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Abstract

This paper considers the ultimate impact of fundamental physi-
cal limitations—notably, speed of light and device size—on parallel
v computing machines. Although we fully expect an innovative and
very gradual evolution to the limiting situation, we take here the
provocative view of exploring the consequences of the accomplished
attainment of the physical bounds. The main result is that scala-
bility holds only for neighborly interconnections, such as the square
mesh, of bounded-size synchronous modules, presumably of the area-
universal type. We also discuss the ultimate infeasibility of latency-
hiding, the violation of intuitive maximal speedups, and the emerging
novel processor-time tradeoffs.

1 Introduction

Parallel computation has been for some time a hot topic for computer sci-
ence research. The extraordinary technological advances—globally referred
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to as VLSI—which occurred over the last fifteen years exhibit the capability
to enable what was previously the object of mainly academic speculation.
Despite the enabling technology, there is wide consensus, eloquently and au-
thoritatively expressed [S86, V90a, V90b], that parallel computation has not
enjoyed to this day the development that was to be reasonably expected,
notwithstanding some remarkable realizations (see, e.g., [Be92]) that have
appeared in the last few years. A major reason for this failed expectation
has been convincingly identified [V90a] in the lack of an agreed-upon model
of parallel computation, one that would unleash the independent develop-
ment of hardware and software, the key feature of the extraordinary success
of the von Neumann serial computer. Such model would be the “bridge”
between a growing library of programs and an evolving variety of machines
conforming with it. In its absence, largely different interconnection structures
result in largely diverse programming styles: indeed, the recently marketed
systems—comprising hypercubes, CCC-variants, fat trees, meshes, toruses,
ring-of-trees, etc.—offer a substantially varied spectrum of solutions.

This paper, however, does not confront this important issue directly. Our
present outlook is of a different nature, the focus being on how physical
limitaitons are likely to constrain the structure of very large computers. The
connection to the theme of the model is supplied by the observation that
the physical constraints can play an important role in identifying—almost
forcing it on us—the most appropriate model.

The unrelenting progress of computing technology over the past half-
century is frequently expressed by sentences whose syntax is: parameter “so-
and-so” has been improved by “so-large-a” factor every “so many” years.
Such sentences naturally encourage the view of unbounded technological
progress. The repercussion of this outlook upon the theory of computing
machines is something we may dub the “topological view.” In the topolog-
ical view, a system is a directed graph, i.e., an interconnection of sites (be
they devices, modules, subsystems, etc.), so that communication between ad-
jacent sites occurs with fixed delay (or, for that matter, instantaneously, if the
fixed communication delay is interpreted as some kind of set-up time at the
site). This view is commonly, although not felicitously, denoted “synchronous
model”, reference being made to the assumption that changes of state occur
in synchrony with some sort of clocking mechanism. Perhaps the qualifier
“topological” could be more appropriate for the following reason: topology (in
our context, simply a directed graph) will always be implemented as a geom-
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etry (in our context, a laid-out assembly of wires and physical devices). The
synchronous model corresponds to the assumption that timing of operations
depends only upon the topology of the system and is independent of its real-
izing geometry (that is, it takes constant time to transmit through an edge
regardless of its layout length). This view was naturally elicited by the early
generations of computing systems, encompassed by the following eloquent
characterization by Vitanyi [Vi86]: “a wire had magical properties of trans-
mitting “instantly” from one place to another.” It must be recognized that
the synchronous model has been the basis of a number of significant results
on size-time trade-offs, simulations between different topologies, achievable
speed-ups, latency-hiding mechanisms, which adequately express its algorith-
mic capabilities. It must also be understood that to some extent, through the
clever deployment of a careful mix of technologies and architectural tricks,
this view is supported by current computer engineering.

Nevertheless, any buildable machine will consist of physical components
and thus will be subject to the laws (and limitations) of physics. Some of
these limitations are of an absolute nature (finiteness of the speed of light
and layout in ordinary space), others are related to material science as we
know it today. These constitute ultimate bounds to what is achievable, for
what we know. We fully realize that the road towards these bounds will not
end catastrophically, but will be more like a gradual evolution tempered by
engineering insights. However, in this paper we take the provocative outlook
of considering a technology for which these limitations are fully operative
and with which arbitrarily large machines are to be built. Thus, we radically
separate topological and geometric structures. The illustrated consequences
are admittedly projected in the future, but involve principles that are lurking
and must ultimately be reckoned with.

Several of the considerations and suggestions presented here do not en-
tirely originate with this paper. They are an outgrowth of an intellectual
climate to which an entire community of researchers has contributed over
the years through both scholarly work and machine design. The pioneering
work of Chazelle and Monier [CM85] raised severe objections to the syn-
chronous hypothesis, and unequivocally pointed to the goal of laying “the
foundation of a general theory of physical computability,” which is also the
focus of this paper. Vitanyi [Vi88] established lower bounds to wire lengths in
term of network diameter under very liberal assumptions, and suggested that
“mesh-connected architectures may be the ultimate solution for interconnect-
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ing the extremely large computer complexes of the future,” a conclusion fully
endorsed by this paper. Quite recently Feldman and Shapiro [F592], alight-
ing from fundamental physical constraints, propose as a realistic model of
parallel computation a 3D-mesh-interconnection dubbed “spatial machine.”

