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The transputer 1is a programmable VLSI device with
communication links for point-to-point connection to
other transputers. Occam (*) is a language which
enables a transputer system to be described as a
collection of processes which operate concurrently and
communicate via named channels. This paper describes
how the transputer provides, an efficient
implementation of concurrency and message passing in a
distributed system.

Introduction

The transputer is a programmable VLSI device. It provides a
'building block' for high-performance concurrent systems in the same
way as the logic gate provides a ’'building block' for

electronic

of transputer systems just as boolean algebra simplifies the
of systems built from logic gates.

An important design objective of occam and the

today's

des

transputer was

systems. Occam is a language which simplifies the design

ign

to .

provide the same concurrent programming techniques both for a single
transputer and for a network of transputers. Consequently,
features of occam were carefully chosen to ensure an efficient .
distributed implementation on transputer systems and th
concurrent processing mechanisms within the transputer were designed
to match.

en

The result is that a program ultimately intended for a network
transputers can be compiled and executed efficiently by a single
computer used for program dsvelopment. Once the logical behaviour of
program has Dbeen verified, the program may be configured for J

the

execution by a single transputer (low cost), or for execution
network of transputer (high performance).

This paper describes the main properties of the transput
discusses the influence of occam on its design. A brief summary of
rzlevant aspects of occam is included (see [1] for more details,

the
and

£3]

for an intrcduction to occam).

(*) Occam is a trademark of the INMOS Group of Companies
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2 Transputer systems

The transputer contains memory, a processor and a number of
communication links which allow direct connection to other
transputers [2]. A system 1is constructed from a collection of. -
transputers which operate concurrently and communicate through
links. Such a system can be programmed in occam, a language which
enables a system to be described as a collection of processes
operating concurrently and communicating through named channels [3].

2.1 Point-to-point communications

One of the most significant aspects of the transputer view of system
design 1is the use of point-torpoint communication links to connect
processing elements, each of which has its own 1local memory. This
choice has many advantages; in particular, it enables arbitrarily
large systems to be constructed using local processing and local .
communication. Furthermore, point-to-point communication links are
easy to use and can be efficiently implemented.

However, the choice of local processing and communication
necessitates a significant change in programming concepts and new
algorithms need to be developed [4]. Most existing languages assume
the existence of a global communication system (implicit in the
presence of a uniformly accessable address: space). Such
communication systems (such as buses) suffer from the disadvantage
that their speed reduces as their size increases. A consequence is
that existing languages are not suitable for distributed concurrent
processing, and this alone gives rise to the need for a new
language. :

2.2 Simulated and Real concurrency

Existing concurrent languages have Dbeen designed to provide
simulated concurrency. This is not surprising, since until recently
it has not been economically feasible to build systems with a lot of
real concurrency.

Unfortunately, almost any system can be simulated by a sequential
computer. There. is, therefore, no guarantee that a language designed
for simulated concurrency will be relevant to the needs of systems
with real concurrency. The choice of features in such languages has
been motivated largely by the need to share one computer between
many independent tasks. In contrast, the choice of features in cccam
has been motivated by the need to use many cormunicating computers
to perform one single task.



3 Occam

Occam enables a system to be described as a collection of concurrent
processes, which communicate with each other and with peripheral
devices through channels. Occam programs are built from three _ -
primitive processes: :

v o= e assign expression e to variable v
c !l e output expression e to channel c
c?v input from channel ¢ to variable v

The primitive processes are combined to form constructs:

EQuential components executed one after another
PARallel components executed together
ALTernative component first ready is executed

A construct is itself a process, and may be used as a component of
another construct.

Conventional sequential programs can be expressed with variables and
assigmments, combined in sequential constructs. IF and WHILE
constructs are also provided.

Concurrent programs can be expressed with channels, inputs and
outputs, which are combined in parallel and alternative constructs.

Each occam channel provides a communication path between two
concurrent processes. Communication is synchronized and takes place
when both the inputting process and the outputting process are
ready. The data to be output is then copied from the outputting
process to the inputting process, and both processes continue.

An alternative process may be ready for input from any one of a
number of channels. 1In this case, the input is ‘taken from the
channel which is first used for output by another process.

The benefits of point-to-point communication have already been
mentioned above. The choice of synchronized communication simplifies
programming as it prevents the 1loss of data. The choice of
unbuffered communication removes the need for any store to be
associated with the channel. Copying data from the outputting
process to the inputting process 1is clearly essential for
communication between transputers, and has significant additional
performance advantages. It is easy to make copying within a machine
fast by use of microcode.



4 The transouter

A transputer system consists of a number of interconnected
transputers, each executing an occam process and communicating with
other transputers. As a process executing on a transputer may itself
consist of a number of concurrent processes the transputer has to
support the occam programming model internally. Within a transputer
concurrent processing 1is implemented by sharing processor time
between the concurrent processes.

4.1 Registers

The design of the transputer processor exploits the availability of
fast on-chip memory by having only a small number of registers; six
registers are used in the execution of a sequential process. The
small number of registers, together with the simplicity of the
instruction set, enables the processor to have relatively simple
(and fast) data paths and control logic.

The six registers are:

The workspace pointer which points to an area of store where
local variables are kept.

The instruction pointer which points to the next instruction to
be executed.

The operand register which is wused in the formation of
instruction operands.

The A, B and C registers which form an ewvaluation stack, and are
the sources and destinations for most arithmetic and logical
operations. Loading a value into the stack pushes B into C, and
A 1into B, before loading A. Storing a value from A, pops B into
A and C into B.

registers locals program

A

B

C

Workspace . "N

nexc

instruction \\\\\\\\\‘§~‘-—__————'—”////aﬂ
Operand




Expressions are evaluated on the evaluation stack, and 1instructions
refer to the stack implicitly. For example, the 'add' instruction
adds the top two values in the stack and places the result on the
top of the stack. The use of a stack removes the need for
instructions to respecify the location of their operands. Statistics
gathered from a large number of programs show that three registers
provide the optimum balance between code compactness and
implementation complexity.

4.2 Instructions

It was a design decision that the transputer should be programmed in
a high 1level 1language. The instruction set has, therefore, been
designed for simple and efficient compilation, and to support the
occam process model. It contains a relatively small number of
instructions, all with the same format, chosen to give a compact
representation of the operations most frequently occuring in
programs. Each instruction is one byte long, and is divided into two
4 bit parts. The four most significant bits of the byte are a
function code, and the four least significant bits are a data value.

function data

7 4 3 2

4.2.1 Direct functions

The representation provides for sixteen functions, each with a data
value ranging from @ to 15. Thirteen of these are used to encode the
most important functions performed by any computer. These include:

load constant
add constant

load local
store local
load local pointer

load non local
store non local

jump
conditional jump

call



The most common operations in a program are the loading of small

literal values, and the loading and storing of one of a small number

of variables. The 'load constant’' instruction enables values between
@ and 15 to be loaded with a single byte instruction. The 'load
local' and 'store local' instructions access locations in memory,
ralative to the workspace pointer. The first 16 locations can be
accessed using a single byte instruction.

The 'load non local' and 'store non local' instructions behave
similarly, except that they access locations in memory relative to
the A register. Compact sequences of these instructions allow
efficient access to data structures, and provide for simple

implementations of the static 1links or displays wused in the
implementation of block structured programming languages.

-

4.2.2 Prefixing functions

Two more of the function codes are used to allow the operand of any
instruction to be extended in length. These are: '

prefix
negative prefix

All instructions are executed by loading the four data bits into the
least significant four bits of the operand register, which is then
used as the the instruction's operand. All instructions except the
prefixing instructions end by clearing the operand register, ready
for the next instruction.

function data

operand register

The 'prefix' instruction loads its four data bits into the operand
register, and then shifts the operand register up four places. The
'negative prefix' instruction is similar, except that it complements
the operand register Dbefore shifting it up. Consequently operands
can be extended to any length up to the length of the operand
register by a sequence of prefixing instructions. In particular,
operands in the range -256 to 255 <can be represented using one
prefixing instruction.

The use of prefixing instructions has certain beneficial
consequences. Firstly, they are decoded and executed in the same way
as every other instruction, which simplifies and sveeds instruction
decoding. Seccndly, they simplify language compilation, bv providing
a completely uniform way of allowin any 1instruction to takes an
overand of any size. Thirdly, they allow operands to be rapresented
in a form which is independent of the processor wordlength.



4.2.3 Indirect functions

The remaining function code, 'operate', causes its operand to be
interpreted as an operation on the values held in the evaluation
stack. This allows up to 16 such operations to be encoded in a
single byte instruction. However, the prefixing instructions can be
used to extend the operand of an 'operate' instruction just like any
other. This allows the number of operations in the machine to be
extended indefinitely.

The encoding of the indirect functions is chosen so that the most
frequently occuring operations are represented without the use of a
prefixing instruction. These include arithmetic and comparison
operations such as

add
greater than

Less frequently occuring operations have encodings which require a

single prefixing operation (the transputer instruction set is not
large enough to require more than 512 operations to be encoded!).

4.2.4 Word length independence

A program which manipulates bytes, words and truth values c¢an be
translated into an instruction sequence which behaves identically
whatever the wordlength of the processor executing it (apart from
overflow conditions resulting from word length &ependencies). This
results from the fact that the instruction size 1is independent of
wordlength, the method of representing long operands as a sequence
of prefixing instructions, and the memory addressing structure.

A byte in memory is identified by a single word value called a
pointer. A pointer consists of two parts: a word address and a byte
selector. The byte selector contains as many bits as are needed to
identify a single byte within a word and occupies the least
significant bits of the pointer. For example, in a 24 bit transputer
the word address would occupy the 22 most significant bits and the
byte selector the 2 least significant bits.

Scecial instructions, such as 'load 1local pointer' and ‘'word
subscript’', are provided to construct and manipulate pointers.
Pointer values are treated as signed integers. This enables the
standard comparison functions to be used on pointer values in the
same way that they are used on numerical values. ‘



4.2.5 Efficiencv of encoding

Measurements show that about 88% of executed instructions are
encoded in a single Dbyte (ie without the wuse of prefixing
instructions). Many of these instructions, such as 'load constant' -
and 'add' require just one processor cycle. :

The instruction representation gives a more compact representation
of high 1level language programs than more conventional instruction
sets. Since a program requires less store to represent it, less of
the memory bandwidth is taken up with fetching instructions.

Short instructions also improve the effectiveness of instruction
prefetch, which in turn improves processor performance. As memory is
word accessed, a 32 bit transputer will receive four instructions
for every fetch. There are two words of prefetch buffer so that the
processor rarely has to wait for an instruction fetch before
proceeding. Since the buffer is short, there is little time penalty
when a jump instruction causes the buffer contents to be refilled.

4.2.6 Example

The following example illustrates the use of the instruction set for
sequential programming. The variables v, w, and x are assumed to be
in the first sixteen locations of local workspace. The compiler has
allocated a 1local workspace location, here called StaticLink, to
hold the address of the outer 1level workspace containing the
variable y.

occam
x = (v + w) - (y + #24)
instruction sequence

load local v

load local w

operate add

load local StaticlLink
locad non local y
prefix 2

add constant 4
operate subtract
store local x

This requires a total of 9 bytes.



4.3 Support for concurrency

The processor provides efficient support for the occam model of
concurrency and communication. It has a microcoded scheduler which
enables any number of concurrent processes to be executed together,
sharing the processor time. This removes the need for a software
kernel. The processor does not need to support the dynamic
allocation of storage as the occam compiler is able to perform the
allocation of space to concurrent processes.

At any time, a concurrent process may be

active - Dbeing executed
- on a list awaiting execution

inactive - ready to input
- ready to output
~ waiting until a specified time

The active processes waiting to be executed are held on a list. This
is a 1linked 1list - of process workspaces, implemented using two
registers, one of which points to the first process on the list, the
other to the last.

In this illustration, S is executing, and P, Q, and R are active,
awaiting execution. '

occam registers . workspaces program
PAR P
P
Q front _/___)
R ' )
g -
back Q

A
Y

A

R
B -:/——)1
C

S

workspace e

next instr

operand




A process is executed until it is unable to proceed because it is
waiting to input or output, or waiting for the timer. Whenever a
process is unable to proceed, its instruction pointer is saved in
its workspace and the next process is taken from the list. Actual.
process switch times are very small as 1little state needs to be
saved; it 1s not necessary to save the evaluation stack on

rescheduling. &>M:57

The processor provides a number of special operations to support the
process model. These include

start process
end process

When a parallel construct is executed, 'start process' instructions
are used to create the necessary concurrent processes. A 'start
process’' instruction creates a new process by adding a new workspace
to the end of the scheduling 1list, enabling the new concurrent
process to be executed together 'with the ones already being
executed.

The correct termination of a parallel construct is assured by use of
the 'end process' instruction. This uses a workspace location as a
counter of the components of the parallel construct which have still
to terminate. When the components have all terminated, the counter
reaches zero, and a specified process can then proceed.



