraN compiler for the ASC
system was designed to produce highly
optimized object code with complete diag-
nostic and error messages. In general, the
additional optimization included is ac-
complished by analyzing the source pro-
gram logic and performing optimization on
the object code instructions involved. Vector
instructions are used wherever feasible,
and scalar operations are reordered wherever
possible to reduce pipeline reconfiguration
and memory reference delays (8-way inter-
leaved memory system). Therefore the com-
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piler can not only recognize array (vector)
oriented operations in DO loops but can
also reorder some scalar operations gen-
erated to meet the architectural character-
istics of the machine. Of course the other
more conventional optimization procedures
are also included, such as elimination of
redundant subexpressions, removal of con-
stant assignment statements in a loop,
proper register assignment, cte. This burden
on compiler designers is quite heavy. Thus
the software cost for veector processing
is an important item not to be ignored.

4) Quantitative Comparison of Vector and
Scalar Processing

As mentioned in the other section, the exe-
cution time of a vector instruction can be
represented by

Tvp = taetup + (L - l)te + t”uah-

The characteristic is that, without memory
interference, operand pairs are accepted at
a rate of 1/¢, to generate a result. ¢, varies
from one instruction to another because a
loop may exist inside the AU pipe and
static control is used. The significance of
vector processing is that operand fetch is
completely concealed behind actual execu-
tion. To achieve this concealment, the
memory bandwidth available to the memory
buffer unit for fetching operands must be
sufficient to sustain that rate. In the ASC,
for example, eight operand words (one
octet) can be fetched every memory cycle
(160 nsec), which is sufficient to yield a
bandwidth of 3 words/60 nsec (the basic
segment time).

Another advantage is that while a vector
instruction is being processed, no additional
instruction fetch is needed; memory inter-
ference is thus reduced. In fact, because of
this, vector instructions can be simulated
in [some] systems having an instruction file
large enough to eliminate such instruction
fetches.

The overhead of a wvector instruction
includes its setup time. In the ASC, it in-
cludes transferring vector parameters to the
control (in the MBU) and starting the AU
pipe—altogether 27 segment cycles. This
setup time may vary in other systems; for
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example, the setup time in the Star-100
can go up to over 100 minor cycles. Without
memory interference, the total execution
time of a vector instruction may be plotted
against the vector length L as in Figure 19.
If that vector instruction is replaced by a
scalar loop, the resulting execution time is
usually much larger, depending on L. A
vector instruction can be decomposed into
three or more scalar instructions:

[Update Pointer]

[Basic Instruction] « (could
involve more than one scalar
instruction depending on
instruction format)

‘—[Test Pointer and Branch]

Execution of this loop L times requires
considerable time. One significant factor is
the operand fetch, which is not done (lock-
shead) fast enough as in the vector counter-
part. So, by the time the operand comes
back from memory, several precious process-
ing cycles have been lost (Figure 19).

Scalar
Loop

5) Tradeoff Summary

In this section, we have discussed the time
and the space overhead needed in vector
processing as compared to a sequential
pipelined processor (such as the IBM 360/
91). The advantages of vector processing
are its speed improvement for reasonably
long vectors and its more orderly manage-
ment and thus better utilization of the
memory system and other resources when
dealing with vectors. The costs it incurs
are the needed firmward control and addi-
tional software facilities to utilize its power.
When the latter problems have been solved
successfully at less cost, vector processing
may be generalized and extended to smaller
scale processing systems.

4., OVERVIEW OF TWOQ RECENT MACHINES
4.1 The Asynchronous CRAY-1 Computer

We describe the vector processing abilities
of a new fourth generation pipeline com-

Computing Surveys, Vol. 9, No. 1, March 1977



06 C. V. Ramamoorthy and H. F. Li
puter Cray-1 of Cray Research Corpora-
tion [26] Several unique features of this
machine are explored to supplement the
ideas in Section 3 and to illustrate the
current trend of progress.