Further developing these threads, in this paper we analyze how funda-
mental physical limitations appear to naturally lead to a scalable parallel
computing structure in the form of a spatial mesh. Once the mesh is accepted
as the candidate interconnection for large computing machines in the limit-
ing technology, we shall recognize the spontaneous emergency of parallelism
(i.e., the desirability of a fixed processor/memory ratio), the disappearance of
traditional space-time trade-offs, the ultimate infeasibility of latency-hiding
mechanism, and the attainability of unintuitive speed-ups through the opti-
mal exploitation of data locality.

2 Fundamental Limitaﬁons

Although it is very fruitful and appropriate to think of a computation as of an
abstract process involving precisely defined mathematical objects—as, for ex-
ample, the constituents of the Turing machine model-—one should never lose
sight of the fact that any concrete implementation of that process involves
the utilization of physical phenomena. The physical reality. .will ultimately
determine what can be accomplished by means of computing machines.
One may see that the present situation is vaguely reminiscent of the di-
chotomy between classical and modern views that characterized physics in
the early part of this century: on one hand the inducement into indefinitely
extrapolating common experience, on the other the awareness of limitations
that alter the common-sense intuition of reality. When clock rates are of
the order of 1 millisecond, it is natural to view as instantaneous the signal
propagation on a wire; when a transistor area is of the order of square mil-
limeters, it is natural to view a size reduction by a factor of two as a desirable
technological improvement not affecting the functionality of the device.
Both views have become shakier under the relentless technological progress
that occurred in the past decade. The pillars of the revolution that ushered
modern physics—relativity theory and quantum mechanics—become increas-
ingly relevant to the structure of computing machines, by exhibiting some
hard limitations to what is ultimately physically realizable. We shall now



discuss these limitations.

1. Speed-of-light limitation. This is the crucial most fundamental
constraint. Speed of light is finite, and this fact is already quite relevant to
computing systems. This relevance is striking when one considers that the
duration of 1ns is already “long” for today’s technology, and that in 1ns
light travels a bare 30cm. Although signal propagation on electric conduc-
tors is frequently governed by slower processes (such as charging or discharg-
ing a capacitive load) [MC80, BPP82, CM85], we shall assume that signal
transmission time is proportional to the length of the connection, which, for
sufficiently long wires [BPP82], is the best achievable performance.

2. Size limitation. It is reasonable to make reference to a fized technol-
ogy, characterized by a minimum attainable value of the “feature” [MC80] of
an integrated circuit. This, of course, does not naively mean the preclusion
of technological improvements (reductions of feature size) that are bound to
occur in the near future; our assumption is that forthcoming technological
advances will ultimately lead to a situation where the same down-scaling
mechanisms will no longer work. The debate is open [BL85] on the mini-
mum size of a digital device or on the minimum energy required by a logical
operation. Although no definitive answer appears forthcoming, there is a
consensus that a bounded volume can only store a bounded number of bits.
This enables our assumption that there exists a minimum size for a digital
device (in other words, down-scaling is not endless).

3. Degree-boundedness. The topology of any digital network is a
directed graph with bounded indegree and outdegree. This corresponds to
assume the use of digital gates with bounded fan-in and fan-out, which is a
well-known requirement if one wishes to use gates with basically homogeneous
performance.

4. Planar layout. Although this is not a prescription dictated by any
fundamental law, it is reasonable to assume that a digital computing system
be physically realized by laying out its constituents on a surface. In a sense,
this corresponds to the current common practice of printed-circuit-board as-
sembly of integrated circuits. There are clear engineering reasons favoring
this solution: ease of assembly, ease of maintenance, and ability to remove
heat generated by switching devices, and, more cogently, ease of fabrication,
since the third dimension is used by the processes that create two-dimensional
layouts. However, we argue that the removal of this assumption is inconse-
quential. In fact, in all cases system layout must occur in the ordinary three-
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dimensional space. Even postulating a rather implausible layout technology
where the three dimensions have comparable lattices, we would only achieve
a nonessential modification of the conclusions; typically, the replacement of
square-Toots with cubic-roots in some performance measures related to the
physical diameter of the layout domain [Ros81]. Therefore, all space analyses
will be expressed in terms of “area”.

These four limitations are the basis of the conclusions derived in the
forthcoming sections. We shall frequently refer to the model governed by the
above constraints as the “limiting technology.”

3 Machine Modelling and Scalability

A pervasive objective of computer science is the development of increasingly
large machines with the capabilities to solve increasing-size instances of any
given problem. This motivation has been a driving force in the brief history
of the discipline, although serious caveats are being raised about postulating
arbitrarily large problem sizes (a criticism of asymptotic analysis).

In the most abstract formulation, a digital computing system is a finite-
state machine whose behavior is formally specified by a state-transition func-
tion. Of course, a description in terms of “states” is totally unwieldy. Instead,
computer architecture is normally concerned with structural descriptions of
machines as assemblies of well-defined and relatively simple functional con-
stituents. Typically, the description makes reference to a small collection of
characteristic parameters, each representing the measure of some significant
item or resource (for example, input size, memory size, etc.). Thus, a given
architecture implicitly defines a “family” of machines, parametrized as illus-
trated. Our present objective is to develop a simple but adequate model of
such families, referred to as families of networks of processors, containing as
a special case the conventional uniprocessor systems.

