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INTRODUCTION

The STARAN E is a general purpose parallel computer.
However, certain aspects of the STARAN E’s architecture,
specifically, a single instruction stream-multiple data
stream organization, high speed 1/O, a flip (permutation)
network and a conditional operation capability on each par-
allel processing element, are particularly pertinent to the
areas of image processing and pattern recognition.

Some of the characteristics of image processing and pat-
tern recognition which provide a good fit to the STARAN’s
architecture are repetitiveness, spatial dependencies, com-
plex parallel decision making and high 1/O to computation
ratios. These characteristics and their corresponding
STARAN E architectural accommodations are described in
detail. The other aspects of STARAN's architecture are
described in only enough detail to provide a basis for dis-
cussion.*

BACKGROUND

The STARAN E consists of an associative processor (AP)
control module and a number (1 to 32) of associative arrays.
The AP module consists of the AP control circuitry itself
and bulk core. Figure 1 shows the basic STARAN architec-
ture.

The arrays can be thought of as consisting of high speed
memory, low speed memory and a bank of processing ele-
ments. Each array is organized into 256 ““words.” Associ-
ated with each ““word” is a processing element (PE). Each
word is 9K bits long with 1024 bits of high speed memory
- and 8192 bits of lower speed memory. Figure 2 illustrates
the conceptual array organization and a general purpose
layout for a 512512 8 bit/pixel image.

Arithmetic operations are performed in parallel on every
(enabled) word of memory, one bit at a time. That is, the
least significant bit of every word in a field (a bit column
vector) is added (multiplied, etc.) to the corresponding least
significant bit of every word in a second field and stored in

* For a detailed description of the STARAN line of computers see References
1,2 and 3.
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the least significant bits of the sum (product, etc.) field. The
carry bits are saved and added into the second bit slices of
the arguments. This process is repeated until the entire fields
have been processed.

ARCHITECTURE—ALGORITHM PARINGS

Certain characteristics of image processing and pattern
recognition mesh perfectly with some of the architectural
features of the STARAN E. In the following paragraphs,
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Figure 2—General purpose array organization

some characteristics of image processing and pattern rec-
ognition algorithms will be identified and described. Then
the corresponding architectural feature of the STARAN E
will be discussed and shown how it facilitates implementa-
tion of the algorithms.

REPETITIVENESS

Images consist of large volumes of data. A standard TV
monitor size image contains over a quarter of a million pixels
(picture elements). The images obtained from satellites may
contain many millions of pixels. Almost all image processing
and pattern recognition algorithms consist of performing the
same sequence of operations for every pixel in an image.
This aspect of image processing fits perfectly with the single
instruction stream-multiple data stream organization of the
STARAN.

The associative processor (AP) control portion of the
STARAN computer provides a single sequential instruction
stream to the associative arrays. Each associative array
contains 256 processing elements (PE’s) and a fully equipped
STARAN E may have up to 32 arrays. Thus the single
instruction stream can control from 256 to 8192 PE’s result-
ing in a processing capability of from 11 to 356 million 32-
bit adds per second (MIPS). Figure 1 illustrates the single
instruction stream-multiple data stream organization of
STARAN.

“‘Inherently serial’’ algorithms such as classical Maximum

Likelihood classification are easily implemented in parallel -
with the above organization. This is because the algorithm
is still executed in serial for every pixel, but from 256 to -
8192 pixels can be handled with one pass of the algorithm.
With the large number of pixels that need to be processed
in a typical image, parallel application of the algorithm is the
only practical answer.
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Figure 5—Butterfly diagram for FFT

SPATIAL DEPENDENCIES

Image data is inherently two dimensional and processing
algorithms often must deal with this **built in”’ organization.
In general, there are two different types of relationships.
The neighborhood relationship requires that pixel neighbors
in the two dimensional plane be readily accessible. The
second type of relationship is normally spatially more ex-
tensive and is typified by the Fourier Transform where the
pixel and its neighbors at power of two intervals for an
entire row or column are related.

The STARAN associative arrays are well suited for ac-
commodating both types of dependencies. Each array, as
shown in Figure 3, has a flip network located between the
memory and PE portions. This network performs as a spe-
cialized shift register and provides great flexibility in ac-
cessing pixels which are spatially related.

In particular, the flip network can accomplish power of
two rotates within power of two sized fields with no time
penalty. That is, a 1 bit rotate in 128 2 bit fields; 1 and 2 bit
rotates in 64 4 bit fields; 1, 2 and 4 bit rotates in 32 8 bit
fields; on up to 1, 2, 4, 8, 16, 32, 64 and 128 bit rotates in
one 256 bit field. (See Figure 4) This means that inter-word
operations at these intervals can be performed in parallel at
the same rate as intra-word operations. Moreover, all inter-
word operations can be performed with only a slight penaity.

The flip network then provides a very efficient method of
implementing algorithms such as the Fast Fourier transform
which utilize the spatial power of two interrelationships be-

tween pixels. This power of two spatial relationships is fre-
quently expressed in the butterfly diagram shown in Figure
5. A detailed discussion of how the FFT can be implemented
in the STARAN in log N steps of 1 add, 1 subtract, 2 real
multiples and 2 exchanges has been published elsewhere.’

Template matching and spatial convolution are two algo-
rithms which require the neighborhood type of pixel access.
These processes can be implemented with little or no time
penalty for the required spatial relationships. In particular,
2x2, 3x3, 5x5, 9x9 and 17X 17 displacements require no
time penalty. Other displacement amounts up to 16x16
require at most one extra shift except for 12x12 and 14x14
which require two shifts. In general, the required shifting
for processing any window or template size within the 256
word array (i.e. 255x255 or less) is insignificant in overall
algorithm time.