4.4 Communications

Communication between processes is achieved by means of channels. A
channel between two processes executing on the same transputer is
implemented by a single word in memory; a channel between processes
executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support
message passing, the most important being

input message
output message

The 'input message' and 'output message’ 1instructions use the
address of the channel to determine whether the channel is internal
or external. This means that the same instruction sequence can . be
used for both internal and external channels, allowing a process to
be written and compiled without knowledge of where its channels are

connected.

As in the occam model, communication takes place when both the
inputting and outputting processes are ready. Consequently, the
process which first becomes ready must wait until the second one is
also ready.

A process performs an input or an output by loading the evaluation
stack with a pointer to a message, the identity of the channel, and
‘the count of the number of bytes to be transferred, and then
executing an 'input message' or an 'output message' instruction as

appropriate.

4.4.1 Message passing on an internal channel

A program initializes an internal channel when it is declared. It
does this by writing the value 'empty' to the channel. The value
'empty’ is chosen so as not to correspond with the identity of any
process.

- When a process communicates using an internal channel the message
passing instruction examines the contents of the channel.

In this example, the process P is about to execute an input or.
output message instruction on an initialized channel.

P executing

registers

channel
A count word

B channel +— 3 empty

C pointer




If the channel contains 'empty', then this is the first process to
become ready to communicate via this channel. The identity of the
process is stored in the channel, and the message pointer stored
(with the instruction pointer etc) in the workspace. The processor
then starts zo execute the next process from the scheduling list. .

channel
workspace for P word

- P

nex:t instr

pointer

Mad 05 R Nmﬁgzé;1

If the channel contains the identit? of a process?\then this is the
second process to become ready to communicate via this channel.

Q executing

channel
workspace for P word count

e P --f————— channel

next ins:tr

pointer

pointer

The message is copied, the first process 1is added to the active
process list, and the channel is reset to the 'empty’ state. It does
not matter whether the inputting or the outputting process becomes
ready first.

4.4.2 Message passing with point to point links

When a message is passed wvia an external channel the processor
delegates to an autonomous link interface the job of transferring
the message and deschedules the process. When the message has been
transferred the link interface causes the processor to reschedule
the waiting process. This allows the processor to continue the
execution of other processas whilst the external message transfer is
takxing place.



The following diagrams show the sequence of operations when two
processes, executing on

separate transputers, communicate using a
link connecting the two transputers.

P executing

Q executing . -
registers

registers

link link
A count

interface link interface A count

B channel p——> —CVZX}— 1

C pointer

B channel

C pointer

Each link interface uses three

registers to hold the following
information

a pointer to the workspace of the process

a pointer to the message

a count of bytes to be transferred
When the 'input message' or ‘'output message' instruction is
executed, these registers are

initialized, and the instruction
pointer is stored in the process workspace. The processor then

executes the next process on the scheduling list.

p Q
workspace workspace
link ‘ link
interface link interface
next instr p——> P —-O/LO— Q ¢—— next instr
pointer pointer
count count

Wwhen both link interfaces have been initialized, the message 1is
copied. Each link interface then adds the respective process to the

end of the corresponding processor's active list.

P

Q
workspace workspace

next instr F————>» —3l next instr e———p

list

list




Data byte

1 g

Acknowledge

Data bytes and acknowledges are multiplexed down each signal line.
An acknowledge 1is transmitted as soon as reception of a data byte
starts (if there is room to buffer another one). Consequently
transmission may be continuous, with no delays between data bytes.

5 Conclusion

By taking an integrated approach to the design of a VLSI computer
and a concurrent programming language it is possible to produce a
new level of system 'building block' and the corresponding design
formalism.

In particular, it is possible to support the use of the same
concurrent programming techniques both within a single transputer
and for a network of transputers. The concurrent processing features
of a general purpose programming language can be efficiently
implemented by a small, simple and fast processor.
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Tiny:
An Efficient Routing Harness
for the INMOS Transputer

Lyndon Clarke (exploration and routing)
Greg Wilson (monitoring and documentation)

February 8, 1990

Abstract

Message-based MIMD computers that support arbitrary connections over a small number
of communications links cannot support parallel applications with complex communication
patterns unless the support software includes message routing. This paper describes design
issues for such sofiware, a router for the Inmos T800 transputer called Tiny as an example.
Performance figures show that Tiny achieves near optimal routing performance given the
hardware limits. Modifications to Tiny to monitor message traffic are also described.

1 Introduction

In order to realize the potential of an MIMD computer for complex parallel applications, it must
be possible to send messages efficiently and reliably between arbitrary processors. One popular
model for such applications is Communicating Sequential Processes (CSP), developed by Hoare
[HOAR] and embodied in the occam language [OCC2]. Named channels connect processes pairwise
(Figure 1). This approach forces synchronization at the time of communication: message data
moves through the channel from process A to process B only when A is ready to send and B
ready to receive. When not communicating, processes proceed independently.

Our experience shows that CSP is a difficult paradigm within which to develop large appli-
cations. Programmers usually want messages sent to a destination, but occam forces them to
specify sending messages through a channel. If a message’s destination is not on the same proces-
sor as its sender (which it usually is not), then message-passing processes must be created, along
with multiplexers and demultiplexers, to accommodate low connectivity between processors. It is
tedious to plumb such processes together properly, and difficult to trace the plumbing in someone
else’s program. In practice, programming in the CSP paradigm is like programming in assembly

=)
H \ |
O&:0

Figure 1: The CSP Model of Concurrency



Figure 2: A More Useful Model of Concurrency

language; instead of tracing GOTOs, programmers spend 2 great deal of time asking, “Where
does this message go to?”

The occam implementation of CSP on the transputer is also inefficient. The paradigm’s
insistence on the independence of processes means that when a message travels between two
processes on a single processor its data must be copied from one part of memory to another.
Programs which contain multiplexers and FIFO buffers to decouple applications processes may
have to copy a message several times before it arrives at its destination, which inevitably degrades
performance. )

A more comfortable paradigm is one which allows (possibly asynchronous) communication
between any two named processes. In this paradigm, A sends a message to B by giving the
message to a router; A is then free to carry on calculating. When process B wants to receive a
message it blocks until the router has one for it.

This paradigm is the one actually used in applications containing any but the simplest par-
allelism, even if only the first paradigm is directly available. Programmers build FIFOs and
multiplexers to provide the illusion of global, asynchronous connectivity so frequently that it is
worth doing it once, properly, to provide a package to applications programmers.

This was the motivation behind Tiny [CLA1] and TITCH (Tiny’s immediate predecessor, now
retired). To users, Tiny is a kernel running on each processor, connected to one or more clients
by channels (Figure 2). Each process in the network has a unique user-assigned client identifier
(CID). To send a message to process P the sender specifies P’s CID, the buffer containing the
data, the amount of data, and the channel through which that buffer is passed to the router (see
Section 4.1). To receive a message, P specifies-which channel it is listening to, and where the
incoming data should be placed. Everything else is Tiny’s responsibility.

An essential feature of a general-purpose router is that it should be able to run on any topology,
so that users can connect processors to suit their applications. Much of Tiny is therefore devoted
to exploring the network and building up routing tables recording the shortest paths from each
processor to each other. This allows applications to use randomly-connected graphs, in which
mean and maximum inter-node distance and worst link loading increase only as log(n) [PRNC].
How networks are explored and routing tables built up is described in [CLA3].

Another important feature of Tiny is its efficiency. Most users of massively parallel computers
are primarily interested in performance. If routers must reside on the chip, users therefore want
them not only to deliver messages quickly, but also to steal as few CPU cycles from the application
as possible. As Section 6 discusses, the performance of Tiny is very close to hardware limits.
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2 The INMOS T800 Transputer

The INMOS transputer [T800] was designed for use in both real-time control applications and
multiprocessor computers. Each transputer contains a CPU, four kilobytes of on-chip memory, and
four high-speed communications links, each with its own DMA controller. The T800 transputer
also contains a 1 MFLOP floating-point unit.

The transputer was designed to run concurrent processes efficiently. It automatically maintains
one queue each for low-priority and high-priority processes. Low-priority processes are timesliced
automatically; when one is interrupted, it is placed at the tail of the low-priority queue and the
next one scheduled. High-priority processes are not timesliced, and cannot be interrupted, even by
other high-priority processes. A high-priority process runs until it deschedules itself or is blocked
by an ifo operation.!

The transputer’s CPU contains only three general-purpose registers, called Areg, Breg, and
Creg, arranged as a stack. All instructions implicitly manipulate particular registers — for ex-
ample, the instruction stnl (store non-local) stores the contents of Breg in the location pointed
to by Areg, popping both values.

The transputer also contains a workspace pointer register called Wptr. This holds the base
address of the active process’s workspace. All local variable accesses are offset relative to Wptr;
an instruction to load the value at address 5, for example, actually loads the value at (Vptr+5).
When a low-priority process is descheduled the values of Wptr and the instruction pointer Iptr
are saved, but the contents of the register stack are not. Descheduling can only take place after
certain instructions, so care must be taken to ensure that nothing valuable is on the stack at such
times.

The instructions in and out are of particular interest in the design of routing software. These
are used to implement both internal and external communications. in interprets Creg as the
address of a data block, Breg as the address of a communications channel, and Areg as a byte
count. When in is executed to carry out internal communications, the transputer checks the value
pointed to by Breg. If this contains mint (the least integer the transputer can represent), then
the other process taking part in the communication has not yet rendezvoused. The process doing
the in puts its workspace pointer in the channel word and stores the base address of the data to
be transferred in a reserved location in its workspace. When the other process involved executes
an out, it finds a valid address in the channel word, so it copies its data into the first process’s
workspace and reschedules that process. (If the sending process reaches the communication first,
the reciprocal steps are carried out.)

External communication is done in much the same way. In this case, however, the valuesin the
register stack are given to the controller responsible for the link over which the communication is
taking place. When both of the link controllers involved have been given their orders, they arrange
for data to be transferred without further CPU intervention, re-scheduling the communicating
processes when the transfer completes. While external communication is slower than internal
communication (since link bandwidth is lower than memory bandwidth), it retards other CPU
activities only slightly by stealing memory cycles for DMA.

One final important feature of the transputer is the way its hardware implements choice in
communications. The occam ALT construct takes pairs of channels and Boolean guards and accepts

! Two other queues are maintained, one cach for processes of each priority level waiting on clock interrupts.
This “wait until” feature is exploited by the monitor described in Section 7.



a single communication on a channel whose guard is TRUE, then executes the code nested below
that communication. For example:

ALT
time > startTime & connection[0] ? newTime
process{newTime)
time < stopTime & commection[i] ? newTime
process(newTime)

TRUE & interrupt ? any
stop := TRUE

will accept an integer newTime on element 0 of the channel array connection if time is greater
than startTime, or on element 1 of connection if time is less than stopTime, or any value on
interrupt.

To implement ALT, the transputer evaluates each Boolean guard and initializes each channel.
When one of the branches is triggered, the transputer goes through these operations again to
disable each channel, so that if several processes tried to rendezvous with the ALTing process, only
one will succeed.

It is important to note that the servicing of ALT branches is arbitrary, not random. If several
branches are ready, the transputer will choose one of them; if, when the same piece of code is next
executed, the same branches are ready again, the transputer will choose the same branch. This

has an important effect on the efficiency and correctness of CSP-style routers, as is discussed in
the next section.

3 Router Design

The most important constraint on the design of a processor-resident router like the one in Figure 2
is the low number of inter-processor connections. Since these connections are the “narrowest”
points in the system, i.e. the ones with the least bandwidth, each link controller should be given
its own pair of processes (one each for input and output) so that external communications can
be externally driven. Each client process should similarly be connected to the router through its
own input and output handlers, to decouple the interface procedures from the underlying router.
These various output handlers should be sufficiently buffered with FIFO queues to avoid the head-
of-line blocking problem [HLUC], in which throughput is limited because messages which could
be routed to idle output points are hidden behind messages which cannot currently be routed.

This leads to the process structure shown in Figure 3. Each routing process is either a multi-
plexer or a demultiplexer, and is referred to as an agent. In Tiny, the routing logic which decides
where to send messages lies in the demultiplexing agents.

In order to maximize the performance of a computer in which message routing and computa-
tion compete for CPU cycles, each processor must act as if through-routing messages were more
important than doing the user’s calculations. (To understand this, consider what would happen
if processor P; gave higher priority to its own work than it did to routing messages to other
processors. In this case, N — 1 of the computer’s N processors could be waiting for new tasks
while only one of its processors was doing useful work.) This means that the router’s processes
must run at high priority, while the application processes run at low priority. However, since
high priority processes on the transputer cannot be interrupted, the router must contain mecha-
nisms to deschedule its agents explicitly. The transputer provides such mechanisms naturally by
descheduling even high-priority processes when they attempt to communicate with an unready
partner. Another more explicit method used by Tiny is described in Section 5.3.