The Cray-1 design philosophy follows
closely the tradition of the CDC 6600 and
7600. The twelve functional units in-
corporate vector processing capabilities and
are ‘“‘connectable’” to form efficient chains,
thereby maximizing overlapped vector proc-
essing. These units represent a deviation
from the universal (multifunctional) pipe
approach as adopted by the ASC and
Star-100. However, the tradeoff is quite
apparent. The control here is more complex.
Some specific features of the Cray-1 in-
clude:

Operaling Registers

Figure 20 illustrates the register organiza-
tion of this computer. The primary operat-
ing registers are the scalar and vector
registers called S and V registers, respec-
tively. Each of the eight V registers has
64 bits. A scalar instruction may perform
some function, such as addition, obtaining
operands from two S registers and entering
the result into another S register. A vector
instruction performs the same function in
an analogous fashion, obtaining a new pair
of operands each clock cycle of 12.5 nsec
from two V registers and storing the result
into another V register. The contents of
the vector length (VL) register determine
the number of operations performed by the
vector instruction. Eight 24-bit A registers
are used as address registers for memory
references and as index registers. The 4 and
S registers are each supported by 64 rapid
access temporary storage registers called
B and T registers. Data can be transferred

between A, B, S, T, or V registers and -

memory.

Memory

Up to one million 64-bit words are arranged
in 16 banks with a bank cycle time of 4
clock periods. The memory is constructed of
bipolar 1024-bit LSI chips.
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Instruction Buffers

Instructions, which are either 16 or 32 bits,
are executed from four instruction buffers,
each consisting of 64 16-bit registers. As.
sociated with each instruction buffer is 5
base address register that is used to de-
termine if the current instruction resides in
a buffer. Forward and backward branching
within the buffers is possible, and the pro-
gram segments may be discontinuous in
the program buffer. When the current in-
struction does not reside in a buffer, one
of the instruction buffers is filled from
memory. Four memory words are read per
clock period to the least recently filled in.
struction buffer. To allow the current in-
struction to be issued as soon as possible,
the memory word containing the current
instruction is among the first to be read.

Functional Units

The Cray-1 CPU has twelve functional
units, each of which is independent of the
others and therefore capable of parallel
operation. A functional unit receives ope-
rands from registers and delivers each
result to a register when the operation is
completed. The functional units retain no
information regarding their past operation.
The three functional units that provide
24-bit results to A registers are Integer
Add, Integer Multiply, and Population
Count. The three functional units that
provide 64-bit results to the S registers are
Integer Add, Shift, and Logical. The three
functional units providing 64-bit results
to the V registers only are Integer Add,
Shift, and Logical. The three functional
units that provide 64-bit results to either
the 8 or V registers are Floating Add,
Floating Multiply, and Reciprocal Approxi-
mation. All functional units are buffered,
perform their algorithms in a fixed amount
of time, and produce one result per clock
period.

Vector Operations

Because of the instruction formats adopted,
vector instructions are of four types. One
type of vector instruction obtains operands
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Fiaure 20. Register block diagram-CRAY-1.

from one or two V registers and enters the tional unit each clock peried, and the cor-
results into another V register (Figure 21(a)). responding results emerge from the.func-
Successive operand pairs are transmitted tional unit n periods later, where #» is the
from V; and V. to the segmented func- execution time. The results are entered
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into the result register V. The contents of
the vector length (VL) register determines
the number of operand pairs processed by
the functional unit.

When vectors contain more than 64 ele-
ments, they can be processed by dividing
them into vectors of 64 elements (or less).

The second type of vector instruction
obtains one operand from an S register and
one from a V register (Figure 21(b)). The
last two types of vector instructions transmit
data between memory and the V registers
(Figure 21(c) and Figure 21(d)). The path
between memory and the V registers may
be considered a functional unit for timing
congiderations. :

The pipelined execution of wvector in-
structions is discussed next. Let VI; be the
jth bit of the vector register VI. Since
there are 64 bits in the register (V1o through
V1), Figure 22 shows the timing chart for
the execution of a floating point addition
operation using vector instruction of type
I. When the instruction is issued at clock
period #,, the first pair of operands (V1o

ta t‘ ts t6 t7

VIO.VZO ser
Vl'.VZ] e
v12,v22 .
VIJ.V23 v

VI‘.VZ4 e
VIS.VZS e

Vig,vzp ---
Vl7.V27 oo

vns.vza nee

6

VIQ.VZQ o

t

aas yoo

e VO
a v{)z

and V?2,) is transmitted to the add func-
tional unit, where it arrives at time 4.
The function is executed in six clock time
periods and the first result exists from the
functional unit at clock period 4. The
second pair of operands (V1, and V2)
arrive at the functional unit at ¢ , and so on.