PARALLEL DECISION MAKING

An important aspect of image processing and pattern rec-
ognition is decision making. Many algorithms perform dif-
ferent operations as a function of the data. The complexity
of the process is typified best perhaps by scene analysis
techniques. In these situations it is essential to be able to
record the exact state of each individual datum in the image.

Each STARAN array contains a special register which
can be set as the result of searches (LE, GT, etc.) and
arithmetic operations. This mask (or M) register can be used
to select a subset of the words in an array to participate in
subsequent operations. The results of tests, conditions and
states can be stored, retrieved and operated on to achieve
any desired logical combination of tests. Figure 6 indicates
the physical location of this register.

Two examples of how the M register can be used are
template matching and hierarchical structuring. To start a
3x3 template match, the M registers are set to all ones so
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that every word participates in the search. The first value
of the template is loaded into the common register and the
first columns of all the arrays are matched against it. Every
successful match is recorded in the Y register. The Y register
is shifted down one and moved to the M register, the second
template value is moved to the C register and the column is
searched for a match of the second template value but on
only those words with a corresponding one in the M register
(i.e., only those which successfully matched the first value).
Consequently at the end of the second search the Y register
contains 4 one for every word and only those words which
successfully matched both the first and second template
values (the state shown in the M and Y registers in Figure
7). The procedure is repeated for each of the template values
with an upward shift and column increment after searching
for the third and sixth ‘values. At the end of this process,
the M register of all enabled arrays will contain a one (shifted
down by two) corresponding to every successful template
match covering columns 1, 2 and 3. The process is repeated
for every set of columns to be searched.

Note that the columns need not be contiguous to be
searched. Thus two situations can be easily handled. First,
the columns can be organized in an order which facilitates
another algorithm and/or input/output situations. Second, the
template need not be contiguous but may cover essentially
any size area in any desired manner. Both of these capabil-
ities emphasize the flexibility of data processing in the
STARAN arrays.

In a scene analysis application, each pixel might have a
set of flags and auxiliary fields associated with it as shown
in Figure 8. Then searches of the type ‘‘obtain the edges of
object 5 on level 27 would be easily implemented in parallel
by: first, searching all pixels in a column for object 5, then
searching the matched words for level number 2 and then
ANDing the edge flags with the Y register. The result is the
answer to the search for the givén pixel column. The process
would then be repeated for each column under considera-
tion. This example illustrates how easy it is to save the
result of previous algorithms as flag vectors and codes in
parallel and that this information is readily available for
subsequent processing and analysis.

INPUT/OUTPUT VERSUS COMPUTATION

It has been established that in general, image processing
involves large volumes of data. The algorithms vary quite
markedly however in the degree of computation involved.
Simple grayscale remapping is such a useful function that

special hardware circuitry is often contained within the dis-
play devices. In order to make such changes permanent,
however, a computer must be used. Operations such as
changing (rémapping) the grayscale values of images requife
only one operation per pixel but must be performed on every

pixel. These algorithms represent the high 1/O-low com--

putation end of the spectrum. At the other end are such
algorithms as the domain transforms. Frequently these pro-
cedures require numerous arithmetic operations on a per
pixel basis. For example, a two dimensional Fast Fourier
Transform for a 512x512 pixel image requires 54 multiples
and 90 adds per pixel (for a serial computer),

The STARAN has three 1/0 paths. The common register
path (shown in Figure 1 and at the top in Figure 9) operates
at between 12-15 million bits per second (MBPS). It is most
useful for ‘*broadcasting’’ data such as constants and param-
eters to all arrays in parallel. It is a 32 bit wide path.

The most useful path for data I/O is the 32 bit wide mul-
tiplexed I/O bus into and out of each array. This bus is
capable of operating at between 80 and 640 MBPS. Thus an
entire 512x 512 8 bit per pixel image can be input or output
in from 26.2 to 3.3 milliseconds. This data path is connected
to a crossbar switch so that it can be used to transmit data
between arrays as well as to peripheral storage or image
display devices.

The fastest bus is the 256 bit parallel 1/0 bus which can
operate from 512 to 2560 MBPS. The data transfer rate on
this bus is such that special peripheral configurations are
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required. Consequently, it is best suited for special purpose
applications.

Every array module is capable of being connected to

either of two controllers. Thus in those applications where
the equivalent of double buffering is desirable, some of the
arrays can be switched to an I/O controller while the re-
mainder are used for computation.

SUMMARY

The multiple data stream parallelism of the STARAN allows
it to perform a “‘serial’’ algorithm on up to 8192 data ele-
ments simultaneously. This is important in image processing
where large volumes of data are processed. Images are in-
herently two dimensional, but the large array size of the
STARAN E, readily allows an entire 512Xx512 8 bit/pixel
image to be stored in one array with essentially its two
dimensional topography intact. The array addressing struc-
ture and the array flip network provides easy access to every
pixel and its neighbors in a simple efficient manner. The
mask (M) register operation in an array enables complex
decision processes to be made on any subset of pixels in an

~ array. All of the above aspects of the STARAN’s architec-

ture would not be valuable if it could not be efficiently used.
The three 1/0 paths into every array provide the capability
to efficiently broadcast parameters and constants as well as
loading and unloading image data in an expeditious manner.
Thus it is apparent that many of the architectural features

TABLE 1.—Sample Algorithm Processing Times

Function Description Image Size Speed*
Magnification 2.5 cubic 512x512 588 milliseconds
convolution 8 bit/pixel
interpolation
Convolution 3x3 window 512x512 700 milliseconds
8 bit/pixel
FFT 1 Dimension 512 16 2.7 milliseconds
bit/pixel

* Measured times in the STARAN B machine exclusive of I/0, The STARAN
E instruction execution time is approximately 20 percent faster.

of STARAN are ideally united for image processing and
pattern recognition. This conclusion is confirmed by the
execution times shown in Table 1.
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Bit-Serial Parallel Processing Systems
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KENNETH E. BATCHER

Abstract—About a decade ago, a bit-serial parallel processing
system STARAN® ! was developed. 1t used standard integrated circuits
that were available at that time. New, with the availability of VLSI,
a much greater processing capability can be packed in a unit volume.
This has led to the recent development of two bit-serial paralle! pro-
cessing systems: an airborne associative processor and a ground based
massively parallel processor.