In view of the size limitation discussed in Section 2, it is ideally desirable
that machines of a given family be buildable with a homogeneous technol-
ogy, i.e., by assembling increasing numbers of building blocks of fixed types.
In common parlance, this property is called “scalability,” and is one of the
central objectives of computer architecture. In order to deal with this impor-
tant notion under the limitations introduced above, we shall now attempt a
simple formalization of scalability.



At the abstract level, a computation is a sequence of steps (state tran-
sitions) of the machine, and its cost is the number of steps. In a chosen
physical implementation, however, each step has a duration (measured in
seconds) and the cost of a computation is appropriately measured by exe-
cution time. For a class of machines, scalability means that the duration
of one machine step is the same for all members of the family (i.e., in the
appropriate units, the number of steps is a correct measure of running time).
To deal with the more flexible notion of “degree of scalability,” we propose
the following definition.

Definition 1. Let F = {M : k € I} be a family of machines, where
I is a set of tuples of architectural parameters. With reference to a chosen
physical implementation, we say that F has slowdown 7(k) if the maximum
duration (measured in seconds) of any step of My is 7(k), for all values of k.
We say that F is strict-sense scalable if 7(k) = O(1).

We now illustrate the previous definition with a few examples. Often the

families arise by considering finite versions of structures theoretically defined
as infinite machines.

Example 1. The most immediate example of a strict-sense scalable ma-
chine is a d-dimensional (d = 1,2,3) cellular automaton. We are referring
here to the case where for, say, d = 3, k = (ky,k2,k3) and M; consists
of ky.ky.k3 identical finite-state machines (with structure independent of k)
placed at the points of integer coordinates of a parallelepiped of sidelengths
k1, ko, and k3, with near-neighbor connections. Observe that, if the structure
of the finite-state machine were considered a free parameter, then the result-
ing family would no longer be strict-sense scalable. Indeed, a machine with

a larger number of states requires a larger layout area, and hence a longer
time to execute one state transition.

Example 2. One-head Turing machines also form families of strict-sense
scalable machines. Within a family, all members have identical finite-state
control and My, has k cells of tape. M, is transformable to a one-dimensional
cellular automaton of k cells, each containing an instance of the Turing ma-
chine’s finite-state control, with only one cell active at any time (in other
words, a k-cell cellular automaton can simulate with no slowdown a Turing
machine with a k-cell tape).



The fundamental reason why the above are families of scalable machines
is that communication occurs only within bounded distance (essentially be-
tween spatially contiguous modules whose size is independent of k). These
are the only examples of strict-sense scalable machines we know of. Consider
now the following examples:

Example 3. In multihead Turing machines, communication between heads

introduces a delay proportional to tape length, which precludes strict-sense
scalability.

Example4. The von Neumann machine, or Random Access Machine (RAM)
[CR73], M,, has a single memory of m addressable words, each of [log, m]
bits (to store addresses), and a CPU tailored to [log, m]-bit words. Under
the speed-of-light limitation, the memory access time for M, is Q(y/mlog m)
since, in the most favorable situation, the memory is laid out in a planar do-
main of diameter Q(y/mlogm) and the clock period is tailored to the farthest
access. These lower bounds are achievable so that 7(m) = 6(v/mlogm),
yielding the conclusion that the von Neumann machine is not strict-sense
scalable.

This conclusion may seem in contrast with the half century of indisputable
success enjoyed by the von Neumann architecture, expressed by both faster
clocks and larger memories. However, it can be argued that the “apparent
scalability” of the RAM is due to the impressive technological progress that
has occurred in its brief history, resulting in faster and smaller devices. In-
deed, if we consider just gains in device speed, by increasing m only to a
fraction of the size which would maintain constant access time (which is es-
sentially proportional to the clock period), a concomitant reduction of 7(m)
has been achieved. Analogous results are obtainable by judiciously allocating
gains in device size. Moreover, commercial machines are augmentations of
the abstract RAM with » memory hierarchy leading to different access times
for different regions of memory. For programs exploiting locality the result is
a reduction of the average access time, hence of the observed 7(m).

As indicated earlier, of central importance to parallel computing are ma-
chine families based on the notion of network of processors.

Definition 2. A network of processors is a machine M, g characterized
by three parameters: p, the number of processing elements (PE’s), G, a



directed graph of p vertices defining the processor interconnection, and m,
the number of addressable memory cells of [log, m] bits each. Each PE is
essentially a RAM with a memory of m/p cells, and is uniquely identified
by an ID-tag (an integer between 0 and p — 1). The PE’s correspond to
the vertices of G. The RAM repertoire of instructions is augmented with
(one-step) communication primitives allowing a PE to exchange data with
its (topological) neighbors. The fundamental timing parameter is the largest
execution time of such instructions.

We assume here that a network of processors is programmed in a Single
Program Multiple Data (SPMD) mode [F66]. Specifically, all PE’s execute
the same program, but each PE has its own program counter. Although
the communication primitives are restricted to adjacent PE’s, addresses of
instruction operands may range over the entire machine memory. Global
memory accesses must be supported by specialized programs (and cannot be
regarded as one-step operations). Network architectures are defined around a
family of graphs of increasing sizes such as binary trees, meshes, hypercubes,
etc.