—

_.O

ol®
v !
V

<3 37 >

NN O D

client uni-directional bi-directional
routing agent link

Figure 3: Structure of Processes in & Router



>0l O |+ O [+O~

internal copy P link transmission —

Figure 4: Time Taken to Copy a Message

3.1 Improving on CSP Routers

Tiny differs from pure CSP routers by avoiding the overheads of data copying that occur when
the in and out instructions are used between agents on a single processor. The entire message is
copied each time these instructions are used. If messages are large or frequent, this copying could
consume the majority of the processor’s time. Even ignoring the copying they initiate, in out are
very expensive — the instructions Tiny uses instead (described in Section 5.3) consume a similar
number of cycles, but perform much more useful work.

Instead of copying data, Tiny’s agents pass pointers to buffers.2 The total time spent copying
each message is therefore only M(2tc + L), where M is the message size in bytes, L is the
number of links the message passes through, ¢c is the time to copy a single byte to or from a
process’s workspace, and ¢y, is the time to send a byte down a link (Figure 4). This overhead could
be further reduced by eliminating tc, and allowing user processes to manipulate buffer pointers
directly. For the reasons given in Section 8, such a scheme is practical.

Another difference between pure CSP routers and Tiny is the elimination of ALTs to ensure
both fairness and greater speed. Consider the occam procedure given by:

PROC mux([JCHAN OF ANY input, CHAN OF ANY output, [JINT buffer)

INT buffer.size :
VHILE TRUE
ALT i = 0 FOR (SIZE input)
input[il ? buffer.size; buffer
output ! buffer.size; buffer

This multiplexer repeatedly accepts input on any of its array of input channels, then outputs the
message received. The problem is that in a transputer this multiplexer will always choose the
same input channel if all channels are always ready. A better multiplexer is:

PROC fair.mux((JCHAN OF ANY input, CHAN OF ANY output, [JINT buffer)

? A way of doing this in occam is outlined in [WILS].

6



INT buffer.size, client :
WHILE TRUE
ALT i = client FOR (SIZE input)
VAL chan.id IS (client \ (SIZE input)) :
input[chan.id] ? buffer.size; buffer
SEQ
output ! buffer.size; buffer
client := chan.id + 1

(The backslash \ is occam’s remainder operator, while (SIZE input) gives the dimension of
the channel array being multiplexed.) This multiplexer repeatedly re-orders its inputs so that
any order-dependent favouritism is eliminated, and looks suspiciously like a queue with multiple
inputs. Each client puts buffers into the queue (which in this case only has depth 1), and the
multiplexor removes them in order of their arrival. The ALT-less implementation of multiple-
input queunes described below not only speeds up the multiplexor, it also makes the multiplexor’s
behaviour independent of its number of inputs.?

4 Internal Structure

Tiny is made up of several interacting agents on each processor. Each handles the input or
output half of a link, or a single input or output channel connecting Tiny to a client. Each agent’s
workspace, or A-page, contains space for certain transputer instructions and an agent handle used
directly by Tiny.

Agents manipulate buffers, represented by B-pages which contain routing and ownership infor-
mation and a pointer to the message’s data. As with A-pages, the part of a B-page manipulated
directly by Tiny is called its handle.

4.1 Message Typing

Just as programmers assign types to variables within processes, in Tiny they may type messages
by sending them on different channels. For example, in a simple grid decomposition in which
processes repeatedly swap boundary conditions, each process receives {wo messages containing
new boundary values during each iteration. If the process is connected to the router by a single
channel, it must read the message, decide which boundary the data is for, and then copy the data
into that boundary. If the channels connecting the process to the router have types left-bound
and right-bound, the process can know a priori where the message data belongs. This makes
for more efficient programs (less internal copying is required) and more efficient programming
(message typing provides structure, which reduces programming errors).

Multi-channel interfaces are only slightly more complicated to implement than single-channel
interfaces. The agents handling traffic from clients to Tiny are the same in either case. An
intermediate agent called agent_multi_man is used; All messages to a client C are sent to its
agent_multi_man, which forwards the message to the subsidiary agent responsible for the channel
through which that message should be delivered.

4.2 Routing Strategies

Two routing strategies, called adaptive and sequential, are available for point-to-point message
traffic in Tiny. A third strategy is used to implement broadcasts. The sequential strategy guar-

3LE. of the size of the channel array input.
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antees that messages arrive in the order in which they were sent, which is useful for such things as
implementing fragmentation of large messages. Tiny implements the sequential strategy by using
the same shortest path* from any through-routing node towards the destination. (Figure 5).

The adaptive strategy decides locally at each through-routing node which of the shortest paths
from that node to the destination seems likely to be quickest. Using this strategy, Tiny examines
the output queues of each of the through-routing node’s appropriate links, and enqueues the
message for the link with the shortest queue (Figure 6).°

Finally, the broadcast strategy is implemented using a broadcast tree for each processor P.
The tree for each processor is determined once during initialization, and information is stored in
each other processor Q to indicate Q’s position in P’s tree (Figure 7.

4.3 The Interface

Two interfaces for Tiny were initially constructed. The first of these, called the PKT interface,
copies data from the user’s process into one of Tiny’s internal buffers during a send, and copies
data back during a receive. The PTR interface, on the other hand, swaps pointers to buffers so
that the user’s buffer becomes one of Tiny’s internal buffers and vice versa during either type
of interaction. While faster, this second interface was found to be too fragile to support general
applications (see Section 8), and has been removed.

The interface provides the user with four functions: pktRead, pktWrite, pktSeqWrite, and

4In fact, the one stored first in the routing table.

® An alternative wey of implementing adaptive routing would be to enqueue the buffer for each possible output
link, and have the link which was ready first remove the buffer from the other links’ quecues. This would require
doubly-linked lists, whose maintenance would slow the router down in the general case. In addition, the extra

instructions which would have to be exccuted by the link which wound up sending the message would probably
negate most of the time saved by always “guessing” right.
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pktBroadcast. These functions, described below, are characterized by blocking reads and non-
blocking writes.

4.3.1 Receiving a Message

void pktRead(CHAN #in, int *src, *msg, *size)

This procedure blocks until a message becomes available on the channel in. The source CID of
the message is put in src; the message’s size is put in size, and the message data is put in the

buffer pointed to by msg,.

4.3.2 Sending a Message by the Quickest Route

void pktWrite(CHAN #out, int dst, *msg, size)

pktWrite sends a message from the caller to the client identified by dst using adaptive routing.
As soon as the message data contained in the buffer pointed to by msg has been copied into one
of Tiny’s internal buffers this function returns control to the caller.

4.3.3 Sending a Message by a Fixed Route

void pktSeqWrite(CHAN *out, int dst, *msg, size)

pktSeqWrite sends a message from the caller to the client identified by dst using sequential
routing. As soon as the message data contained in the buffer pointed to by rmsg has been copied
into one of Tiny’s internal buffers this function returns control to the caller.

4.3.4 Broadcasting a Mesasge

void pktBroadcast(CHAN *out, int *msg, size)

pktBroadcast sends a message from the caller to every other client in the network connected
to Tiny by the same type of interface channel (see Section 4.1). As soon as the message data

contained in the buffer pointed to by msg has been sent down all the necessary links, this function
returns control to the caller. (An unfortunate exception to this rule is discussed in Section 8).
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5 Agents and Their Internals

The five different agents used within Tiny to implement the router shown in Figure 3 are described
below; a typical mix of them is shown in Figure 8. All agents are written in a mixture of C and
Tcode (transputer assembler).

agent_multi man: demultiplexes messages arriving at a client with a multi-channel interface,
passing those messages to the client’s input agents. Iis main loop dequeues a buffer, then
enqueues it for a subsidiary agent.

agent_router_input: accepts messages on the input half of a hard link and routes them. Its
main loop dequeues a buffer, gets a message into the buffer, and routes the buffer, putting
it in another agent’s queue.

agent_router_output: handles the output queue for a hard link. Its main loop dequeues a buffer,
sends its contents down the link, then decrements the extra reference count of the buffer
(Section 5.4.1), and, if this is zero, returns the buffer to its owner.

agent_usrpkt_input: accepts messages from a client process and routes them. Its main loop
dequeues a buffer, gets a message into the buffer, makes a header for the message, then
routfes the buffer, putting it in another agent’s queue.

agent msrpkt_output: gives a message to a client process and frees the buffer. This agent may be
a subsidiary agent of an agent_multi_man, or may be used directly. Its main loop dequeues
a buffer, gives the buffer’s contents to the user, then decrements the extra reference count
of the buffer, and, if this is now zero, returns the buffer to its owner.

5.1 Agent and Buffer Pages

An agent page, or A-page, is & workspace for a single routing agent. The fields in an A-page
are given below; those from AP_RT to AP_ENTRY called the agent handle, are pointed to by the
workspace pointer Wptr when the agent is running.

11



AP_LINK A pointer to the next agent, used to chain agents together
while they are being created.

AP_FUNC An integer indicating the agent type.

AP_TSPACE The start of 5 words reserved for transputer instructions [TREF].
These are not explicitly manipulated by Tiny.

AP_TMPO A scratch pad used by the agent.

AP _BP A pointer to the agent’s active buffer.

AP_COUNT A count of the number of buffers in the agent’s queue,
plus 1 for the buffer currently being worked on. When
this is 0, the agent should be asleep.

AP_HEAD A pointer to the first buffer in the agent’s queue. If
AP_COUNT is 1 or less, this value is invalid.

AP_TAIL A pointer to the last buffer in the agent’s queue. If
AP_COUNT is 1 or less, this value is invalid.

AP_QOFF The offset (in bytes) from the start of the buffers on
this transputer to the word used by this agent to link its
queue together (see the description of the buffer pages).

AP_CHAN The address of the channel for which the agent is responsible.

AP_PID The ID of the client for which the agent is responsible.

AP _DEV The device number (i.e. channel number in a multi-channel

' interface) for which the agent is responsible.
AP_ROUTE A pointer to the agent’s routing table segment (Section 5.2).
AP_ENTRY A pointer to the routing table entry currently being used.

Buffer pages, or B-pages, contain information about message buffers, and are manipulated by
agents. The fields in a B-page are listed below; those from BP_LEN to BP_OWNER are reférred to as

the buffer handle.

BP_LINK

Used to link buffers together during initialization.

BP_BYTES The maximum size of the message buffer (in bytes).

BP_LEN
BP_SRC
BP_DST

The length of the message data (in bytes).
The CID of the process sending the message.
The CID of the message’s destination.

BP_MSG

A pointer to the message data associated with the buffer.

BP_XREFS The number of extra references to the buffer. This field

is used during broadcasts, when several agents might be
reading from the buffer. When XREFS reaches 0, the
broadcast is finished.

BP_OWNER A pointer to the workspace of the agent which owns the

buffer (see Section 5.4.2).

The remaining entries are links to other buffers, used to chain buffers together to form queues.
The number of such links is the same for all buffers on any transputer, though it may differ

between transputers.

Each group of agents within a given transputer responsible for either a

single link or a single client has a unique byte offset (stored in the AP_QOFF field of its agent page)
which indicates how far from the beginning of the B-page their queue’s link entry is. Multiple
links are provided so that a single buffer can be in the queues of several agents during a broadcast

operation.

Storage for buffers is allocated by the user during initialization. Tiny is given a block of
memory and two parameters describing the number of buffers to create and the size of each
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buffer. This allows users to tailor memory usage to fit their application; typically, they allocate
four or five buffers for each output agent’s queue, each roughly one kilobyte in size.

5.2 Routing Tables

Routing tables are built during topology exploration. Initially stored as arrays, their cross-
referencing indices are converted to pointers during initialization. The structure of a routing
table in array form is:

| free_ptr | link indices | routing segments | tables | free space |

where:

free ptr is an index into the free space used during initialization;

the link indices are 5 indices (one for each physical link and another for a “pseudo-link” repre-
senting the user’s processes) indicating where in the routing segments the routing table for
messages entering the processor on that link is located;

the routing segments contain a status word and a pair of indices into the tables for each process
in the entire network;

the tables are lists of links to which messages may (or must) be sent;

free space is that part of the table which has not been used.

Users select which of Tiny’s two routing algorithms it is to use at initialization. One of these
provides provable freedom from deadlock [CLA4] by eliminating cycles in routing tables. This
is done by routing messages for a destination through different links on a particular processor
depending on the link through which that message reached the processor. To allow this, a pointer
to a routing table is associated with each input link. These pointers may indicate the routing
table, or different routing tables. A fifth routing table is required for routing messages which

originate in the user processes on the transputer. Each link’s index therefore indicates a segment
of the form:

[status | (tzmio, brdesto) | --- | (izmt,, brdcst,,) |

where status indicates whether the table is bad (i.e. Tiny hasn’t built the table yet), in an
array/index state (as described here), or has been converted to pointers. The remainder of the
segment contains pairs of indices into the tables area. The table indicated by the first index is
a negative-terminated list of the links through which messages for a particular process may be
sent; if there are several equally-short paths to a process, the list will contain more than one entry
(Section 5.4). The table indicated by the second index is a negative-terminated list of the links
through which broadcast messages from other processors through this processor must be sent.