The airborne associative processor has about the same processing
capability as a three cabinet STARAN system in a volume less than
0.5 cubic feet. The power required and weight are also reduced dra-
matically for the airborne environment,

The massively parallel processor has about 100 times the processing
capability as the STARAN system ir: ihout the same volume. Floating
| point speeds are better than 100 MiO*S (million operations per second).

" Integer arithmetic spéeds depend on operand lengths-—for 16 bit in-
. tegers the speed is better than 30{¢ MOPS for addition and 450

MOPS for multiplication.

.. After presenting the basic rationale for bxt-senal parallel processors,
. the organizations of the two recent systems are shown and somie of their
" applications are outlined. o

C el
R

. Index Terms—Airborne processors, bit-serial processors, custom
‘- VLSI chips, image processing, muitidimensional access, parallel
processors, radar processing,

I. INTRODUCTION

IKE other parallel processing systems, the systems we

describe in this paper have a number of processing ele-

.- ments (PE’s) operating in paralle! on separate data streams

* . under the control of a single control unit. The systems have a

+- " large number of processing elements (in the thousands) and

..~ each element is very simple—operating on its data stream bit

“ by bit, Thus, we call them bit-seria} parallel processing systems.

- Given an array of 1000 16 bit items, a conventional computer

., would process the array item by item in 1000 steps, whereas

-a bit-serial parallel processor would process the array broadside

in 16 steps with each processing element treating a bit of one

item on each step. The array is accessed by bit-slices instead

of by items. Since the number of items in a typical array is

much larger than the number of bits per item, processing is
much faster.

A feature of bit-serial processing is its ability to handle data

items of any length. There is no need to extend operands with

filler bits to pack them into standard machine words as in a

conventional computer, This raises the storage and processing

Manuscript received June 4, 1981; revised December 10, 1981.
The author is with the Digital Technology Department, Goodyear Acro-
space Corporation, Akron, OH 44315,
. ! Registered Trademark, Goodyear Aerospace Corporation, Akron, OH
4315.

efficiency. Suppose we have an array of M operands with V
bits, per operand. Any parallel processor suffers some loss in
efficiency when M is less than the number of processing ele-
ments. A conventional computer experiences a similar Joss in
efficiency when N is less than its word length. Parallel pro-
cessors with processing elements of a standard word length
suffer from both losses in efficiency when M is less than the
number of PE’s, and when /V is less than the word length of a
PE. Bit-serial parallel processors, like convcntlonal computers,
experience only one inefficiency.

Another advantage of bit-serial parallel processors occurs

when only a part of the operand needs treatment. For example,

only one cycle is required to test the signs of all elements in an
array. Associative processing where data items are addressed
by content is easily performed by reading out the keys bit by
bit and comparing their values to the bits of a comparand. Only
the keys involved in the search need be accessed.

While a data array would be accessed broadside by the set .

of processing clements, the same array would be read and
written in the orthogonal direction (item by item) by input-

output channels. This is the normal way data arrays are gen--

erated, stored, output, and processed in conventional com-
puters. We should accommodate the rest of the world rather
than force it to transfer data arrays by bit-slices. Thus, we need

a means of accessing data in two directions: item by item for .

input and output and bit-slice by bit-slice for the set of pro-
cessing elements.

In STARAN® processors, data arrays are stored in multi-
dimensional access memories {1}, {2] so they can be accessed - .
in either direction equally well. The memories use the same -
kind of random access memory integrated circuits as con-'
ventional solid-state stores. The locations of the data bits are® -

scrambled a certain way so data arrays can be accessed many

different ways including ‘the. orthogonal directions. The in-
- clusion of a few EXCLUSIVE-OR gates in the memory address

bus generates the necessary addresses for the memory ele-
ments. A network called the flip network [3] is included in the
memory data bus to scramble data being written into storage,
and to unscramble data being read from storage. This network
is also used to route data between processing elements and is
akin to a number of multistage interconnection networks

4]

The first STARAN was demonstrated in 1972, It used
standard off-the-shelf integrated circuits that were available
at that time. Now with the availability of VLSI, much greater
packing densities can be obtained. This has led to the recent
development of two bit-serial parallel processors: the girborne
associative processor and the massively parallel processor.

0018-9340/82/0500-0377$00.75  © 1982 IEEE

e

i

e
P

<ol et s
e

A

SRR

vy

oyar e

S
AT

psiRe O

L

%

o
ol
|
i

}
i

R R

el

o e R T

e e




d

i)

;i'

g

1%

3
i

378

II. AIRBORNE ASSOCIATIVE PROCESSOR

During 1978, studies to determine the feasibility of an air-
borne version of a STARAN processor were conducted under
company reseach and development programs and under U.S.
Navy contracts. The studies culminated in the design of an
airborne associative processor using VLSI [5]. The architec-
ture of the processor is shown in Fig. 1. The five major blocks
are as follows:

1) the array unit containing over 2000 PE’s and over 1
Mbyte of data storage,

2} the array control unit which supplies the control signals
for the array unit,

3) the register and arithmetic section which controls the
input and output of array unit data and generates array ad-
dresses,

_4) the program executxon control unit which executes the

‘ apphcatxon program and dfives the array control umt and the
_register and arithmetic section, and -+ . -
/5) the control memory which stores the application pro-

gram and buffers data between the airborne associative pro-

‘cessor and a host computer.

o A Array Unit

The array unit comprises 17 array modules, 16 for the ap-

vp'lication and a spare module to replace any other array module
- found to be in error. Each array module contains 128 PE’s and

four 32 X 4096 bit arrays of multidimensional access storage.
Thus, the array unit contains 2048 PE’s (plus spare) and one
Mbyte of data storage (plus spare).