Parallel Operations

When a vector instruction is issued, the
required functional unit and the operand
registers arc reserved for the number of
clock periods determined by the vector
length. A subsequent vector instruction re-
quiring the same resources (functional units
and registers) cannot be executed until the
resources are released; however, parallel
(simultaneous) execution of neighboring
instructions that do not interfere in their
resource requirements is permitted.

Chaining

The CraY machine has the unique ability
to combine several pipeline executions in a
sequence by chaining. In the chaining process
a result register which receives the result of
a vector instruction can become the operang
register of a succeeding instruction. The
succeeding instruction is started as soon as
the first result arrives for use as an operand.
Figure 23(a) shows a chain of four instruc-
tions reading a vector of integers from
memory, adding that vector to another,
shifting the sum, and finally forming the

9 o Y Yz Y3 Ba tis Bie ty

1

“e V0,
. yo‘
-+ Vg
L
~e VO,
. ‘IO8

o v()9

Ficure 22. Vector instruction timing example (VO VI V2).
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logical product of the shifted sum and a
mask vector. The result of the four in-
structions is placed in vector register V5.
Figures 23(b) and 23(c) graphically depict
the passage and timing of information
through the functional units.

1. VO « Memory (Memory Read)

2. V2 «— VO + V1 (Integer Add)

3. V3 « V2 < A3 (Left Shift)

4. V5 « V3 A V4 (Logical Product)

FicURE 23a. Chaining example.
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Memory
READ
tunctional
unit

Integer
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unil

Logical
Praduct
unit

__%‘“

Figure 23b. Chaining.
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Performance

A performance study of several subroutines
for the CRaY-1 I'ORTRAN library and matrix
multiplication illustrates extreme efficiency
of the pipeline operations. Vector opera-
tions employ algorithms similar to their
scalar counterparts. The studies indicate
that the vector subroutines outperform the
sealar subroutines. Figure 24 illustrates the
performance of several library subroutines.
The cost (execution time) per result in
clock cycles is plotted against the vector
length. The cost is constant for scalar
subroutines. For vector subroutines the
cost drops dramatically and rapidly ap-
proaches a lower limit as vector length
increases. The performance of matrix mul-
tiplication provides yet another illustration
of efficiency of pipeline processing in vector
operations. Given a matrix [A] of dimen-
sion K by N and a matrix [B] of dimension
N by M, the element ¢j of the product
matrix [C] is given by

N
Cij = X; @inbaj*
=

Figure 25 shows the execution rate of mul-
tiplication of square matrices as a function
of matrix dimension. The execution rate is

fo t tp 1y te tg 0 by 1g 1 oty Tty e tig Yig iy Fig hs Yoot Yz teatee tae teater tastae ot - -
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——e V5,

-~ V5,

V5,

V5

V5,

-- --V5,

—— A M~y 4

-
gl b W bt

-t

a b
a - transit of memory word to “read functiocnal
unft”
b - transit of mesory word through “read
functional unit" i
¢ - transit of mesory word from “read
functional unit” to element of VO
d - transit of operand elements in ¥0 and V1 to
integer add functional unait X
e - cosputation of sum by iateger add
functional uait

f - transit of sum from integer add functional
unit to element of V2

fe 0

T3 % ¢

g - transit of operand element in V2 to shift functional

unit

h - shift operatfon performed by shift functional ueit
- transit of shifted sum from shift functiona) unit

to element of ¥3

- transit of operand elements in ¥3 and V4 to logical

functional uait

- Toqica)l operatioa performed by loaical functional

unit

£.- transit of final result to element of ¥S

Figure 23¢. Timing diagram for chaining example.
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Fraure 24. Sealar/vector timing comparison.

defined in terms of “millions of floating
point operations per second” (MFLOP,).
The number of floating point operations
required to multiply two n-dimensional
square matrices is (2n — 1)n?, since each of
the n? elements of the result matrix is formed
by summing n products. The fall of through-
put rate at discrete time instants is caused
by the architectural design in which a
vector length of 64 is chosen (for buffering
register size). Consequently a vector restart
i8 necessary at those time instances.