These negative-terminated tables consist of one or more integer entries, followed by the value
—1. A typical such table would be:

(3]0f-1]

meaning that messages to or from the corresponding process could or must be sent through links
3 and 0.

13



5.3 Enqueueing and Dequeueing Buffers

The basic operations performed by Tiny’s internal agents are to enqueue or dequeue a message
buffer. Agents can do this for other agents, i.e. an agent 4y can manipulate agent A;’s internals
to put a buffer B into A;’s queue. At all times, each agent keeps a count of the number of buffers
under its control. The buffer currently being worked on is called the active buffer; the agent’s
other n — 1 buffers form its queue. The three different cases are:

Number | Meaning

0 No buffers in queue, no buffer being worked on — agent is asleep
1 No buffers in queue, active buffer being worked on
>1 Buffers in queue, active buffer being worked on

When an agent Ag wants to enqueue a buffer for an agent A; it starts by resetting the
workspace pointer register to point at A;’s workspace. If 4, is asleep, Ao makes the buffer 4;’s
active buffer and puts A4; back on the process queue. If 4, has an active buffer but no queue,
Ag creates a single-buffer queue for it; if A; already has a.queue, Ag appends the buffer to that
queue. .

Dequeueing buffers is simpler than enqueueing them. The agent’s buffer count is decremented,
and, if the count has become zero, the agent takes itself off the active process queue. If the count
has become 1 the buffer which was at the head of the queune is made the active buffer. Finally, if
the count after the decrement is greater than 1, the buffer at the head of the queue is made the
active buffer, and the head-of-queune pointer changed to point to the next buffer in the queue.

5.4 Routing

Messages are routed as soon as they arrive in a processor. Routing relies on a 3-word message
header which Tiny keeps in each buffer page. The three entries in this header are the message
source and message destination CID’s, and the message lengih (in bytes).

To access the correct routing table entry for a message, Tiny adds the CID of the message’s
destination to the base address of the agent’s routing segment (stored locally in 4P_ROUTE) to
obtain the address at which a pointer to the routing table entry is stored (Figure 9). This extra
level of indirection is needed because the routing tables used for broadcast messages may be of
arbitrary size.

Tiny’s first action when routing is to discover which strategy is being used by testing the two
least significant bits in the destination field of the header. The RT_FST bit indicates that the
sequential strategy is being used, while RT_ANY indicates adaptive routing. If FT_FST is set, Tiny
adds the destination CID to the routing table base address in the agent handle and looks up
the routing table segment starting at that address. The entry found here is the address of the
workspace of the agent responsible for that link. The current agent puts the buffer in that agent’s
queue.

If the adaptive strategy bit is set in the message header, Tiny accesses the routing table
segment as above, but then examines the lengths of the queues of the agents responsible for the
links down which it could send the message. The message is enquened for an agent with a shortest
queue length (Section 5.4).

When a message is first introduced into the network, Tiny checks to see whether it is a
broadcast message. If it is, then the CID of the source process is put into message’s destination
field, and bit 2 set in this field. Since the low two bits in a transputer word act as a byte selector,
while the other 30 bits are a word selector, this bit being 1 guarantees an odd word address, while
the bit being 0 guarantees an even address one space lower in memory. When the word-selector
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bits of the destination field are added to the routing table base address stored in the agent page,
Tiny will select the second of the two words in that routing entry. The table this points to
contains the broadcast tree information for messages from the source process, rather than routing
information for messages to that process.

5.4.1 Multiple References to Buffers

During broadcasts a single buffer may be queued up for output on several links. To allow for this,
the B-page structure contains several fields for pointers to the “next” buffer in the queue. Each
of these fields is used by a different group of agents (i.e. all those responsible for a single link or
client); the offset from the beginning of the B-page to the pointer belonging to & particular group
of agents is stored in the A_QOFF entry of the A-pages of agents in that group. Figure 10 shows
how these overlapping queues work.

5.4.2 Buffer Ownership

Every buffer has a nominal owner, which is the agent responsible for it when it is not being used.
Once the contents of a buffer have been given to a client process, that buffer must be put back
in the queue of its owner. This is done by decrementing the extra reference count XREF of the
bufter, and, if this has become zero, putting the buffer in its owner’s queue.

One subtlety of buffer ownership is that all buffers must be owned by agents responsible for han-
dling messages as they arrive at processors (i.e. agent_router_input and agent_usrpkt_input)
and not by agents responsible for handling messages leaving processors (i.e. agent_router_output,
agent_usrpkt_output, and agent_multi_man). The second type of agent only goes to sleep when
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its buffer queue is empty, so as long as other agents give it buffers, it will continue to run. Input
agents, on the other hand, run until there are no incoming messages to be serviced, so it is safe
for them to store empty buffers in their queunes.

6 Performance

Devising experiments whose results are both understandable and relevant to applications pro-
gramming is a major problem in measuring the performance of routing software such as Tiny.
To obtain basic performance figures, messages were echoed on a chain of processors using occam
code which read and sent messages on the links directly, occam code which had buffer processes
managing the links, and Tiny. The time measured at the source between sending and receiving
the message should be very nearly twice the time taken for the master to send a single message
to a slave at that distance in a quiet network. Figures 11- 14 show the relationship between
message size, distance travelled, and time taken in microseconds. Note particularly that even for
medium-sized message (256 bytes) Tiny outperforms simply buffered occam processes even over
moderate distances (4 links).

The message time in this situation should vary linearly with both the number of links and the

message size. Let T'(1,b) be the time taken for a message of b to pass over I links; we anticipate
that:

T(1,5) = o+ Bl + vb + §bl (1)

where a is a constant setup time, § is the overhead per link, 7 is the time taken to move message

data from the user to the router and back, and § is the time to transfer a single byte through a
link. Tests gave:
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Method @ B ¥ é
Raw 1.0 167 00 13
Buffer 3.3 317 0.0 1.5
Tiny 624 410 0.1 13

These results may be interpreted as follows:

e §is the same for Tiny and raw communications, implying that Tiny achieves the hardware
limit.

e v, the multiplier on message size, reflects the time taken to copy the message data from the
user to the router and back, and is small (i.e. less than clock resolution) in all cases.

¢ The differences in B values between Tiny and raw communication shows the time taken to
enqueue and dequeue buffers, and to make routing decisions. The additional CPU impact
of Tiny on intermediate nodes, which is the difference between B,,,, and Bri,y, is only 24.4
psec/node in a quiet network.

e The parameter « is the sum of operation times which are independent of message length
performed in the user processes and their agents on the source and destination nodes,
including several synchronization events, protocol and header generation, etc.

To summarize these results, the only significant performance differences between Tiny and raw
hardware are the time taken to communicate header information (which is simply the time taken
to send the header words through the links) and the once-per-message cost of protocol generation,
which affects only the source and destination processors. Both of these costs are very small, as
is the through-routing time 8. By comparison, the values for Version 2 of Tiny, currently under
development, are:

Method «a B ¥ é
Tiny V2 305 300 0.0 125

Tiny V2 will avoid internal copies completely (reducing 7 to exactly 0), and, despite extra protocol
generation and checking, also reduces start-up and through-routing costs.

7 Monitoring

Tiny can route arbitrary networks so that users could tailor the connectivity of the available
processors to suit their application, rather than tailoring their problem to fit (for example) a
hypercube. However, this raises an interesting question: how can a user determine whether a
particular topology, or a particular mapping of processes to processors, is efficient? In the absence
of good theoretical models for most of the applications now being put on MIMD computers, users
must approach the topology and mapping problems using experiments. Rather than just testing
several different configurations (chosen at random, or based on some intuition about the normal
pattern of communication within the program), a communications monitor would allow users to
get their program running in some simple topology, and then observe the flow of messages in
order to locate potential bottlenecks. Such a monitor has been built for Tiny, and has been used
fo investigate the performance of a parallelised molecular graphics package.
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7.1 Monitor Design

The first problem when building a software monitor for a sparsely-connected multiprocessor is
how to collect the information the monitor obtains. In the Computing Surface on which this work
was done, there were three ways messages containing monitoring information could be collected:

o through links reserved for the monitor’s use

o through the Computing Surface supervisor bus (a low-bandwidth bus connhecting all the
processors in the machine)

e through Tiny itself

The first option was rejected immediately, since reserving links for the monitor would mean
that users would have to decrease the inter-connectivity of their programs in order to monitor
them. This would change the message-passing behaviour of programs so much that the monitoring
information obtained would be irrelevant to the original problem.

The second option would have relied on a global bus which is connected to all of the transputers.
This bus is normally used as a secure channel for resetting and querying processors, and for
printing debugging messages. However, experience indicated that contention for this (slow) bus
would change programs’ behaviour significantly.

The final option was to send monitoring information through Tiny using the same links and
agents as the application. This is in many ways the simplest choice to implement — since Tiny
already makes provision for multiple clients on a single transputer, the monitoring process could
appear to it as just another client.

7.2 Collecting Information

Having decided to run a monitoring process as a Tiny client, the next problem was how to collect
information from the agents. One option briefly considered was to connect each agent to the
monitor through a channel, and have each agent periodically send a description of its current
state. This was rejected for two reasons: it would require some sort of ALT in the monitor
(which clearly needs to be as efficient as possible), and it would mean that one agent trying to
communicate with the monitor could be blocked by other agents. If the agents had to queue up
to talk to the monitor frequently, they would spend no time through-routing.

The method actually used takes advantage of the fact that agents are linked together by their
AP_LINK fields during initialization. Given a pointer to the first agent in the linked list, the
monitor can step through the agents, collecting what information it needed directly from their
A-pages. In order to do this correctly, the monitor must run at high priority. (If it did not, it
could be interrupted by an agent whose workspace it was examining, which could leave it with an
inconsistent picture of that agent’s state.)

Two ways of putting the monitor to sleep so that the router and the application get some CPU
time have been implemented. In the first, the monitor is given a fixed dormancy time 7. It puts
itself on the high-priority clock queue, from which it is rescheduled after (at least) T' clock ticks
have passed.® It then collects information from the agents and sends a message to a collecting
process, which is a normal (low-priority) Tiny client.

The second method used to control the monitor is to have it collect information only when
requested to. In this case, the monitor dequeues itself waiting on communication, then becomes
active when a request arrives. This second mode of operation was found to be the most useful. If
every transputer in a large network is running a monitor, the volume of information being sent to

SIf any agents arc active when T ticks have passed, the monitor is queued after them, which may increase its
effective dormancy period.
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the collector is so high that either much of it must be discarded or statistics must be calculated
for display. Since sending information only to have it thrown away is counter-productive, and
in most cases only statistical properties of the information are of interest, it is better to have
monitors collect and send statistics in the first place.

7.3 Recording Agent Information

The snapshots provided by having the monitor examine each agent’s workspace turned out to
contain too little information to be useful. Two more fields were therefore added to the A-page-
in order to obtain the statistics desired, and modifications made in the Tcode responsible for
enqueueing and dequeueing in order to update their values. These fields are:

AP_MSGNM number of messages dequeued
AP_MSGSZ  total size of messages dequeued (in bytes)

7.4 Using the Monitor

The monitored version of Tiny was first used to measure traffic in a FORTRAN molecular graph-
ics package called BALL. This package distributes a description of a molecule containing several
thousand atoms (represented as spheres) among the available worker processors, along with light-
ing, shading model, and viewpoint information. Workers are assigned tiles of the image to draw,
and generate rasters and send them to the graphics board.
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The processor network initially used in this program contained a single master processor,
a graphics processor, and 16 workers connected in a dense random graph. Since the graphics
processor is an obvious potential bottleneck during the display phase of this program, the first
thing examined was the message traffic on its links. The results were:

graphics link # msgs # bytes

0 360 40699
1 303 30488
2 617 61802
3 290 30177

The differences in link loadings were unexpected, and could explain why the program’s perfor-
mance was not as good as expected. Even in a dense random graph of 64 worker processors,
message traffic was still unbalanced:

graphics link  # msgs # bytes

0 347 33073
1 461 46266
2 497 51201
3 319 32727

(Total traffic in these two configurations differ because workers each send a synchronisation mes-
sage to the graphics board when they finish drawing their tiles of the image.) The monitor’s
information is currently being used to help look for more evenly balanced topologies.

7.5 Monitor Impact .

The Heisenberg Principle is as important in monitoring computer operation as it is in quantum
mechanics. If CPU cycles are being stolen to collect monitoring information (i.e. to increment
AP_MSGNM and AP_MSGSZ every time a message comes through), the behaviour of the router will
necessarily be distorted. If this distortion is great, or cannot be estimated, the value of the
monitor information is greatly reduced.

We found that the eight instructions added to each agent to update its monitoring information
fields had a negligible effect on Tiny’s performance. Figure 16 shows the time taken to echo a
message down a chain 1, 2, or 3 processors long with and without monitoring. As can be seen,
the run-time degradation introduced by monitoring is almost unnoticeable.

8 Problems with the Current Implementation

There are several problems in the current implementation of Tiny. First and foremost is its
interface. While users have found its send and receive functions comfortable, configuring Tiny is
difficult and error-prone. The next generation will hide many of these details in order to simplify
setup.