Fig. 2 depicts one array module. The module contains four
custom design VLSI chips with each chip containing the reg-

~ isters for 32 PE’s, a 32 line flip network, and a resolver (Fig.

3). The multidimensional access memories for one array
module are packaged in eight hybrid packages with each hy-
brid containing 16 1K X 4 random access memory (RAM)
chips. The 32 PE’s of one VLSI chip access the storage of two

- memory hybrid circuits through the 32 line flip network on the
- VLSI chip. The arrangement is akin to one STARAN array

module except that the flip network is only 32 lines wide in-
stead of 256 lines wide [1], [3]. The multidimensional access
memories allow the register and arithmetic section to input or
output all bits of a 32 bit operand in one memory cycle and the
set of PE’s to access one bit-slice from all operands in one
mermory cycle.

The processing elements are much like the PE’s of STAR-

AN, Each PE contains a one bit X-register and a one bit Y-
 register which perform the bulk of the bit-serial arithmetic [6).

The one-bit mask register holds a mask bit which governs
writing of PE data into the multidimensional access storage
in masked-write'operations. Each PE also has a one bit hold
register for masked-write operations. This register was not
needed in STARAN systems because they performed masked
writes by selectively setting the write-enable pins of the
memory chips. In the airborne associative processor the
memory chips are four bits wide so individual masking is not
possible at the memory chips. Masked write operations are
performed by reading the memory data into the hold register,
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Fig. 1. Block diagram of the airborne associative processor.
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changing those data bits whcre the mask register is set, and
then writing the data back into the multidimensional access
memory.

The resolver on each PE/Flip network chip tests the 32 bit
data bus for the presence of one or more 1-states. The SUM-OR
output is an INCLUSIVE-OR of the 32 data lines. The position
of a 1-state is output on a 5 bit wide resolver address bus. The
resolver is used after associative searches. After each PE has
checked its associated storage for the presence or absence of
data satisfying the search criteria the match bits are fed to the
resolver which locates the position of one item matching the

A
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criteria. The resolver outputs of the PE chips are collected.

together in a super resolver to see if any of the 2048 PE’s in the
system have matching data and to generate the address of one
v match. . ’

i The PE/Flip network chip is a custom VLSI chip using
‘ CMOS/SOS technology. Cycle times are longer than the
STARAN cycle times which used ECL technology. The set
of 2048 PE’s in the airborne associative processor has about
the same processing power as the set of 1024 PE’s in a four-
array STARAN system.

B. Array Control Unit

The array control unit broadcasts control signals toall PE’s
in the array unit. Several basic array operations are possible

b using the PE registers, multidimensional acCess storage, or the
}’i ~ common register in the contro! unit as operands:

t . 1) the X and/or Y registers can be loaded or logically
e .combined with data from the common register, the multidi-
& " mensional access storage, or the PE registers;

re 2) the mask register can be loaded from the common reg-

ister, the multidimensional access storage, or the PE regis-
ters; . : ‘ '
3) the multidimensional access storage can be written (ei-
ther masked or unmasked) with data from the common register
or the PE registers; and '
4) the common register car be loaded with data from the
_PE registers or the multidimensional access storage.

C. Register and Arithmetic Section

The register and arithmetic section generates the addresses
for the array unit operations and controls the input and output
of array unit data. It contains 24 16 bit registers, two 32 bit
registers, an Arithmetic and Logic Unit (ALU), and a number
of selection gates (Fig. 4). ’

g

" D. Program Execution Control

The program execution control unit executes the application
‘program. Conditional branching is provided to any instruction
. inthe control memory. Instruction fetching is overlapped with
= execution for faster processing, Besides the program counter
v and the instruction register, the program control unit contains
’ a stack to store up to 16 return addresses and logic to allow
prioritized interrupts. ' : :

E. Control Memory

The control memory has three types of storage: program
memory holding the application program, buffer memory to
buffer data to and from the host computer, and a read-only
memory to store routines for certain essential operations such
as the data transfer program and the basic built-in test rou-
tines. The host computer is a dual processor and the buffer
memory communicates with each host processor over its
memory bus. It has two banks, each holding 8192 32 bit words.
To the host computer, the buffer memory appears as one of its
own memory banks (the whole airborne associative processor
occupies a memory bank space in the host computer).
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F. Applications
The airborne associative processor was designed to upgrade

. early warning radar surveillance and command and contro!

processing aboard the Navy’s E-2C aircraft. The E-2Cisa

carrier-based aircraft that receives target data from its own
radar and track data from data links. Targets are processed” ~

and correlated to form track data which are output to three

operator displays. The airborne associative processor fits inside .-
the existing computer as an easily replaceable unit. The

high-speed content addressability of the airborne associative

processor is used to correlate radar reports with each other and -
with existing tracks. The software required to maintain the

surveillance database is simplified as well.

With suitable modifications, the airborne associative pro-

cessor could be adapted to other uses in airborne environments

or to other applications where a large amount of specialized

processing power must be packed into a small volume.
1II. MASSIVELY PARALLEL PROCESSOR

In 1971, the NASA Goddard Space Flight Center initiated
a program to develop high-speed image processing systems.
They will be required to process the large amount of image

data that will come from satellites that NASA will orbit during -

the 1980’s. These systems use thousands of PE’s operating
simultaneously to achieve their speed (massive parallelism).

A typical satellite image contains millions of picture elements .