4.2 Amdahl 470 V/6

Finally, a few words must be said about the
more recent Amdahl 470 V/6 machine [31].
Besides adopting high speed LSI chips for
the CPU and most of the channel unit, it
employs the technique of pipelining in a
reasonably simple way. The CPU instruc-
tion execution can be partitioned into six
phases, A-F. Phase A consists of instruc-
tion decode and reading of general purpose
registers (if ready). Phase B calculates the
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Figure 25. Matrix multiplication timing.

effective address of the memory operand
and start fetching (time not fixed). Phase C
reads the memory operand into buffer and
start execution. Phase D continues the
completion of execution (time not fixed).
Phase E checks the result generated from
the functional unit to see if retry is neces-
sary. If not, phase F writes back the result.
Because write back is done at the last phase,
software rollback and retry of instruction
can be replaced by a simple hardware retry
(for most instructions).

The execution unit is decomposed into
four subunits: multiplier, adder, shifter, and
byte mover. These subunits have a propa-
gation delay of one basic cycle (though many
instructions need several iterations and
hence several basic cycles). Besides parity
check, each functional unit checks for error
using residue arithmetic.

Therefore the CPU architecture of this
machine is a simple pipeline served by four
functional units. With high speed circuits
and pipelining, the major problem to be
solved is the operand supply rate. Since
virtual addressing is implemented, address
translation and subsequent memory fetches
have to be performed most efficiently in
order to be compatible in speed with the
pipeline. Two distinct features are used to
achieve this. First, the primary memory is
buffered by a 16K byte cache that is man-
aged by the set associative scheme (a set of



’

primary memory blocks is mapped into a
corresponding set of cache blocks assaci-
atively). To speed up translation, a 256-
entry Translation Lookaside Buffer (TLB)
is installed for tag (virtual address tags)
matching (associatively). To complete the
virtual memory mechanism, a Segment
Table Origin (STO) stack is used to identify
the environments of different TLB entries.
With a high hit ratio and possible prefetch
of quarter-line segments, each CPU re-
quest may take only two cache cycles for
completion and hence can be speeded up in
& manner compatible with the pipeline
flow (c/o Phase B). A comparison of this
machine with the IBM 370/168 (a com-
parably priced third generation computer)
shows that the Amdahl 470 V/6 provides
three times the performance, yet requires
only one third the space of the 370/168
(60 ft.* vs. 200 ft.?) [32]. One other factor
that contributes to this comparison is the
substantial savings in packaging size with
the improvement in LSI technology. The
LSI portion of the 470 V/6 takes up 51
cards, each 7 % inches square, and 42 chip
positions. With simpler and shorter con-
nections, the reliability of the system is
unquestionably upgraded.

While the Amdahl 470 V/6 makes use of
technology advancement to its great ad-
vantage, its comparatively simple pipeline
architecture prompts more future design
efforts. Specifically, the floating point fa-
cilities in the system are rudimentary (the
functional units are not designed for float-
ing point operations), and for many appli-
cations phase D (execution phase) may be-
come a bottleneck of the pipeline flow.
With the success of this machine, the versa-
tility and prospect of pipelining make it an
attractive feature in future system design.

5. CONCLUSION

Pipelined processors represent an intelli-
gent approach to speeding up instruction
processing when the memory access time
has improved to a certain extent. Without
having to duplicate the entire processors n
times, a throughput rate of close to n times
improvement over a nonpipelined case may
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be achieved. To make this possible, certain
problems have to be solved, including:
parallelism and busing structure; handling
of unexpected events; and efficient sequence
control with a well-designed instruction set.
Special vector processing capability is one
way to specify parallelism in programs
easily. These problems and solutions are
discussed and solutions in existing machines
illustrated. The multilevel application of
pipeline discipline is promising in upgrading
the performance of a processor, especially
from a cost-effective point of view, and
certainly deserves future investigation to
generalize its application to even smaller
scale systems.
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