A second problem is that during broadcasts, multiple references to a single buffer are queued
for several links. This makes the fast pointer-swapping interface unreliable, since the application
has no way of knowing when it is safe to re-use the buffer. The pointer-swapping interface is being
removed from the next version of Tiny. As partial compensation, Version 2 will reduce message
copying by reading data from a link directly into a client’s workspace whenever possible.

Finally, the use of multiple references to a single buffer can have subtle side effects during
broadcast even when the normal PKT interface is being used. If one of the clients receiving the
broadcast message is on the same processor as the sender, the buffer belonging to the sender’s
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agent_usrpkt_output is queued for that destination. This agent cannot proceed until the desti-
nation has read the message and freed the buffer, which forces a partial synchronization between
the sender and that receiver. In general, Tiny assumes that clients will never refuse to read on a
particular channel indefinitely. Even with cycle-free routing, applications containing clients that

do this can deadlock.

9 Conclusions

Two conclusions can be drawn from this work. First, it is possible to build fast, efficient message
routers in software for the transputer which are capable of handling arbitrary topologies. The keys
to doing this are to avoid redundant copying by taking advantage of the fact that some processes
are running on the same transputer as others, and to avoid choices and searches through lists (i.e
not to use ALTs or similar constructs).

Second, it is possible to monitor message traffic in applications built on top of such routers,
again using software alone, in a way which does not significantly disturb the behaviour of those
applications. Furthermore, the information provided by such monitoring is a useful tool for
analysing and improving programs.
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Overview
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Use

Description

Occam Evaluation Kit

Statement-level concurrency
Integrated compiler/editor
Portable to all UCSD (Version V) hosts

The occam evaluation kit is an integrated collection of software
and documentation. It provides the capability to experiment with
concurrency in system design and programming through the
use of the language occam.

Written in UCSD Pascal, it is portable to any host running UCSD
p-System version V. It is available in tailored form for a number
of specific hosts, and in Softech distribution format for all others.

Occam is a simple language whose most innovative feature is
its handling of concurrency. Providing paralielism right down to
the statement level, occam acts as both a programming
language and as a design/description language.

The kit is based on an integrated compiler/editor which offers a
full screen oriented inserting editor married to an occam
compiler. This close coupling allows simple and convenient -
creation, compilation and correction of occam programs. The
compiler generates a standard p-Code object file, for execution
by standard p-System commands.

Software: Documentation:

Occam compiler/editor Occam programmer’'s manual
Runtime system Occam evaluation kit user guide
Example programs Getting started

The occam evaluation kit provides an introduction to occam as
a programming language and as a system design tool. The
process oriented view of the world that occam provides is the
key to a building block approach to systems design, where
each component is a separate process, linked by channels. The
connection pattern of processes and channels can exactly
mirror the shape of the system which it describes. Design steps
of increasing refinement may be applied to the processes
defined at the top level to lead from a system description down
to a detailed implementation.

This integrated approach to design description and
implementation is of vital interest to the creation of future super-
complex systems, and will provide invaluable training
opportunities for all designers.

Included with the evaluation kit is a collection of example occam
programs in source form. Extensively annotated, these
programs provide a flying start to learning occam, and are
intfended to be extended and modified by the user to deepen
understanding.

The compiler/editor integrates an easy to use screen editor with
an occam compiler. The user sees two windows on the screen;
one holds the text of the program under construction and the
other is used for commands to the editor. The editor has an
understanding of the language syntax, simplifying the creation
and editing of occam programs. To speed compilation
performance, text is lexically analysed as it is typed in.




The compiler signals syntax errors by error messages in the
command window while an indication of the error is shown by
placing the cursor at the offending program text in the edit
window, so that the system is ready to correct the error.

Commands provide occam block editing facilities, full cursor
movement around the screen with appropriate scrolling of the
text vertically and —for systems with limited linelengths —
horizontally.

The compiler may be asked to check the program, to identify
any syntax errors, or to generate code from a syntactically
correct program. This approach, together with the parallel
lexing on input, allows the compiler to be used incrementally
throughout the construction of a program, giving feedback on
program errors whilst the intentions are still clear in the mind of
the designer.

Runtime System The runtime system includes utilities to allow the user to access

system facilities like screen, keyboard, serial links and files.
These are all represented as p-System files, and the runtime
utilities provide a method for constructing occam channels
getwegn the user program and as many named files as are
desired.

Thus occam programs can interact with the user, manipulate
files and even communicate with occam programs in other
hosts via a serial link, allowing true multiprocessor systems to
be investigated.

To aid the investigation of the behaviour of occam, debug
software provides simple logging facilities to trace the behaviour
of programs.

Occam Evaluation The occam evaluation kit is shipped as a number of floppy

0

Kit Package disks together with documentation. The number and format of
the disks is dependent on the target host; the tailored kits use
the disk densities, sizes and formats of their hosts, while the
uncommitted version uses Softech’s 8 inch single sided single
density format.

Occam, TiIMOS and
UCSD p-System is a t

INMOS reserves the right to-make changes in-specifications at any time and without notice. The information
furnished by INMOS in this publication is believed to be accurate; however, no responsibility is assumed for
its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license

is granted under any patents, trademarks, or other rights of INMOS group.

are trademarks of the INMOS group.
mark of the Regents of the University of California.
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The choice of what is to be
omitted from a new language is in
practice much more critical than
the choice of what is to be added
Niklaus Wirth

Programmers are always
surrounded by complexity; we
cannot avoid it. If our basic tool,
the language in which we design
and code our programs, is also
complicated, the language itself
becomes part of the problem
rather than part of its solution
CAR Hoare

Sequential systems will not be
adequate for the future. There are
an additional four orders of
magnitude in computational
capability available through
concurrent systems

Carver Mead

Entia non sunt multiplicanda
praeter necessitatem
William of Occam

Niklaus Wirth is renowned as the designer of Pascal. Together with
Dijkstra and Hoare, he has been influential in establishing the principles
of good programming practice. Ada, the most ambitious language
development ever attempted, is largely based on Pascal. Wirth's quote
is from the original ‘Green’ submission to DoD for the Ada contest.
Green won, but Wirth's comment was omitted from the final version.

Professor Hoare, Director of the Programming Research Group at
Oxford University, is well known for his concerns over the unnecessary
elaboration of languages. He fears that systems programmed in
complex languages may pose dangers in the real world. He received
the Turing Award—the ACM'’s highest honor for technical contributions
to the computing community —for his “fundamental contributions to the
definition and design of programming languages” with work
“characterised by an unusual combination of insight, originality,
elegance and impact.”

Tony Hoare has been closely involved in the design of occam, the new
language developed at INMOS by David May to provide a better tool for
programming microprocessors and future systems. The precursors of
occam are well structured languages like Algol 60 and Pascal, system
languages like BCPL and C and experimental languages like Hoare's
CSP—which established the communication primitives subsequently
elaborated in Ada.

Carver Mead is the foremost advocate of structured VLS| design. He
holds the chair at Caltech endowed by Gordon Moore, Chairman of
Intel. Carver Mead was joint winner (with Lynn Conway, manager of

VLSI system design at Xerox PARC) of Electronics 1981 Achievement

Award. He is said to have significantly influenced the design of the
Motorola 68000 and Intel IAPX 432.

Concurrency is clearly the key to higher performance systems. Occam
is designed to unlock the potential of VLS| by providing the concepts
for describing and programming systems containing many
iﬂtegconnected processing elements—the fifth generation systems of

the future.

QOccam's Razor —that entities are not to be multiplied beyond
necessity —has been the guiding principle in designing this new
language. William of Occam was a fourteenth century Oxford
philosopher, whose teaching was condemned by the Pope. He is now
recognised as having anticipated a basic principle of modern
scientific method.




Occam is the new programming
language. »

Occam is based on the
concepts of concurrency and
communication. These
concepts enable today's
applications of microprocessors
and computers to be
implemented more effectively.
They are essential for
tomorrow’s systems built from
multiple interconnected
transputers.

Occam is designed for the
professional programmer. The
language is oriented to
interactive use. It enables
complex systems to be
programmed in a concise and
readable form. As a result,
programmer productivity

IS enhanced.

Occam has a formal basis and
uses the minimum of concepts.
It is easy to understand and
easy to compile for a wide
variety of microprocessors

and computers.




The use of occam is illustrated by the updating of an old fashioned tea
maker. This wakes you up in the morning with a traditional message
and offers a hot cup of tea. It is also a clock and will make tea at any
other time, on request.

The tea maker has a number of units which interact with each other:
the tea brewer which makes and pours the tea, a speech synthesiser
for saying ‘good morning’ and telling the time, request buttons and an
overall controller.

These units can be represented as a network:

In occam, each of the units is described by a process and each
connection by a channel. The processes communicate by sending
messages via the channels. A process can be constructed from
smaller processes, as in the case of this machine which has a number
of parts. Indeed the collection of processes is itself a process in-occam,
and could be part.of some larger system.

This network is represented by defining the channels and the
processes. CHAN introduces the channels through which the pro-
cesses communicate, and the PAR construct causes the various
processes to operate concurrently:

CHAN speaker, made, brewer, button
PAR —— tea.maker
.«s —— controller
PAR —— machine
... —— speech.synthesiser
... —— tea.brewer
... —— control.panel

The controller may do one of three things. Firstly, it may receive a
message from the request buttons asking it to make tea, or tell the time:

button ? request
IF
(request = tea.please) AND NOT brewing
PAR

brewer ! make.tea
brewing := TRUE
request = time.please
speaker ! say.time, NOW

This inputs a request from the button channel, and uses IF to determine
whether it is a request for tea, or a request for the time. If it is a request
for tea, @ message is output to the brewer channel telling the tea brewer
to make the tea, and the boolean variable brewing is set to prevent
further attempts to initiate tea making. If the request is for the current
time, a message is output to the speaker channel requesting the
speech synthesiser to tell the time, which is the value NOW.




Secondly, the controller may receive a message from the tea brewer,
telling it that the tea is made: .

made ?
SEQ
speaker ! say.message, tea.made
brewer ! pour.tea
brewing := FALSE

This uses SEQ 1o stop the tea being poured until the tea maker has said
‘tea is made'. Finally, at daily intervals, the tea maker may say ‘good
morning’ and make the tea:

WAIT AFTER alarm.time
SEQ
alarm:time := alarm.time + one.day
ie,';__)eaker | say.message, good.morning

NOT brewing
PAR

brewer | make.tea
brewing := TRUE

These individual program sections, each of which is a process, are
combined into the complete controller process by declaring the local
variables, and by using WHILE and ALT to enable the controller to
perform whichever alternative is required:

VAR alarm.time, brewing := 0, FALSE
WHILE TRUE
ALT
butt”o:ns ? request

(rqugsg = tea.please) AND NOT brewing

brewer | make.tea
brewing := TRUE
request = time.please
speaker ! say.time, NOW
made ?
SEQ
speaker | say.message, tea.made
brewer ! pour.tea
brewing := FALSE
WAIT AFTER alarm.time
SEQ
alarm time := alarm.time + one.day
Is':peaker | say.message, good.morning

NOT brewing
PAR
brewer ! make.tea
brewing := TRUE
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Programs are expressed in terms of concurrent processes, which
communicate using channels. An obvious implementation of an occam
program is a network of microcomputers, each executing one of the
concurrent processes. However, the same occam program can also
be executed by a single computer sharing its ime between the
concurrent processes.

The basic data type is a word, which may be used to represent
numbers, characters, truth values or bit patterns. Vectors and subscript
operations, including record access, are provided. There is a wide
range of logical and arithmetic operators for use in expressions.

Programs are constructed from a small number of primitive processes:
assignment, input, output and wait. Processes are combined using the
constructors sequence, parallel, conditional and alternative.

An assignment-may be used to set the value of a variable to the value of
an expression.

A channel provides communication between two concurrent
processes. The communication is synchronised, and takes place only
when both the input process and the output process are ready; the
values being copied from the output process to the input process.

Execution of a process may be related to the passage of time. A wait
procesg may be used to delay execution until a specified time is
reached.

The component processes are excecuted one after the other. A
sequence construct terminates after the last of its components has
terminated.

The component processes are executed concurrently. Each
component process operates on its own variables, communicating with
other concurrent processes using channels. A parallel construct
terminates only after all of its components have terminated.

The component processes are tested in sequence. If one is ready, it is
executed. At most, one of the component processes is executed.

One of the component processes is chosen and executed. The
alternative constructor chooses the first component process which is
ready to be executed.

A while construct causes its component process to be executed
repeatedly until the result of evaluating a condition is false.

In the construction of a process, a name may be used in place of a
component process which is to be used or defined elsewhere in the
program. A process definition is used to associate such a name with a
process. A completely self-contained form of abstraction is provided.
This is an independent unit of compilation, and may be transmitted
around a system, or loaded when a system is initialised.

Each primitive process and each constructor is represented by a single
line of program. The component processes combined by a constructor
follow it.on successive lines. This makes interactive editors and
compilers simple and efficient.