(pixels) that can generally be processed in parallel. In 1979 a
contract was awarded to construct a massively parallel pro-
cessor to be delivered in 1982 [7]. The processor has 16 896
PE’s arranged in a 128 row X 132 column rectangular array.
The PE’s are in the array unit (Fig. 5). Other major blocks in
the massively parallel processor are the array control unit, the
staging memory, the program and data management unit, and
the interface to a host computer. :

A. Array Unit
Logically, the array unit contains 16 384 PE’s arranged in
a 128 row X 128 column square array. Physically, the array

unit contains an extra 128 row X 4 column rectangle of PE’s -
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Fig. 5. Block diagram of the m_ass_ivc_ly paralilel processor.

for redundancy. Each PE communicates with its four nearest

neighbors, north, south, east, aiid west. Each PE is a bit-serial

processor. With a 10 MHz clock rate and 16 384 PE’s oper-

. ating in parallel, the system has a very high processing rate.

Each PE can read two 16 bit integers, generate their sum, and
store the 17 bit sum in 49 clock cycles so that 16 384 additions

‘are performed in less than 5 ps (more than 3000 MOPS).
- Floating-point operations are performed at a fast rate even

though they are not particularly suited for bit-serial processing,

. Many different floating-point formats are possible. With a 32

bit format (1 bit sign, 7 bit base-16 exponent, and 24 bit

- fraction), the floating-point addition is better than 400 MOPS

and multiplication is better than 200 MOPS.
1) Array Topology The major apphcatxon of the masswely

: para]lel processor is image processing. Since most of the pro-
. cessing is conducted between neighboring pixels, it'is natural

to connect the thousands of PE’s together in a square array
with each PE communicating with its nearest neighbors. We
investigated the use of other interconnection networks like the

maultistage SIMD interconnection networks [4], but with over

16 000 PE’s they become unwieldy. The layout of a square
array is very simple with no long runs to slow down the transfer
rate.

Certain image processing operations like the fast Fourier
transform (FFT) require communication between pixels or
points located far apart in the image. If we store one point in
each PE then the routing time would be severe in a nearest
neighbor square array topology. But this is not the best way
to do FFT’s on the MPP. Each PE can store several points in
its RAM so that the number of PE’s required to.do an FFT can
be reduced to a small compact subarray of the-array unit. The
processing power of the other PE’s is not wasted since if we
want to do one FFT, we will invariably want to do many FFT’s
so that we can divide the array unit up into many compact
subarrays, each doing one FFT. For example, suppose we want
to do many 5120 point FFT’s. Ten points can be packed into
each PE so each FFT can be performed in a 16 row X 32 col-
umn subarray of the array unit. Thirty-two such subarrays can
do 32 FFT’s in parallel. The longest communication path in
each FFT is half the width of the subarray (16 columns), so

the routing time can be reduced to a fraction of the computa- .

tion time.
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One may ask the question of how the data can be input and
output effectively especially when they have a peculiar layout
like in the FFT example. A 5120 point FFT is most easily
performed by combining 1024 five point FFT’s with five 1024
point FFT’s where the position of any point is a function of its
index modulo 5 and 1024. The 5120 points of one FFT have
a scrambled layout. The permutations required are akin to the
permutations required to change a data array from an item by
item format to a bit-slice format. Some kind of buffer memory
will be required in the array unit input-output path to convert
data arrays to and from the bit-slice format. If it is properly
designed the same buffer memory could perform other per-
mutations as well, such as those required by the 5120 point
FFT example.

Thus, in the massively parallel processor we use a simple
square array topology in the array unit and insert a buffer

memory (the staging memory) in its input-output path to

perform the permutations required by particular application

programs. The staging memory transforms the bit-serial for-

mat of the array unit to the item by item format of the outside
world. With 16 000 PE’s this is a better solution to the problem

_ than the solution used in STARAN where a common multi-

dimensional access memory was used for both PE random
access storage and input-ouiput transformation. Because of
the planar nature of the array unit in the massively parallel
processor we will refer to accesses as blt-plane accesses instead
of bit-slice accesses.

Given a square array with 128 rows and 128 columns, what -
do we do around the edges? Some application programs would .

like to see a planar-topology where, for example, the PE’s on
the north edge see zero when data items are routed to the south.
Other programs would like to see a cylindrical-topology where
the PE’s on the north edge see data from PE’s on the south edge
when data items are routed to the south. Also, some programs
would rather have the 16 384 PE’s connected in one long linear
string rather than in a 128 X 128 plane. Thus, the edge con-
nections should be a programmable function.

A topology register is included in the array control unit to
allow programming of the edge connections. Between the north
and south edges of the array unit, one can either stitch them
together to make the array look like a cylinder or separate them
to make the array look like a plane (Fig. 6). Similarly, the east
and west edges can independently be stitched together or
separated (if both pairs of edges are stitched together the array
looks like a torus). When the east and west edges are stitched

together one can either stitch corresponding rows together or .

slide the stitching by one row so the west PE of row / com-
municates with the east PE of row i + 1. If one slides the
stitching, the rows are connected together in spiral fashion so
that the array of PE’s looks like a long linear string.

2) Redundancy: One advantage of the rectangular nearest
neighbor connection network is the easy way it allows faulty
PE’s to be bypassed. When a fauity PE is discovered one by-
passes all the PE’s in its column (or row) so the topology is not
disturbed. We have found no similar technique for bypassing
faults in a muitistage SIMD interconnection network. To add
redundancy to the array unit, we implement more than 128
columns and insert bypass gates in the east-west routing paths,
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* Fig.6. MPParray topé)logic’s.