Definition 3. Given a set of positive integers J and a set of directed
graphs G = {G, : p € J,|G,| = p}, the set {M, g, m : Gp € G} is a family of
networks of processors.

To assess the scalability of a family of networks, we must evaluate the
maximum execution time of the instructions of its PEs. We consider sepa-
rately accesses to the PE’s private memory and communication primitives.

A PE has a memory with 8((m/p)log m) bits. Then, assuming that the
CPU has a size comparable to or smaller than the size of the memory, the
area of a PE is proportional to (m/p)logm and, due to the speed-of-light

limitation on memory access time, 7(p,m) = Q(y/(m/p)logm). The value
of m/p will probably be dictated by a number of engineering tradeoffs. We
assume here this value to be a constant (although most likely a large one) and
will develop later arguments suggesting the adoption of a fixed ratio between

memory area and CPU area as m grows. Then, we can regard /(m/p)logm
as essentially constant. (Indeed, for present-day microprocessors logm is
between 32 and 64, and 256 bits would suffice to address each of the 108
charged particles estimated to exist in the universe.)

A more stringent constraint on 7(p,m) arises from the communication
primitives. Indeed, 7(p,m) = Q(L,), where L, is the length of the longest



Table 1:

B, D, L,
BINARY TREE 6(1) 6(log p) Q(/p/ log p)
MESH 6(,/p) 0(v/p) | (1)
cCcC 8(p/ log p) 8(log p) Q(p/ log® p)
CUBE o(p) 9(log p) Q(p/log p)
FAT TREE 6(,/p) 6(log p) Q(\/ﬁ)%uﬁ,

wire in the layout of G, minimizing such length. It has been shown [L81]
that L, = Q(max(,/p, Bp) /D,), where B, is the bisection bandwidth and
D, is the topological diameter of G,. We remark that, whereas networks
With small diameter and high bandwidth appear desirable in the topological
model, they are categorically penalized by the speed-of-light limitation, as
the following table illustrates:

The table clearly singles out as highly desirable the mesh of processors
described by the following definition:

Definition 4. For p a perfect square, the p-processor mesh is a net-
work of PEs {P;; : 1 < ¢,j < ,/p}, where the neighborhood of FP;; is
{P;_1, Piy1, P.j—1, P j+1} (ignoring PEs’s with indices out of range).

In a mesh, each processor can be laid out in area O((m/p)logm), and
the entire network takes area O(m log m). Considering both memory accesses

and near-neighbor communication, we conclude that 7(p, m) = 6(,/(m/p)log m).

Essentially, the slowdown is that due to the PEs, which we have seen to be
practically insensitive to p (for constant m/p). Hence, we reach the central
conclusion that the mesh of processor is scalable, substantiating the reported
suggestion by Vitanyi [Vi88]. By contrast, the binary tree, the hypercube
[P77], and the CCC [PV81] are not scalable. In the rest of this paper we
shall adopt the mesh interconnection as the most suitable architecture in the
limiting technology, and investigate its important features.

Remark. Although meshes and families of bidimensional cellular au-
tomata are all arrays of finite-state machines, there is a subtle but far reaching
difference between the two families. Whereas nodes of a cellular automaton
are indistinguishable from each other and independent of array size, nodes
of a mesh are distinguished by their ID, which supports addressability and
programmability, and their size increases, albeit slowly, with the array size.
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4 The Mesh-Connected Structure

Informally, the outstanding feature of the mesh interconnection is that its
operation is insensitive to the speed-of-light limitation. Clearly, any other
near-neighbor interconnection that admits of a planar layout with bounded
length wires, such as the toroidal mesh or the hexagonal mesh, would behave
analogously to the standard mesh. Therefore we shall restrict our consider-
ations to the latter with no loss of generality.

In this section we examine in some detail the ability of the mesh to support
a shared-memory (P-RAM) programming style, a desirable feature from the
user’s viewpoint.

There is consensus on the fact that programming for a bounded-degree
network in general, and for the mesh in particular, places on the program-
mer the burden of some tasks, such as memory allocation, i.e., assignment
of each variable to a specific node of the network (private memory of some
PE) where to store it, and message routing, i.e., the selection, for each mes-
sage resulting from a memory reference, of a network path and a schedule
between source and destination. It would definitely be convenient for the pro-
grammer if these tasks were handled somehow automatically by the compiler
and by the runtime system. As is well known, the most serious drawback
of this approach is represented by contentions, occurring either among re-
quests/answers competing for the same transmission link or among memory
references directed to the same memory node. A number of solutions to this
problem have been proposed, based both on randomized and on deterministic
algorithms[MV84, UW87, AHMP87, Ran87, KU88, HB88|.