The design of occam is based on a formal model which facilitates
reasoning about the properties of the language constructs, and the
behaviour of specific programs. Each process can be described by an
assertion in the predicate calculus, and the composition of processes
into networks can be described by the logical conjunction of the
assertions describing each process.




Occam Evaluation Kit

Occam Programming
Station

Occam Environment

This is a complete portable software kit to provide programmers with
the opportunity to experiment with occam.

The kit is inexpensive and comprises a compiler and editor together
with tutorial examples on a floppy disk. It includes manuals for occam
and the compiler itself.

The kit is based on the UCSD p-System version [V and compiles
occam into p-code. It can be used on a wide range of computers, from
the Apple Il to the VAX.

This is a personal interactive work station with comprehensive facilities
to develop applications written in . occam for microprocessors in the
Intel IAPX 86 and Motorola 68000 ranges.

It employs a multiple window interface to give the programmer full
control over the display of relevant information.

Programs are created and edited with a language directed editor which
uses keystroke lexing to provide instantaneous feedback on syntax
errors. An incremental compiler is used to provide the effect of
instantaneous compilation after a program change.

When debugging programs, all interactions are expressed using
occam, so that the programmer need not be concerned with machine
level representations such as assembler and hex. The structure of
occam has been exploited to provide significant new debugging
facilities including action replay and channel monitoring, while
conventional debugging facilities such as trace and breakpoint are
also provided.

The entry level station contains a microcomputer system with a bit
mapped graphics screen, 256K bytes of memory and dual high density
floppy disks.

This is a software package enabling suitably configured Intel and
Motorola development systems to be used to develop applications
written in occam for microprocessors in the Intel iAPX 86 .and
Motorola 68000 ranges.

The environment provides a reduced version of the facilities in the
Occam Programming Station, determined by the capabilities of the
host development system.

QOccam, inmos, @ are trademarks of the INMOS group.

Appie It is a trademark of Apple Computer Inc.

VAXis atrademark of Digital Equipment Corporation

UCSD p-System is a trademark of the Regents of the University of California
iAPXis a trademark of Intel Corporation

Adais a trademark of the US Department of Defense

INMOS reserves the right to make changes in specifications at any time and without notice. The information
furnished by INMOS in this ‘publication is believed to be accurate; however, no responsibility is assumed for
its use; nor for any infringements of patenis or other rights of third parties resulting from its use. No

license is granted under any patents, trademarks, or other rights of INMOS group
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SEMINAR MARKS COMPLETION OF TRANSPUTER INITIATIVE

To mark the completion of the Science and Engineering Research
Council/Department of Trade and Industry Initiative in the Engineering
Applications of Transputers, a two-day Symposium and Exhibition starts today
(30 March) at the University of Reading.

The Initiative was a £2.9 million venture between the SERC and DTI to promote
the development of transputer applications within the UK.

Entitled "Transputer Applications - Progress and Prospects", the Symposium
considers some of the successful industrial applications developed at the
Initiatives regional Centres and goes on to explore the future prospects for
the transputer approach to parallel processing by looking forward to the
technology of the next generations of transputers, both announced and
unannounced. The presentations will be given by leading figures from both
industry and academe. The Symposium will point the way forward to the year
2000 and beyond. Over 200 delegates have registered with many coming from
outside the UK.

Many of the most well known suppliers of transputer hardware and software are
present in the accompanying Exhibition which is the only major exhibition of
transputer equipment in the UK this year.

On public view for the first time will be the newly built 'KAPPA signature
verification demonstrator which will be of immense interest to any

organisation where transactions are authorised on the basis of signatures.

MORE/. .
Science and Engineering Research Council Press Office Telephone (0793) 411256/57
Polaris House Facsimile (0793) 411468
North Star Avenue Telex 449466 5
Swindon JANET: PRU @ UKACRLIB
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Also on public view for the first time is the Eddy Current NDT
Instrumentation Demonstrator which will be of interest to any organisation
concerned with crack detection in metals and the new video from’the
Transputer Initiative 'Transputers In Use' which looks at some of the current

industrial uses of Transputers.
The Hexapodal Robot demonstrator which is currently featured in the opening

credits to Tomorrows World will also be on display.

Admission to the Exhibition is free.

- ENDS -
Further information can be obtained from:

Terry Mawby, SERC/DTI Transputer Initiative, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon., OX1ll 0QX. Tel: 0235 44 5787 Fax: 0235 44 5893
email: tpm@uk.ac.rl.inf

NOTES FOR EDITORS

1. PRESS ADMISSION : Free press admission to the Symposium is available.
Please contact Terry Mawby at the address below or at the Registration desk
on the day.

2. The KRAPPA signature verification demonstrator was built by the Electronic
Engineering Laboratory at the University of Kent for the Initiatives 'Image
Processing Transputer Applications Community Club' (IPTACC) and represents
the state of the art in this area.

MORE/...
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Its high degree of sophistication allows it to even detect some fraudulent
signatures that are geometrically identical to the genuine signature based on
dynamicinformation such as the speed at which the characters of a genuine

signature should be written.

3. The Eddy Current Non-Destructive Testing(NDT) Demonstrator was built at
the University of Salford under an award from the Initiative's 'Control
Transputer Applications Community Club' (CTACC).

Eddy Current NDT is a standard method for detecting cracks in metals; the
novel aspect is that instead of the electromagnetic field being displayed on
a screen and being interpolated by a human operator, a transputer-based
instrument gathers and interprets the data. The instrument examines the field
far more quickly and far more accurately than a human operator can, resulting
in not only greater efficiency but higher levels of quality, production and
safety.

4. A comprehensive review of the work of the Initiative is contained within
the Proceedings of the Symposium. Complimentary Press copies will be

available from the address below.

5. The major transputer exhibition, the International Transputer Exhibition
takes place this year in Barcelona alongside the 4th International Conference
on the Applications of Transputers (PACTA92). Both events were founded by the

Initiative.

6. Transputers allow parallel processing systems to be built for a fraction
of their former cost, permitting such systems to cost effectively address
applications where their use was formerly cost prohibitive or very expensive.
Additionally their small size has opened up the embedded controller market to
parallel processing for the first time. They can also be used as add-in
boards for existing computers or as stand alone computers in their own right,

such is their versatility.

; MORE/. ..
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6. Transputers are made by Inmos Ltd. of Bristol, originally a UK Government
start -up company. Inmos is now a member of SGS-Thomson Microelectronics NV,
a Franco-Italian company in which Thorn-EMI, Inmos' previous owners, have a

10% share.
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The transputer

Colin Whitby-Strevens
INMOS Limited,
White friars, Lewins Mead.,
BRISTOL, BS1 2NP, UK

Abstract

The transputer is a programmable VLS component with commu-
nication links for point-to-point connection to other iransputers.
Occam (*} is a language that enables a multi-transputer system
to be described as a collection of processes that operate concur-
rently and communicate using message passing via named chan-
nels.

The INMOS transputer architecture is standardized at the level
of the definition of occam (rather than at the level of the def-
inition of an instruction set). The implementation of the firse
commercially available transputers is illustrated by describing
the implementation of occam.

The paper concludes with outline examples of some applica-
tions.

1 introduction

The transpater architecture has been developed to fulfil four
main objectives:

To create a commercial product range that sets new
standards in ease of programming and ease of engi-
neering.

To provide the maximum performance to the user.

To exploit future developments in VLSI technology
within a compatible family.

To create a programmable component that can be used
to build systems with large numbers of concurrent
computing elements.

YLSI currently permits 5-10 MIP processors to be manufac-
tured in volume for low prices. There is therefore no eco-
nomic barrier to the construction of very powerful computer
systems containing many processing elements. The challenge
is a technical one: how to engineer a system with, say, 1000
processors so-as to make the inherent concurrency usable, and
how to support the design of applications to take advantage
of this amount of concurrency.

(*) occam is a trade mark of the INMOS Group of Companies

0149-7111/85/0000/0292%01.00 © 1985 IEEE
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In the transputer architecture, the exploitation of a high de-
gree of concurrency is made possible through a decentrai-
ized model of computation, in which local computation takes
place on local data, and concurrent processes communicate
by passing messages on point to point channels. Thé localized
communications architecture also has substantial engineering
advantages, described below,

An important design objective of occam and the transputer
was to provide the same concurrent programming techniques
both for a single transputer and for a network of transputers.
Consequently, the features of occam were chosen to ensure an
efficient distributed implementation on transputer systems.
The concurrent processing mechanisms within the transputer
were then designed to match,

The result is that a program ultimately intended for a net-
work of transputers can be compiled and executed efficiently
by asingle computer used for program development. Once the
logical behaviour of the program has been verified, the pro-
gram may be configured for execution by a single transputer
(low cost}, or for execution by a network of transputers {high
performance), or for a configuration representing a trade-off
between these two extremes.

The choice of local processing and communications necessi-
tates a significant change in programming concepts, and new
algorithms need to be developed {4]. The study of warious
applications from this point of view is showing encouraging
results ([15], (16}, {17, {181, {19], [20], [21},{22]) and illustrative
applications are given at the end of this paper.

2 Traasputer architecture

2.1 Overview

The architecture of the transputer is defined by reference to
occam. Occam provides the model of concurrency and com-
munication for all transputer systems. Defining the architec-
ture at this level leaves open the option of using different pro-
cessor designs in different transputer products. This allows
implementations which are optimized for different purposes.
It aiso allows implementations to evolve with changes in tech-
nology, without compromising the standards established by
the architecture.

A transputer contains memory, a processor and a number of
standard point-to-point communication links which allow di-
rect connection to other transputers. The processing capabil-
ity may be general purpose, or may be optimized to a specific
purpose. The on-chip memory may be extended off chip by a
suitable interface.

A transputer may also have special purpose interfaces for
connection to specific types of hardware. The separation of




the transputer system interface {rom other interfaces {eg the
memory interface) means that it is possible to optimize the
various interfaces individually, simplifying their use and im-
proving their performance.

A system is constructed from a collection of transputers
which operate concurrently and communicate through the
standard links. Occam formalizes the computational model.
It enables such a system to be described as a collection of pro-
cesses operating concurrently and communicating through
named channels.

Transputers directly implement the occam model of a pro-
cess. Internally, an individual transputer can behave like any
occam process within its capability; in particular, it can im-
plement internal concurrency by timesharing processes. Ex-
ternally, a collection of processes may be configured for a
network of transputers. Each tramsputer ¢xecutes a2 compo-
nent process, and occam channels are allocated 1o links, which
directly implement occam message-passing.

2.2 Occam

Occam [1, 3, 4] enables a system to be described as a collec-
tion of concurrent processes, which communicate with each
other and with peripheral devices through channels. Occam
programs are built from three primitive processes:

v i:= @ assign expression & to variable v
¢ | e outputexpression € tochannel ©
c ? Vv input from channel C to variable v

The primitive processes are combined to form constructs.
Each construct is introduced by a keyword, followed by a list
of the component processes:

SEQuential components executed one after another
PARallel components executed together
AlTernative component first ready is executed

A construct is itself a process, and may be used as a compo-
nent of another construct.

Conventional sequential programs can be expressed with vari-
ables and assignments, combined in sequential constructs. IiF
and WHILE constructs are also provided.

Concurrent programs can be expressed with channels, inputs
and outputs, which are combined in parallel and alternative
constructs.

Each occam channel provides a communication path between
two concurrent processes. Communication is synchronized
and takes place when both the inputting process and the out-
putting process are ready. The data to be output is then
copied from the outputting process to the inputting process,
and both processes continue.

An alternative process may be ready for input from any one
of a number of channels. In this case, the input is taken from
the channel which is first used for output by another process.

The choice of synchronized communication prevents the loss
of data. The choice of unbuffered communication removes
the need for any store to be associated with the channel.
Copying data from the outputting process to the inputting
process is clearly essential for communication between trans-
puters, and it is easy to make copying within a machine fast
by use of microcode,
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2.2.1 Design correctness

It is necessary to ensure that systems built from transputers,
possibly involving hundreds or thousands of concurrent de-
vices, can be designed and programmed effectively.

The design of occam and the transputer architecture has fol-
lowed two principles to help the designer increase his confi-
dence that his design is correct: simplicity and formality.

Occam has been kept simple, with the aim of making it easy
to learn, and easy to use {3}

Formal techniques become much more important when con-
currency is involved, as techniques based on exhaustive test-
ing are impracticable. Occam has been designed to havea for-
mal semantics. The way that this was achieved was to define
a set of formal properties that the language should possess.
These take the form of a number of behaviour-preserving
transformations that should be applicable to any o¢cam pro-
gram [12]. Many semantic issues in the design and develop-
ment of the language were resolved by reference to this set
of properties. Enforcing this discipline has enabled a formal
semantics for the language to be developed {13}, and has laid
the basis for software engineering tools ranging from formal
validation to program transformation.

Practical and immediate benefits have been that the language
is very self-consistent (which makes life easier for the com-
piler writer and user alike), that the equivalence of concur-
rent algorithms can be studied, and that programs can be
transformed to have greater or less decentralisation without
changing their logical behaviour{4}.