The array is reduced to 128 columns logically by bypassing
some columns. If a faulty PE is discovered we bypass its col-
umn and use one of the spare columns instead. Logically, the
array will still have 128 columns. Of course, the physical po-
sition of many data items will be shifted when the bypassed

" columns are shifted, but this presents no problem if we do not
" try to save the data when a fault is discovered. Since the dis-
. covery of a fault usually implies the presence of faulty data in’

the faulty PE and/or its neighbors, we should not try to save

_the data anyway. After the array unit is reconfigured, recovery

is accomplished by restarting the apphcatlon program from
the last checkpoint.

We could just add one redundant column of PE’s and bypass
the 129 columns individually. Instead, we divide the array up
into 32 four-column groups and add a redundant four-column
group so only 33 sets of bypass gates are required instead of
129. When a faulty PE is discovered, we bypass all PE’s in its

. four-column group. All outputs from the group are disabled.

and the east~west routing paths of its two neighboring groups
are stitched together, The redundancy of 3 percent (4/128)
is a small price to pay for the ability to reconfigure around any
single faulty PE. The scheme does not handle the case of
multiple PE’s failing but the probability of this event within
a reasonable service interval is miniscule.

3) Processing Elements: Each PE is a bit-serial element.
Initially, the PE’s had down-shifting binary counters for
arithmetic [8], [9]. The PE design was modified to use a full
adder and a shift register for arithmetic. The modified design
performs the basic arithmetic functions faster. Each PE has
six 1 bit registers (4, B, C, G, P, and §), a shift register with
programmable length, a RAM, a data-bus (D), a full-adder,
and some combinatorial logic (see Fig. 7). The nominal clock
rate of the PE’s is 10 MHz. In each clock cycle all PE’s perform

" the same operations on their respective data streams (except

where masked): The basic PE operations are microsteps of the
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Fig. 7. One MPP processing element.

array instruction set. The control signals come from the PE
control unit of the array control unit which reads the microcode
from a writable control store. As long as there are no conflicts
many PE operations can be combined into one 100 ns clock
cycle.

a) Data-Bus Source Selection: The source of the data
bus can be the state of the B-, C-, P-, or S-register, the state
of a selected bit from the RAM, or the output of the equiva-
lence function between P and G(P = G equals 1 if and only if

‘P and G are in the same state). The data bus state (D) feeds

a number of other parts of the PE.

b) Logic and Routing: The P-register is used for logic
and routing operations. A logic operation combines the state
of the P-register with the state of the data bus (D) to form the
new state of the P-register. Any of the 16 Booléan functions

of P and D can be selected. A routing operation reads the state

of the P-register in a neighboring PE (north, south, east, or
west) and stores the state in the P-register. When routing oc-
curs, the 128 X 128 plane of P-registers is shifted synchro»

“nously in any of the four cardinal directions.

A logic or routing operation can be unmasked or maskcd
An unmasked operation is performed in all 16 384 PE’s. A
masked operation is performed in only those PE’s where G =
I—the P-register is not disturbed in those PE’s where G = -
¢) Arithmetic: The fulliadder, the shift register, and
registers 4, B, and C are used for bit-serial arithmetic opera-
tions. A full-add operation sums the bits in the 4, P, and C' -
registers to form a 2 bit sum which is placed in the 8 and C
registers with B receiving the least significant bit and C re-
ceiving the most significant bit. A half-add operation is similar
except that only the bits in registers 4 and C contribute to the
sum,

The shift register has a programmable length. Its length can
be set to 2, 6, 10, 14, 18, 22, 26, or 30 bits. A shift operation
shifts the register one place to the right with the state of the
B-register entering at the left end of the shift register. If reg-
ister A is shifted simultaneously then it reads the rightmost bit
in the shift register. An operand of length 4n, where # is an
integer from [ to 8, can be recirculated around the path formed
by register B, the shift register, register 4, and the full adder;
the shift register length is set to 4n — 2.

- Register 4 has three operations: clear 4, load 4 with thc
data bus state D, or load 4 with the rzghtmost bitin the shift
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register (shift 4). Register C receives the carry bit in full-add

and half-add operations and has two other operations: clear-

C and set C.

These microarithmetic operations are combmed to perform
the array arithmetic instruction set. The addition of two arrays
of n bit integers is performed with each PE treating one pair
of integers. Corresponding bits of the integers are fed to the
P and A registers, respectively, starting with the least signif-
icant bits. They are added with full-add operations with the
carry bits recirculating through register C and the sum bits
being formed in register B and stored back in the RAM. It

~ requires 3n + 1 cycles to read the two » bit integers from

memory and store the (n + 1) bit sum back into memory.

_Subtraction is performed similarly except that the 1’s com-

plement of the subtrahend is loaded into the P register instead

of its true value, Two’s complement subtraction is done by

initializing the C-register to.1 instead of 0. Note that the add
and subtract operations we described read two operands from

' storage, and put the result back in storage so they are equiva-
" lent to a sequence of three instructions (load accumulator, add
“or subtract, and store accumulator) executed 16 384 times.

“The result of an arithmetic operation can be sent to the shift
register instead of storing it to memory. Multiplication is

‘ - performed by recirculating the partial product through the
- shift register and adding the multiplicand to it with appropriate

shifts. A multiplier bit in the G-register controls the loading

“ . of the P-register. Multiplication of an array of » bit integers
. by corresponding elements of an array of m bit integers to
- produce an array of (m + n) bit integers requires (m = 1)p +
2(m + n) cycles, where p is a multiple of 4 equal ton, n + 1,

n+20rn+3.
- Division uses a nonrcstormg algorithm where the partial

_ dividend is recirculated through the shift register and the di-

visor or its complement is added for each quotient bit.
Floating-point multiplication is an addition of the exponents

and a rounded multiplication of the fractions. Floating-point
_addition is a comparison of the values followed by an alignment
of the fractions, addition of the fractions, and then a normal-
. ization of the result.