These schemes are collectively referred to as P-RAM simulations, and
each of them is categorized on the basis of its slowdown, i.e., the number of
network steps needed to simulate a P-RAM step (a global memory reference).
Fortunately, the mesh interconnection lends itself to a P-RAM simulation
whose slowdown is of the same order as the intrinsic mesh-traversal time.
Indeed, the randomized scheme proposed in [Ran87] for the butterfly network
can be adapted in a relatively straightforward manner to simulate one step of
a p-processor P-RAM on a p-node mesh in time O(,/p), with high probability
[A.G. Ranade, private communication, 1992]. Since, on the average, for a
set of p random references on a p-processor mesh, a substantial fraction of
them are destined to nodes at distance (}(,/p) from their respective sources,
Ranade’s result appears quite satisfactory and indicates the ability for the
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mesh to efficiently support a shared memory programming model of the P-
RAM type, a feature which is highly desirable, and probably necessary, for
a machine to be effectively usable. However, it is by no means clear that
it would be sufficient, since a P-RAM programming style either ignores or
destroys locality, which is an undisputed source of algorithmic efficiency. We
shall return to this important issue in Section 8.

5 Processor-time Trade-offs

The traditional view of processor-time trade-offs is expressed by the so-called
“Brent’s scheduling principle,” which embodies a general simulation scheme
of a system with p processors by a system of p’ < p processors of the same
type (provided that processor allocation is not a problem). Specifically, al-
though in its original formulation Brent’s principle does not refer to any
particular computation model, we may legitimately consider simulations be-
tween P-RAMSs (for clarity, we shall refer to such simulations by the term
“emulation,” reserving the term “simulation” to the situation where a phys-
ical machine simulates a P-RAM.) For a given problem instance, we have
an algorithm running in S steps on a p-processor P-RAM and we wish to
emulate this computation on a p’-processor P-RAM of the same type, with
P’ < p. Then Brent’s principle states that the product pS (denoted W, “po-
tential work”) is a nondecreasing function of p, as we can always carry out
the outlined emulation with p/p’ slowdown, each processor of the smaller
P-RAM emulating p/p’ processors of the larger one. In other words, Brent’s
principle embodies a neat slowdown processor-time tradeoff, which rests cru-
cially on the assumption that the execution time of one step is independent
of p, a characteristic property of the topological model.

We now wish to analyze the nature of such tradeoffs in the limiting tech-
nology, which sharply separates the notions of ordinary time T and of number
of steps S. Here the tradeoff to be investigated concerns meshes of identical
processors, each simulating a P-RAM with the same number of processors.
Therefore, the machine to be emulated is a p-processor mesh simulating a
p-processor P-RAM (and the emulating machine is an analogous p’-processor
mesh). We let mq denote the size of the processor local memory for which
the memory access time equals the CPU instruction execution time. In order
to explore the full range of p', we assume that, for a problem requiring global
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memory m, we have p >> m/mq (corresponding to S execution steps).

The running time of the algorithm will not only depend upon the number
of executed steps, but also upon the duration of each such step, which in turn
depends upon the layout area of the system. Concretely, let p/, S’, 7" denote
number of processors number of steps and running time, respectively, of the
emulating system, with p’ < p. Clearly, S’ = Sp/p’, as specified by Brent’s
principle. However since processor area dominates memory area, the global
mesh area satisfies A’ = 6(p'), so that

T' = 6(S'\J¢f) = 6(Sp/\/¥).

Since the product Sp is a constant, we obtain that +/p’T", or equivalently
A'T"?| is invariant as long as p’ > m/my, and that time is at a premium, since
a doubling of computation time allows a four-fold reduction of area. This
type of trade-off extends down to p’ = m/my, below which value, the layout
area is basically determined by the memory requirement m, i.e., A’ = 8(m)
and

T' = 6(Sv/m) = 0(Spv/m/p).

In this situation, using fewer than m/mg processors leads to a clear waste
of work since the time 7" increases inversely to p’ with no corresponding area
benefit. The conclusion is that the tradeoff embodied by Brent’s principle
is not consistent with the speed-of-light limitation, which suggests instead
a balancing of memory and processor resources. This validates our previous
assumption to regard the ratio m/p as a constant.

This tradeoff is diagrammatically illustrated in the (A, T')-plane (Figure
1). The dotted curve represents the traditional Brent tradeoff, and the solid
curve represents the analogous tradeoff in the limiting technology. The num-
ber of processors decreases as we traverse this curve from a to b.

Remark. We now note that if for a given problem instance there exists
a sequential (p = 1) algorithm running in S; steps with memory m, then in
the limiting technology no more than 6(mS?) processors can ever be effec-
tively used to speed up the solution. Indeed, the running time of sequential
algorithm is S,0(y/m). A parallel system with m.S? processors requires area
Q(mSE) whose traversal uses time Q(,/mS)); thus the simulation of a single
step of the parallel system—which runs in time of the same order of the lay-
out traversal time—runs in time comparable to the execution of the entire
sequential algorithm.
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Figure 1: Diagram illustrating the area/time tradeoff.

This observation carries some implication with respect io the widely in-
vestigated parallel complexity class NC [P79], which contains exactly those
problems that can be solved in polylogarithmic time by a P-RAM with poly-
nomially many processors. Membership in NC is often equated with parallel
feasibility. Unfortunately, the correspondence is questionable in two ways.
On the one hand, there are algorithms not of the NC type which are excellent
parallel algorithms (e.g., many systolic algorithms); on the other hand, some
NC algorithms require so many processors that, in the limiting technology,
they may be practically slower than some known sequential algorithm for the
same problem.