2.2.2 Real time

On an individual transputer, a parallel construct may be con-
figured to prioritize its components, and an alternative con-
struct may be configured to prioritize its inputs. A higher
priority process always proceeds in preference to a lower pri-
ority one.

The equivalent of an interrupt {(a high priority process being
scheduled in order to respond to an external stimulus) is de-
signed entirely in occam, as all input and output is formalized
as channel communication. A high priority process may wait
for the first of several different inputs to become ready by
using the ALT construct,

A high priority process proceeds until it terminates or has to
wait for a communication. A system can thus be designed
to meet real-time constrains by designing each high priority
process so that the amount of processor time it requires over
a given period is bounded, thus placing a bound on the total
time that a high priority process may have to wait for the
cpu. In many cases, it may be possible to reason that two or
more high priority processes will never conflict, and that the
latency reduces to the time required to switch from a low
priority process to a hgh priority process. Each transputer
implementation places a bound on this time.

A global synchronized sense of time is not practicable, and
not representative of real-world situations. There is therefore
a local concept of time, cach timer being impiemented as an
incrementing clock.

Logically, access to a timer is treated as an input. A delayed
input may be used, which waits until the value of the clock
reaches an appropriate value. A timer input may be used in
an alternative construct. This can be used to provide timeout
on a communication.




2.3 {nter-transputer links

A link between two transputers provides a pair of occam
channels, one in each direction. A link between two trans-
puters is implemented by connecting a link interface on one
transputer to a link interface on the other transputer by two
one-directional signal lines. Each signal line carries data and
control information.

Communication through 2 link involves a simple protocol,
which provides the synchronized communication of occam.
The protocol provides for the transmission of an arbitrary
sequence of bytes, which allows transputers of different
wordlength to be connected.

Each message is transmitted as a sequence of single byte com-
munications, requiring only the presence of a single byte
buffer in the receiving transputer to ensure that no infor-
mation is lost,

Each byte is transmitted as a start bit followed by a one bit
followed by the eight data bits followed by a stop bit. After
transmitting a data byte, the sender waits until an acknowl-
edge is received; this consists of a start bit followed by a zero
bit. The acknowiedge signifies both that a process was able
to receive the acknowledged byte, and that the receiving link
is able to receive another byte. The sending process may pro-
ceed only after the acknowledge for the final byte of the mes-
sage has been received.

Figure i Link protocol

Data packet
0123454687

Data 0

Acknowledge packet

1 0

Data bytes and acknowledges are multipiexed down each sig-
nal line. An acknowledge is transmitted as soon as reception
of a data byte starts (if there i3 a process waiting for it, and if
there is room to buffer another one). Consequent!y transmis-
sion may be continuous, with no delays between data bytes.

Using point to point serial communications, rather than
busses has a number of advantages:

Board layout is much simplified.

Communications bandwidth is increased, as many
links in a system can operate concurrently.

Devices of different word lengths and performance
can be easily interconnected.

Transputers with different word iengths and performance
will all interwork together, as will all future products, ensur-
ing that systems can be readily upgraded as the technology
advances. It is not necessary to downgrade the performance
of a connected set of components to that of the slowest.
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2.3.1 Electrical properties of links

The signals are TTL compatible and their range can be ex-
tended by inserting industry standard line drivers and re-
ceivers. The standard transmission rate is 10MHz, providing
a maximum performance of about iMByte/sec in each direc-
tion on each link.

The links are designed to make the engineering of transputer
Systems as easy as possible. Irrespective of internal perfor-
mance, all transputers use a reference clock of 5MHz, and
this is required only for approzimate frequency information
and not for phase. All future transputers will also use this
same frequency. The low frequency was chosea to simplify
the distribution of the clock in a large system and it is not
neccesary for all transputers to be on the same clock, enabling
interworking between independently designed systems. Thus,
transputers can be interconnected just as easily as TTL gates
- indeed, the constraint on the designer is just the same - he
must not exceed the maximum capacitance.

3 Implementation

3.1 Instruction set requirements and pverview

The first transputer product is the T424, a general purpose
32 bit machine with 4K bytes of on-chip memory (which can
be extended with off chip memory) and four bi-directional
communications links, which provide a total of 8Mby1ies per
second of communications bandwidth. This will shortly be
followed by the T222, a 16 bit machine providing similar fa-
cilities,

The design objectives of the 11 instruction set and the proces-
sor for these first transputers were as follows:-

To provide an efficient implementation of occam, 30
that the use of high level languages results in efficient
use of silicon capability, and that highly concurrent
programs execute with minimum overheads.

To provide a simple and direct implementation of oc¢-
cam 50 that programs can be compiled simply and
straightforwardly, and to ensure that there is no need
to consider programming at a lower level than that de-
fined architecturally.

To provide word length independence, so that a pro-
gram can be executed using processors of different
word lengths without recompilation.

To provide position independence, so that program and
workspaces may be allocated anywhere in memory af-
ter compilation.

To provide low latency response to communications
with external devices.

The lowest level of programming transputers is to use occam
{occam is equivalent in effectiveness to a conventional mi-
croprocessor’s assembler). The instruction set, and the use of
occam as its programming language, is therefore illustrated
by describing the main usage of the various registers in the
machine, and by giving typical instruction sequences for sim-
ple occam constructs. Note that it is not common practice to
abbreviate the names of the instructions, or to use mnemon-
ics. Transputer system designers have no general need to write
down instruction sequences, and using full names aids read-
ability of the examples.
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3.2 The I1 lnstruction set

3.2.1 Performance note

Two important performance measures are the number of
bytes to hold the program, and the speed of execution pro-
vided by an implementation. It should be realized that the
speed of execution of individual instructions is less impor-
tant than the speed with which key system functions are per-
formed, bearing in mind the intended uses of the machine.

The 11 instruction set is designed specifically with a view
1o efficient and fast YLSI implementation, although various
trade-of fs of performance versus silicon area are still pos-
sible. On the first transputers, each instruction is executed
in one or more processor cycles using one level microcode.
The figures given in this paper assume that program and data
are stored on chip. Extra cycles may be required if program
and/or data are stored off chip, though the significance of
this can be reduced to a low level with careful organisation
of the application. Full details are given in [14}

1t should be noted that aithough all transputers have an ¢x-
ternal clock cycling at 5 MHz, the internal speed is set as part
of the manufacturing process. It is expected that the range of
speeds of the first transpuiers will provide internal processoer
cycle rates of up to 20MHz.

The design of the first transputers carefuily balances the
costs of memory access and aiu operation, and contains suf-
ficient overlap to ensure a high degree of efficiency. Many
of the imstructions execuie in a single cycle, and typical se-
quences of commonly used instructions can delivera 15 MIPS
execution rate.

3.2.2 Memory organizatioa

The memory address space comprises a signed linear address
space. The instruction architecture does not differentiate be-
tween on-chip and of f-chip memory. This allows the applica-
tion designer to have complete control over the placement of
code and data to take advantage of the performance benefits
of on-chip memory.

A byte in memory is identified by a single word value called
a pointer. A pointer consists of two parts: a word address and
a byte selector. The byte selector contains as many bits as are
needed to identify a single byte within a word and occupies
the least significant bits of the pointer. For example, in a
24 bit transputer the word address would occupy the 22 most
significant bits and the byte selector the 2 least significant
bits.

Special instructions, such as load local pointer and word sub-
script, are provided to construct and manipulate pointers.
Pointer values are treated as signed integers, starting from
the most negative integer and continuing, through zero, to the
most positive integer. This enables the standard comparison
functions to be used on pointer values in the same way that
they are used on pumerical values.

The addressing instructions provide access to items in data
structures, using short sequences of single byte instructions,
allowing the representation of data structure access to be in-
dependent of the word length of the processor.

3.2.3 Registers

The design of the transputer processor exploits the availabil-
ity of fast-on-chip memory by having only a small number of

2935

registers; six registers are used in the execution of a sequen-
tial process. In the internal organization of the processor, all
internal registers and data paths are the wordlength aumber
of bits wide. The small number of registers, together with the
simplicity of the instruction set, enables the processor to have
relatively simple (and fast) data paths and control logic.

The six registers are:

The workspace pointer which points to an area of store
where local variables are kept.

The instruction pointer which points to the next in-
struction to be executed.

The operand register which is used in the formation
of instruction operands.

The A, B and C registers which form an evaluation
stack. The evaluation stack is used for expression eval-
uation, to hold the operands of scheduling and commu-
nication instructions, and to hold parameters of proce-
dure calls.

Figure 2 Registers for sequential programming

Registers Locals

— —

Program

A

wWorkspace

Next
instruction

Operand

The evaluation stack removes the need for instructions to
specify registers explicitly. Consequently, most of the exe-
cuted operations (typically 80%) are encoded in a single byte.
The 11 instruction set saves on time and area through not hav-
ing to decode secondary control fieids or register fields.

3.2.4 Support for concurreacy

The processor provides efficient support for the occam model
of concurrency and communication, It has a scheduler which

enables any number of concurrent processes to be executed

together, sharing the processor time. This removes the need

for a software kernel. The processor does not need to sup-

part the dynamic allocation of storage as the occam compiler

is able to perform the allocation of space to concurrent pro-

cesses. There is aiso 1o need for the hardware to perform

access checking on every memory reference, resulting in an

overall improvement in performance.

At any time, a concurrent process may be

active - being executed
. on a list awaiting execution

inactive - ready toinput
- ready to output
- waiting until a specified time
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The active processes waiting to be executed are heid on a list.
This is a linked list of process workspaces, implemented using
two registers, one of which poiats to the first process on the
list, the other to the last.

Figure 3 Concurrent processes
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A start process instruction creates a new process by adding a
new workspace to the end of the scheduling list, enabling the
new concurrent process to be executed together with the ones
already being executed.

The correct termination of a parallel construct is assured by
use of the 2nd process instruction. This usesa workspace loca-
tion as a counter of the components of the parallel construct
which have still to terminate. When the components have all
terminated, the counter reaches zero, and a specified process
can then proceed.

The processor supports two priority levels, implemented us-
ing two lists as described above. A switch from a priority
{ process (low priority) to priority 0 process (high priority),
or vice versa, may occur when a process stops, when a chan-
ael becomes ready, or when a communication completes and
causes a priority 0 process to become ready.

To allow 2 maximum latency figure to be calculated, the in-
structions which may take a long time to execute have been
implemented to allow a switch during execution. Conse-
quently, the maximum time taken to switch from priority 1
to priority 0 is 58 cycles (less than three microseconds with
a 50ns processor cycle time). The switch from priority 0 to
priority 1 only takes place when there is no priority 0 work
available. The time taken for the switch is 17 cycles.

A context switch between processes, both executing at pri-
arity 1, occurs only at times when the evaluation stack has
no useful contents, and therefore affects only the instruction
pointer and the workspace pointer. With the need to save and
restore registers at a minimum, the implementation of con-
currency is very efficient.

3.2.8 Instiruction format

All instructions have the same format. Each is one byte long,
and is divided into two 4 bit parts. The four most signifi-
cant bits of the byte are a function code, and the four least
significant bits arc a data value.
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Figure 4 Instruction format

Function Data

The use of a single instruction format requires only a simple
decode mechanism in the processor, which reduces area and
increases speed. The use of single byte instructions decou-
ples the instruction format from the wordlength of the ma-
chine. In particular it avoids the commonly found problems
concerned with aligning instructions on word boundaries.

Short instructions also improve the effectiveness of the in-
struction fetch mechanism, which in turn improves processor
performance. The processor uses otherwise spare memory cy-
cles to fetch instructions. As memory is word accessed, a 32
bit transputer will receive four instructions for every fetch.
There are two words of instruction feich buffer so that the
processor rarely has to wait for an instruction fetch before
proceeding (only on transfers of control if on-chip memory
is used). Since the buffer is short, there is little time penalty
whan 2 jump instruction causes the buffer contents to be
filled.

There is no instruction cache, as only rarely would such a
cache reduce the number of processor cycles required. An
on-chip cache incurs a significant cost in terms of chip area,
as a cache requires several times the area of a simple memory
to store the same amount of information. An off-chip cache
complicates the external interface. Both require exira logic,
even when aided by software {(as in the IBM 801 {7]), which
would be likely to siow down the overall speed of operation
and use up even more chip area. The view is taken that the
chip area is better spent on providing memory for the appli-
cation.

3.2.6 Direct functions

The representation provides for sixteen functions, each en-
coded as a value in the range 0 to 15. Thirteen of these values
are used to encode the most important functions performed
by any computer. These include:

load non local
store non local

{oad constant
add constant

load local Jjump
store local conditional jump
load locai pointer

call

The most common operations in a program are the loading
of small literal values, and the loading and storing of one of
a small number of variables. The load constant instruction
enables values between 0 and 13 to be loaded onto the evalu-
ation stack with a single byte instruction. The load local and
store local instructions access locations in memory relative to
the workspace pointer. The first 16 locations can be accessed
using a single byte instruction.