'd) Other PE Operations: Other PE operations include
loading the G-register from the data bus, writing the data bus
to a selected bit of the RAM, loading the S-register from the
data bus, feeding the SUM-OR tree from the data bus, and
clearing the memory parity error indicator.

The SUM-OR tree is a tree of INCLUSIVE-OR gates with

inputs from all 16 384 PE’s. The output is fed to the array

control unit which can test and store the result. The SUM-OR

“tree is used in maximum value and minimum value searches

and in other operations where it is necessary to get a global
result from the set of PE’s.

The memory parity error indicator senses a parity error in
the RAM and latches in the 1-state until cleared. The state of
all indicators feeds the SUM-OR tree when the tree is not being
used for a SUM-OR operation so the control unit will sense the
presence of an error in any PE memory and take appropriate
action.

e) Input-Output: The S-register in all PE’s is used for
input and output of array data. Columns of input data are
shifted into the S-registers at the west edge of the array unit
and across the array until all 16 384 S-registers are loaded.
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Then the PE processing is interrupted for one machine cycle
while the S-register plane is transferred to a selected bit-plane
of the RAM’s. S-register shifting can run at a 10 MHz rate
so data can be input at a rate of 160 Mbytes/s (128 bits every
100 ns). Note that PE processing is only interrupted once every
128 columns or less than 1 percent of the time.

Data output is similar. The PE processing is interrupted for
one cycle and a bit-plane of data is transferred from the RAM’s
to the S-registers. Processing resumes while the output plane
is shifted across the array to the east edge where it is output
column by column. Each column is 128 bits long and can be
shifted out at a 10 MHz rate so ihat the output rate is also 160
Mbytes/s. Note that while an output plane is being shifted out,
an input plane can be shifted into the array unit so input and
output can proceed simultancously.

At first glance an I/O rate of 320 Mbytes/s (160 in and 160
out) would seem to be more than adequate. But the processing
rate is so high that some appljcations may still become 1/O

bound. One can see an indication of this from the fact that ..
running 1/O at a full rate slows the processing down by only .-

a few percent. When such an application arises (and when fast
enough peripherals are available), the array unit 1/O scheme

can be modified to input and output data at several places in -

the array instead of just at the east and west edges.

¢) Random Access Memories (RAM’s): Each PE has ’

a RAM storing 1024 bits. The address lines of all PE’s are tied
together so the memories are accessed by bit-planes with one
bit of a bit-plane accessed by each PE. Conventional RAM
integrated circuits are used to make it easy to expand storage
when advances in solid-state memory technology allow it. Four

PE’s share one 1K X 4 RAM chip with an access time of about -

50 ns. The address bus can be expanded up to 16 address lines

so PE memory can be expanded to 65 536 bits per PE or 128 .

Mbytes total. The array unit clock system has enough flexi-
bility to accommodate a wide variety of memory speeds so the
massively parallel processor can be tailored to other applica-
tions which may require more memory at a slower speed.

4) Packaging: The PE RAM’s use standard RAM irte- :

grated-circuits. All other components of eight PE’s are put on

a custom VLSI chip. The chip holds a 2 row X 4 column sub- ..
array of PE’s and 2112 such chips are used in the array unit. -

The chip pinout is 52 pins and the complexity is about 8000
transistors.

A 16 row X 12 column subarray of 192 PE’s is packaged on
one 22 cm X 36 cm printed circuit board. The board contains
24 VLSI chips, 54 memory elements (48 for data plus 6 for
parity), and some support circuitry. Eleven boards make up
an array slice of 16 rows X 132 columns. Eight array slices (88
boards) make up the array unit and eight other boards hold
the topology switches, the control signal fan-out, and other
support circuitry. The 96 boards are packaged in one cabinet
and cooled by forced air.

B. Array Control Unit

The array control unit has three subunits: the PE control
unit to control processing in the array unit PE’s, the 1/O
control unit to manage the flow of input/output data through
the array unit, and the main control unit which runs the ap-
plication program, performs any necessary scalar processing,
and controls the other two subunits (Fig. 8). This division of
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Fig.8. Block diagram of the MPP array control unit,

responsibility allows array processing, scalar processing, and
1/0 to proceed simultaneously. A queue between the main
control unit and the PE control unit can hold up to 16 calls to
array processing routines.

1) PE Control Unit: The PE control unit generates all PE
"control signals except those associated with 1/0 and the S-
- registers. The control unit reads 64 bit wide microinstructions

from the PE control memory. The PE control memory holds
" the standard library of array processing routines plus any

user—generatcd routines so it is like the writable control store
- in other computers. When the PE control unit receives a call
. from the queue, it reads the calling parameters and jumps to
~ the entry point of the called array processing routine. After
‘executing the routine, the PE control unit then processes the
next call from the queue.

The PE control unit contains a 64 b1t wndc common register
to hold the scalar values required by routines that combine
scalars with arrays (e.g., add scalar to array), search arrays
. for values (e.g., find all the elements of an array greater than

. .a scalar), or generate a scalar from an array (e.g., find the
~minimum value in an array). :
" There are eight 16 bit index registers in the PE control unit.

One index register holds the index of a selected bit in the

common register. Since array processing is bit-serial, the
common register scalar is also usually treated bit by bit. The
selected common-register bit (M) can be tested by branch
instructions, used to select a P-register logic function in all
PE’s, and loaded by the SUM-OR tree output. Note that using
the common register bit (W) to select a P-register logic func-
“tion allows one to select any of the 256 logic functions of three
variables—in every PE the selected function between register
P, the data bus state (D), and the common register bit (W) is
stored in register P. This is the mechanism used to broadcast
common register value to all PE’s,

The other seven index registers can hold the addresses of
array bit-planes in the PE RAM’s. An array is usually pro-
cessed by stepping through its bit-planes either from the most
significant bit to least significant bit or vice versa. Any of the

- eight index registers can be used to hold the length of an array.
Many of the array processing routines are of variable length
so they use an index register to hold a loop count and decre-
ment it once for each bit-plane treated. -

Other registers in PE control include the topology register

383

to select the array unit topology, a program counter holding
the location of the current microinstruction in the PE control
memory, and a subroutine return stack to facilitate using some
array processing routines as subroutines to other routines.