It must be stronly underscored, however, that while it is important to
understand the impact of physical limitaitons on the performance of parallel
algorithms, a deeper understanding of the structure of computational prob-
lems is often better obtained in abstract models of computation (for example,
the class NC on the P-RAM) that are not encumbered by the physical lim-
itations. Such models have played and will continue to play a vital role in
the development of algorithms.

Remark. The preceding limiting-technology analysis suggests an interest-
ing interpretation of the emergence of parallelism. As the memory size grows
beyond a given value—basically corresponding to an access time comparable
to the appropriate processor clock period—resources are best utilized by in-
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troducing additional processing capabilities within the memory real estate,
so that the private memories of the processors are kept at a basically constant
size.

6 Is Latency Hiding Feasible?

Latency A (measured as a number of system’s steps) is the time elapsed be-
tween the issue of a data request and the delivery of data to the requestor.
Latency, an increasing function of the memory layout area, has been cor-
rectly targeted as a negative measure for a computing system. The following
“pipeline” approach, referred to as latency hiding, has been sometimes advo-
cated to overcome latency.

In a network with n nodes, e edges, and latency A, each of p < n processors
is time-shared, suppose in a round-robin fashion, by a set of s < )\ processes.
Whether these processes correspond to subproblems of the same application,
or to different pipelined instances of some application, or totally unrelated
applications, is immaterial for the present analysis. We assume that the n
nodes are all of comparable size, p of them are full-fledged processors, while
the remaining (n — p) ones provide only routing and storage capabilities. A
processor devotes to any given process one out of every A steps, so that the
time interval between two consecutive steps allocated to the same process is
sufficient for a memory reference to be satisfied. The approach assumes that
there are ps concurrent processes, for example, as the result of executing on
a physical p-processor machine an algorithm written for a virfual machine
with ps processors. Full latency hiding corresponds to s = A.

We now discuss the feasibility of such an intriguing scheme in terms of
network capabilities. We denote by “edge use” the utilization of a network
edge to route a request/response between two adjacent processors. Therefore,
each memory request accounts for A edge uses for its satisfaction. During an
interval of duration A (latency cycle), ps memory references are issued and
satisfied, so that psA edge uses are requested by the latency-hiding meche.

nism but only e) uses are offered by the network. It follows that psA < el,
that is,

, ps Ze. (1)
For any bounded-degree network, e = O(n), and inequality (1) yields p =
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O(n/s). Thus, the average number of operations per step (executed by the
p processors) is t = O(ps/A) = O(n/)), independently of the value of p.
Essentially, fewer processors can be active if any of them must be time-
shared by more than one process. We now examine the feasibility of latency
hiding for the mesh and for the hypercube networks.

We begin by referring to the topological model, where the latency is given
by the network diameter. An n-node mesh has a diameter 8(1/n), so that
A = 0(y/n). Therefore t = O(n/)) = O(y/n). This performance can be
achieved by choosing either (1) p = /n and s = 0(y/n) (only \/n processors
issuing a memory request at each time unit, i.e., implementing a full latency
hiding scheme), or (2) p = n and s = 1 (all processors issuing a memory
request every 0(,/n) time units, i.e., implementing a conventional P-RAM
simulation scheme). This shows that, in full generality, no advantage can
arise from a latency hiding approach on the mesh interconnection. In essence,
latency hiding reduces for the mesh to time-multiplexing the s processes.

By contrast, consider an n-node hypercube, for which e = nlogn and the
diameter is logn. Therefore A = §(logn). Choosing p = n and s = logn,
which satisfy (1), yields a number of operations per step ¢t = O(n). Thus, in
the topological model, the hypercube has the potential to achieve full latency
hiding. Indeed, this potential is exploited in some schemes to simulate an
(nlogn)-processor P-RAM on an n-node hypercube, within O(log n) steps

“with high probability [V90b]. Such scheme, however, rests on a node-degree
0(logn), which is technically questionable as n grows.

Taking now into consideration the speed-of-light limitation, we realize
that the previous analysis of the mesh-interconnection remains valid (because
transmission along an edge takes unit time in-either model). However, the
outlined latency-hiding scheme for the hypercube breaks down, since the
hypercube has a slowdown 7(n) = (n/logn) (see Table 1), which translates
into O(log n) operations per unit time, rather than O(n). At first sight, this
difliculty may be attributed to the width of the wires, since in standard
layout arguments wires are responsible for the large area of high-bandwidth
networks. However, an analogous, albeit weaker, lower bound on wire length
holds for the hypercube even for hypothetical zero-width wires [Vi88].

On the other hand, the speed-of-light and device-size limitation jointly un-
dermine the feasibility of latency hiding for any network in the limiting tech-
nology, even under the extreme assumption of zero-width links (which could
model optical connections). Indeed, a processor time-shared by s processes
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must use (}(s) area to store their state information. For p processors, this
requirement leads to overall network area A = Q(ps), latency A = Q(,/ps),
and hence O(ps/A) = O(,/ps) operations per second. In this case, full la-
tency hiding occurs for s = p (under the optimistic assumption that context
switching between processes be doable in O(1) time). The situation is inter-
preted as follows: For s = p, we have a machine (of course, a p-node mesh)
of area A = 0(p?) performing at most p? operations every p steps. But in
the same area, we could have a p?-processor mesh that can emulate a p*-
processor P-RAM with the same overall performance (p® operations every
p steps). The only difference between the two schemes is whether the p?
processes are time-interleaved or not. This indicates that under the speed-
of-light limitation no performance advantage can derive from implementing
latency hiding schemes.

The above discussion relates to the assumption that a single variable is
involved in each memory access by a processor. However, similar consid-
erations hold in situations when multiple variables are retrieved in a single
access (higher-granularity access).

7 Synchronous Regions

Although the speed-of-light and device-size limitations ultimately appear to
lead to machines whose structure on the large scale is of the (geometric) near-
neighbor type (neighborly networks), the same limitations do not directly
dictate the small and medium size structure of the machine. To obtain insight
on some of the relevant factors, we analyze in more detail the fundamental
features of communication as it occurs in digital systems.

Each communication action involves the transmission of a message from
a source to a destination; the message consists of a number of bits (typically
encoded as sequences of voltage transitions on suitable electric lines) which
may be transmitted serially, in parallel, on in combination of these two basic
modes. At the most elementary level, transmission occurs from driving gate
to driven gate within a boolean network, from the instant the driving gate
begins to switch, to the instant the driven gate begins an analogous transi-
tion. At a less elementary level, we have a memory read-out which runs from
the instant a memory cell is selected to the instant the read-out information
is usable at the output of some CPU register, etc...
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In the above examples, as in any other, we recognize the following com-
mon features: an initial constant-duration set-up event (for example the
switching of a driving transistor) is followed by a propagation event, which
takes place in a selected support medium, and whose duration is an increas-
ing function of the source to destination distance (for example, charging
the capacity of the wire connected to the input gate of a driven transistor
[BPP82].)

In all cases, it appears that the duration é (delay) of a transmission event
can be expressed as the sum of two terms: a constant set-up duration o and
a variable transmission time. Conveniently, the latter can be approximated
as a linear function of the travelled distance, so that

b= o+ al. (2)

This general form of the communication delay has some fundamental im-
plications for parallel computation. Note first that, as long as the two terms
of the right-hand side of (2) are comparable, the distance £ plays a negligible
role in the transmission delay 6, to the point that for £ < o/a we may assume
0 to be a constant. This indicates that within layout regions of geometric
diameter o/a distance becomes inconsequential: we may appropriately call
such regions “synchronous”, and they are correctly encompassed by the tra-
ditional synchronous model of VLSI. One should not naively infer, however,
that purely technological parameters determine the size of synchronous re-
gions. Architectural considerations may suggest a substantial enlargement
of such domains by externally forcing the beginning and the end of com-
munication events within the regions by means of a clock. Nevertheless,
this approach typically introduces a slowdown with respect to the inherent
speed of the deployed technology, which, beyond some limit, would offset any
advantages accruing from architectural innovation. In consideration of such
diverse factors, for the purposes of this paper we shall say that a synchronous
region is implicitly defined as a layout domain where communication is al-
lowed to take a single clock cycle. -

Therefore, in the synchronous regions, the limitations that asymptot-
ically dlctate the geometric near-neighbor connection are not active con-
straints, and the interconnection topology is determined by other factors.
Indeed, the opportunity arises to accelerate information transfer by adopt-
ing a low-diameter topology. However, if wire delay can be neglected, wire
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area remains an important factor and essentially constrains the available
bandwidth across given sections of the machine. For example, the hypercube
and its derivatives, whose bisection bandwidth is linear (or slightly sublinear)
in the number of nodes, have quadratic (or nearly quadratic) area [Tho80].
Hence, within the fixed areas of the synchronous regions, only a number of
nodes proportional to (or slightly larger than) the square root of that area
can be connected according to those topologies. Therefore, the available area
would be vastly underutilized by algorithms that can take more advantage of
number of processors than they can do of bandwidth (e.g., consider systolic
matrix multiplication).

Motivated by considerations of the type developed in the above para-
graph, Leiserson [Lei85] proposed the concept of area-universal network. In-
formally, an area-universal network is one that can route any collection of
messages almost as efficiently as any other network with similar layout area.
This property is clearly desirable for a general-purpose computer, which at
different times will have to execute algorithms with different communication
requirements. However, a priori, the very existence of area-universal networks
is not an obvious matter. Leiserson demonstrated the existence of some such
networks in {Lei85] and called them fat-trees. A number of subsequent inves-
tigations have been devoted to the subject [GL89, LM88, BB90, G90, BB93]
_ with various findings. Exploiting the insights obtained over a decade of
studies on the relation between bandwidth of networks and their layout area
[Tho80, L81, V81, BL84, BP86], some networks have been designed that can
solve any instance of the routing problem by losing at most some logarithmic
factors (typically two) against any other network of similar area (even one
designed specifically for that instance). These results are remarkable and
have already influenced the design of some commercial machines [Letal92].