The instruction register is 64 bits wide. Most instructions
are executed at a nominal 10 MHz rate. Several operations can
be merged into one instruction, e.g., several PE operations,
modification of several index registers, and conditional
branching. Merging allows most of the control unit overhead
to be absorbed so the PE's are doing useful work on every
machine cycle.

2) I/O Control Unit: The 1/0 control unit shlfts the PE
S-registers, manages the flow of data in and out of the array
unit, interrupts PE control to transfer data between the S-
registers and the PE memory elements, and can also control
the staging memory. Once initiated by main control or the
program and data management unit the I/O control unit
chains through a sequence of /0 commands in main control
memory. -

3) Main Control Unit: Main contro! reads and executes the
application program from the main control memory. It per-
forms all scalar processing itself and sends all array processing
calls to the queue for processing by the PE control unit. Input
and output operations for the I/O control unit are either sent

directly to the I/O control unit or sent to the program and data -

management unit for coordination with its penpheral trans-
fers. o

The main control has 16 general-purpose registcrs,‘some
registers to enter calling parametars into the PE control uhit

queue, and other registers to receive scalars generated by .

certain array processing routines.

C. Staging Memory

The staging memory is in the 1/O path of the array unit.
Besides acting as a buffer between the array unit and the
outside world, the staging memory reformats data so that both

the array unit and the outside world can transfer data in the. -

optimum format. The array unit sees data in a bit-plane format
(one bit from 16 384 different items) while the outside world
sees data in an item format (all bits of one item). The staging
memory can also rearrange data to match the scrambled

layouts of some application programs. The 5120 point FFT

example (Section II1-A.1) is one such program.

The staging memory comprises a main stager memory, an
input substager, and an.output substager (Fig. 9). The main
stager memory can have 4, 8, 16, or 32 banks of storage with
16K, 64K, or 256K words per bank. Each word holds 64 data
bits plus 8 error correction bits for single error correction and
double error detection. A fully implemented main stager would
hold 67 Mbytes of data. Each bank contains 72 dynamic MOS
RAM elements. Initially, 16K bit elements are used. When
64K bit elements are readily available, the storage in each bank
can be quadrupled to 64K words, and when 256K bit elements
are feasible, the storage per bank can be quadrupled again.
Each bank can accept a 64 bit word and present a 64 bit word
every 1.6 us cycle time (the cycle time also includes any
memory refresh required), so that each bank hasa 10 Mbyte/s
1/O rate (5 Mbytes/s input and 5. Mbytes/s output). A 32
bank main stager can accept and present data at the 160
Mbyte/s rate of the array unit I/O ports.
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Fig. 9. Block diagram of the staging memory.

The substagers are fast 128 bit X 1024 bit ECL multidi-
mensional access memories [1]. The input substager accepts
data in the format of the source (array unit, program and data
management unit, or the host) and rearranges the data to agree
with the main stager format. The output substager performs
the complementary function of rearranging data from the main
stager format to the format of the destination.

Many different main stager formats are possible—a main
stager word may contain one bit of 64 different elements, two
bits from 32 different elements, etc. The main stager format
is selected based on the data formats in the source and the
destination. A software module in the program and data
management unit can be used to select the main stager format
- and program the internal transfers of the staging memory.

D. Program and Data Management Unit

The program and data management unit can control the
overall flow of programs and data in and out of the massively
parallel processor. It acts as a small-scale host when the normal
host is not available. The program and data management units
is a DEC PDP-11 minicomputer with a number of terminals,
a line printer, disk storage, and a tape unit operating under
DEC’s RSX-11M real-time multiprogramming system.
Custom interfaces provide communication with the array
control unit and the staging memory.

The program development software package for the mas-
sively parallel processor is executed in the program and data
managment unit. The package includes an assembler for the
PE control unit to facilitate developing array processing rou-
tines, an assembler for the main control unit to develop ap-
plication programs, a linker to form load modules for the array
control unit, and a control and debug module to load, execute,
and debug programs. Much of the software development
package is written in Fortran using a Ratfor preprocessor to
ease the transporting of the package to the host computer.

E. Host Interface

The massively parallel processor to be delivered to NASA
will use a DEC VAX-11/780 for a host computer. The staging
memory is connected to a DEC DR-780 high-speed interface
of the VAX which can transfer data at a rate of 6 Mbytes/s.
The staging memory interface is designed to accommodate other
devices such as high-speed disks. To allow control of the
massively parallel processor by the host the array control in-
terface can be switched from the program and data manage-
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ment unit to the host computer. Transfer of the software is
simplified by writing much of it in Fortran.

F. Applications

The massively parallel processor is designed for high speed
processing of satellite imagery. The typical operations may
include radiometric and geometric corrections and multis-
pectral classification. Preliminary application studies indicate
that the processor may also be useful for other image pro-
cessing tasks, weather simulation, aerodynamic studies, radar
processing, reactor diffusion analysis, and computer image
generation. ,

The modular nature of the processor allows the number of
processing elements.and the capacities of its memories to be
scaled up or down to match the requirements of the applica-
tion.

IV, CoNCLUSIONS

Bit-serial parallel processors can perform certain tasks much
faster than other architectures. The use of VLSI allows a large
amount of processing power to be packed in a small volume.
The airborne associative processor illustrates the use of bit-
serial parallel processors in an airborne environment, while the
massively parallel processor is an illustration of a ground- based
system,
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