In conclusion, we reach the view of an “asymptotically” large machine as
a square mesh interconnection of small machines, each approximately of the
size of the synchror ~us regions, exhibiting (in addition to the mesh struc-
ture) area-universal topologies. In the next section we shall elaborate on the
possible impact of this mesh interconnection of area universal modules on
the programming of parallel machines.
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8 Considerations on Programming Models

It is of interest to speculate what programming model might be appropriate
for the type of machine structure imposed by the physical constraints. This
subject deserves a deep and systematic investigation well beyond the extent
of this section, which offers only some preliminary considerations.

A convenient programming environment is provided by the shared-memory
model. As we have seen in Section 4, the mesh supports an efficient imple-
mentation of shared memory, through the mechanism of P-RAM simulation.
When this approach is adopted, a p-processor mesh will execute, oz the
average, O(/p) operations per unit time. We have also argued that this per-
formance cannot be improved by latency-hiding techniques. It is well-known, .
however, that a number of algorithms of great practical interest exhibit con-
siderable locality with respect to the mesh interconnection, that is, most of
the memory references generated by any such algorithm are destined to nodes
that are quite close to their respective source nodes, and hence do not incur
the worst-case latency.

To illustrate this point, consider the problem of multiplying two \/p X /p
matrices and the two following solutions: (1) A uniprocessor system (von
Neumann machine) with a memory of size 8(p), executing the standard serial
algorithm, involving 0(p*/2) memory accesses and additions/multiplications.
Since the memory is laid out in area #(p), each memory access will take
time 6(,/p) on the average, resulting in total execution time 0(p®/ 2D) =
(p*). (2) A mesh-connected /p X ,/p network of processors, executing the
well-known systolic algorithm for the problem [K82], which runs in time
8(,/P), performing 0(p) useful arithmetic operations per time step. This
is essentially due to the fact that each arithmetic operation executed by a
PE involves data stored in adjacent PE’s. Thus, under the speed-of-light
limitation, we have (without substantially altering the used area) a parallel
solution using p processors that improves over the time of the best sequential
solution by a factor of p*/2, and therefore greater than p. This result is at
variance with the intuitive principle sometime called the Fundamental Law
of Parallel Computation [S86], which arises in the synchronous model. The
superlinear speedup is a combined effect of parallelism and locality. The
comparison would be less dramatic if made against a uniprocessor with a
hierarchicai memory. Indeed, in the limiting technology, memory could be
realized with access time 8(,/z) for the word with address z. In this model,
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matrix multiplication would take time 8(p*/?log p) [ACS87].

In general, up to an O(,/p) factor in time could be gained in a mesh by
minimizing the distance of references. Within the area-universal synchronous
regions, the latency of individual references becomes less significant, as the
distances are logarithmic. However, the O(,/p) bisection bandwidth is still
a bottleneck, and up to an O(,/p) factor in time could be gained by an
appropriate reduction of the bandwidth requirements on all sections of the
network.

Unfortunately, the P-RAM style of programming does not allow control
of data allocation and hence precludes the consideration of locality. Worse
yet, all known methods to simulate P-RAMs on bounded-degree networks are
based on memory allocations or maps (hashing in randomized approaches,
and generalized expanders in deterministic ones) which randomize the cor-
respondence between logical and physical address spaces, thereby destroying
any locality implicit in the logical address space. To some extent, sophis-
ticated compiler and runtime system techniques may help in the objective
of exploiting locality, and this approach will no doubt receive much atten-
tion. However, in light of the preceeding considerations, it appears desirable
that, beyond the support of shared memory, the adopted programming lan-
guage should allow the programmer to take a more direct control of machine
resources.

The need for realistic models that would give the programmer a good
sense of parallel program performance has motivated a number of propos-
als [S86, ACS89, V90a, Cetal92]. When developing such models, a tradeoft
must be faced between accuracy of performance estimates (suggesting that
all relevant features of the machine ought to be modelled) and portability
(suggesting that only features common to all target machines ought to be
modelled) [B89]. We predict that the constraints posed by physical limita-
tions on machine structure will simplify the above problem considerably, by
reducing the meaningful class of target machines.

9 Conclusions
Technological progress in digital system engineering brings about a serious

re-examination of the current models of parallel computing. In this paper,
we have taken the extreme view of a technological situation where the ul-
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timate physical limits represented by speed-of-light and device-size (under
degree-boundedness) have been attained, and examined the consequences of
such premises. These hypotheses appear to lead, naturally, to an asymptot-
ically scalable parallel computing structure, consisting of a mesh-like neigh-
borly interconnection of synchronous units, each of the latter being itself, for
example, an area-universal network. While this conclusion appears to nega-
tively constrain the feasible network choices, on the positive side it disposes
in a sense of the topological chaos of potential computing structures, which
represented a widely held view in past years. In addition, the convergence
towards a “favorite” interconnection may provide the consensus model that
would finally let hardware and software flourish autonomously.

We have also examined how the fundamental physical limitations chal-
lenge some principles and schemes that are quite natural within the currently
prevailing synchronous model, such as latency masking and processor-time
tradeoffs. ,

Of course, we do not naively suggest that the limit model discussed in
this paper should govern near-term parallel computing. As history teaches
us, the evolution towards the outlined situation is likely to be smooth and
rich with engineering innovations. There is ample room for retention of the

synchronous model for a long time, but we should be aware of what lies at
the end of the road.
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