The load non local and store non local instructions behave sim-
ilarly, except that they access locations in memory relative
to the A register. Compact sequences of these instructions
allow efficient access to data structures, and provide for sim-
ple implementations of the static links or displays used in the
implementation of block structured programming languages.
This eliminates the need for complicated and difficult-to-use
addressing modes.




In the following examples, X and ¥ are assumed to be local
variables allocated to offsets x and y respectively in the first
sixteen words of workspace.

occam instruction sequence bytes cycles

X := 0 [oad constant 0 i 1
store local x i i

X := y load local y i 2
store local x i I

In this example, Z is -assumed to have been declared exter-
nally to the PROC which contains this assignment statement.
The compiler allocates a local workspace location, at offset
staticlink, to hold the address of the workspace that contains
the variable 2.

occam instruction sequence bytes cycles

2 = 1 load constant 1 i 1
{oad local staticlink 1 2
store non local z i 2

3.2.7 Prefixing functions

Two more of the function codes, prefix and negative prefix,
are used to allow the operand of any instruction to be ex-
tended in length.

All instructions are executed by loading the four data bits
into the least significant four bits of the operand register,
which is then used as the the instruction’s operand. All in-
structions except the prefixing instructions end by clearing
the operand register, ready for the next instruction.

Figure 5 Use of operand register

Function Data

Operand register

The prefix instruction loads its four data bits into the operand
register, and then shifts the operand register up four places.
The negative prefix instruction is similar, except that it com-
plements the operand register before shifting it up. Conse-
quently operands can be extended to any length up to the
fength of the operand register by a sequence of prefixing in-
structions. In particular, operands in the range -256 to 255
can be represented using one prefixing instruction.

The following example shows the instruction sequence for
loading the hexadecimal constant #754 into the A register,
and gives the contents of the O register and the A register
after executing each instruction

O register A register
prefix #7 #7 ?
prefix #5 #75 ?
load constant #4 0 #754
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The use of prefixing instructions has certain beneficial con-
sequences. Firstly, they are decoded and executed in the same
way as every other instruction, which simplifies and speeds
instruction decoding. Secondly, they simplify language com-
pilation, by providing a completely uniform way of allowing
any instruction to take an operand of any size. Thirdly, they
allow operands to be represented in a form which is indepen-
dent of the processor wordlength.

Each prefixing instruction occupies one byte and takes one

- ¢ycle to execute,

3.2.8 ladirect fuactions

The remaining function code, operaze, causes its operand to
be interpreted as an operation on the values held in the eval-
uation stack. For example, the plus operation adds the values
of the A and B registers. The result is left in the A register,
and C is copied into the B register.

The operate instruction allows up to 16 such operations to be
encoded in a single byte instruction. However, the prefixing
instructions can be used to extend the operand of an operate
instruction just like any other.

The encoding of the indirect {unctions is chosen so that the
most frequently occurring operations are represented with-
out the use of a prefixing instruction. These include arith-
metic, logical and comparison operations, together with the
most {requently used control functions and register manipu-
lation functions.

Less frequently occuring operations have encodings which re-
quire a single prefixing operation (the transputer instruction
set is not large enough to require more than 512 operations to
be encoded!).

3.2.9 Expression evaluation

Loading a value onto the evaluation stack pushes B into C,
and A into B, before loading A. Storing a value from A, pops
B into A and C into B.

The A, B and C registers are the sources and destinations for
arithmetic and logical operations. For example, the add in-
struction adds the A and B registers, places the result in the
A register, and copies C into B.

{f there is insufficient room to evaluate an expression on the
stack, then the compiler introduces the necessary temporary
variables in the local workspace. However, expressions of
such complexity are, in practice, rarely encountered. Three
registers provide a good balance between code compactness
and implementation complexity.

Single length signed and single length modulo arithmetic
is directly supported. In addition, a quick unchecked mul-
tiply is provided, in which the time taken is proportional
to the logarithm of the second operand. The performance
of these instruction sequences compares favourably, in both
space and time, to that achieved by more complex instruction
sets. Where a more complex instruction set cannot achieve the
same effect in a single instruction, the performance gain is
significant.




occam instruction sequence bytes cycles
X + 2 load local x 1 2
add constant 2 1 i
(v + w) * (y + 2)
) load local v { 2
load local w i 2
add l i
load local y { 2
load local z 1 2
add i i
multiply 2 7+wordlength

3.2.10 Input and output

A channel provides a communication path between two pro-
cesses. Channels between processes executing on the same
transputer are implemented by single words in memory (inter-
nal channels); channels between processes executing on dif-
ferent transputers are implemented by point-to-point links
(external channels).

As in the occam model, communication takes place when both
the inputting and outputting processes are ready. Conse-
quently, the process which first becomes ready must wait until
the second one is also ready.

A process prepares for an input or as output by loading the
evaluation stack with a pointer to a buffer, the identity of
the channel, and the count of the aumber of bytes to be trans-
ferred. It then executes an input message Or an gutput message
instruction as appropriate.

The input message and ouiput message instructions use the ad-
dress of a channel to determine whether the channel is in-
ternal or external. This means that the same instruction se-
quence can be used for both internal and e¢xternal channels,
allowing a process to be written and compiled without knowl-
edge of where its channels are connected. In particular, either
an internal or an external channel can be used as the actual
parameter for a channel parameter of a named process.

A communication primitive communicating a block of size n
bytes requires only one byte of program, and on average the
maximum of {24, 21+(8%n/wordlength)) cycles (including the
scheduling overhead).

Instructions for enabling and disabling channels provide sup-
port for an implementation of alternative input without the
use of polling.

33 Discussion

The requirements of the transputer indicate that a transputer
processor should have a simple design. A transputer hasasub-
stantial amount of area given over to memory and communi-
cations, indeed a transputer can be thought of as a memory
chip with a processor in one corner. In fact, the processor on
the first transputers occupies about 25% of the available area.

It was clear that a simple processor could be constructed
which would leave the majority of a chip area available for
other purposes. The early RISC experiences [6, 7, 8, 9] lent
further support to the evaluation that performance resulting
from using a simple processor need aot suffer.

Various projects, for example the IBM 801 {7] and MIPS (8],
are willing to pay a price of software complexity in order
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to achieve implementation efficiency. However, the evidence
of interpretive schemes for high level languages was that 2
simple instruction set could be designed which would lead to
a better hardware/sof tware relationship, and hence simplify
the software as well. This would probably mean rejecting the
strategy of compiling to a level best considered as microcode.

The justification for the use of multiple cycle instructions
must be that the instructions well match the software require-
ments. In the transputer processor for the I, repetitive oper-
ations, such as multiply, and block move, are implemented by
microcode (with hardware assistance). The alternative RISC
implementation [9] is to provide, for example, a single cycle
multiply step, and for the software to compile the appropriate
loop. The efficiency, in both code space and execution speed,
resulting from the microcoded solution outweighs the cost of
area and capacitance in the microcode ROM.

The I1 instruction set achieves word leagth independence, in
that a program which manipulates bytes, words and truth val-
ues can be translated into an instruction sequence which be-
haves identically whatever the wordlength of the processor
executing it (apart from overflow conditions resulting from
word length dependencies). This results from the fact that
the instruction size is independent of wordlength, the method
of representing long operands as a sequence of prefixing in-
structions, and the memory addressing structure.

Workspaces are held in addressable memory, which the de-
signer can choose to allocate on chip or off chip. Hoiding
workspaces on chip forms a very effective alternative to the
use of cache memory [11], the cost of which has already beean
discussed. A further advantage is that, unlike cache memory,
rarely accessed data need not be brought on chip.

In general, a program needs much less store to hold it than an
equivalent program in a conventional microprocessor. Since a
program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. As memory
is word accessed, the processor will receive several instruc-
tions for every fetch (depending upon the number of bytes in
a word).

The overall effect is thus that both compactness and speed
have been achieved, together with economical use of silicon.

4 The transputer as a family

The T424 32 bit transputer is the first of a range of transputer
products [14]. The next products will be a 16 bit transputer
offering similar facilities to the T424, a high performance
disk controiler and a high performance graphics controller.

o
A transputer family dcv(cc controller has the same organ-
isation as a transputer,’ with the addition of special high
speed control logic and interfaces. Device controtlersare pro-
grammable, in occam, in the same way as transputers. This
allows a designer to tailor the controller’s function to his par-
ticular application.

4.1 A personal workstation

This section explores the design possibilities provided by the
transputer architecture. The first step is the outline design
of a personal workstation, which can be designed and built
using functionally distributed transputers. One transputer,
the applications processor, accepts the user’s commands and
carries out the appropriate processing, calling on two other
transputers, which look after a disk system and a graphics
display system respectively. Each of the latter two transputers




and associated hardware can be replaced by transputer based
device controllers-as they become available.

Figure 6 Personal computer workstation
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The transputers are connected together using the standard
transputer communications links. The resulting system can
be enginecered onto a single card.

The architecture permits a number of variations oa the im-
plementation of the workstation to be made without major
redesign.

For example, the disk controller can double as the applica-
tions processor, and the applications transputer removed com-
pletely. Alternatively, more processors can be added, and the
occam processes redistributed to take advantage of the ad-
ditional concurrency. Vastly more than 1 Mbyte of memory
could be attached.

4.2 Transputer without external memory

This second example explores the design and use of a large
amount of processing power based on a transputer with only
link interfaces in, say, a 28 pin chip carrier.

Figure 7 Single board transputer system
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Figure 7 shows 128 transputers on a single printed circuit
board. The board has 1/2Mbyte of fast static RAM and up to
1 GIPS (Giga Instruction Per Second) of processing power.

In this application, the board is used to provide high perfor-
mance database searching. We assume that the database is
partitioned, so that the most commonly accessed parts of a
database can be placed in the transputer array.

The concept is shown in a simplified form in figure 8.
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Figure 8 Concurrent database search
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Here 16 transputers are connected into a square array with
search requests input at one corner of the array, and answers
being output from the other corner. Each transputer keeps a
small part of the database in its local memory.

A small program in each transputer does the search. It can
receive two sorts of input. A search request is forwarded to
any connected transputer which has not yet received the re-
guest and simultaneously a search is made through the local
data. The other sort of input is an answer from a transputer
which has just searched its own local memory. This answer
is merged with the answer generated from the local data and
forwarded.

A simple performance analysis indicates the latency and
throughput of this application on the 128 transputer board.
Assume that each record is 16 bytes long, and that a search
key is four bytes long. Each transputer can hold 200 records
and the whole system can hold 25,000 records. For each trans-
puter tosearch its own records against a request will take less
than a millisecond.

The time taken to transmit a search request to each trans-
puter in the array is proportional to the longest path across
the system, in this case 24 links.

[t takes about 6 microseconds to send a 4 byte message from
one transputer to another. It will thus take about 150 mi-
croseconds to transmit a search request to the whole array,
and about another 150 microseconds to transmit the answer.
The whole search of 25,000 records will take less than 1.3 mil-
liseconds.

However just as an individual transputer can be performing
input, output and processing at the same time, so can the ar-
ray. Requests can be pipelined through the system with a
further request being input before the previous one has come
out.

The size of the database partition can be increased by adding
more boards. The search throughput is not adversely affected
by this.

5 Conclusions

By taking an integrated approach to the design of a YLSIcom-
puter and a concurrent programming language it is possible
to produce 2 new level of system building block which pro-
vides a very efficient implementation of the corresponding
design formalism.




In particular, it is possibie to support the use of the same con-
current programming techniques both within a single trans-
puter and for a network of transputers. The concurrent pro-
cessing features of a general purpose programming language
can be efficiently implementad by a small, simple and fast
proCessor.

The resulting transputer provides the unique concept of a
programmable component enabling highly concurrent 5ys-
tems to be implemented within a formal design framework.

The architecture also provides a straight forward technology
upgrade path. Future fransputers can integrate more memory
and more processors. The System architecture means that cur-
rentand future products will be fully compatible and capable
of interworking.
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EXECUTIVE SUMMARY

This report describes work done in the period July - September
1989 on a survey of industrial perceptions of the SERC/DTI
Transputer Initiative and of the needs of industry £rom the
Initiative. It concludes that the existing awareness objectives
of the Initiative should be retained, but that there could be a
number of changes in the marketing field which, will, if
implemented, enable the Initiative to play a larger part in
increasing industrial awareness of advanced information
technology in the United Kingdom. Particular importance attaches
to recommendations on the positioning of the Initiative in
relation to other awareness activities and on the training of
Initiative staff.
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BACKGROUND

The work covered by this report has been done by IT World
Ltd under a contract placed on behalf of the Science and
Engineering Research Council by the Atomic Energy Authority.
The contract was dated 3 July, with an initial duration of
10 weeks. An extension of time to 31 October was
subsequently agreed to by the Initiative Coordination.

IT World have proceeded generally in accordance with the
Terms of Reference provided when proposals were originally
requested. The defined objectives of the survey were:

To look at the current perceptions in Industry of the
Initiative and the six Regional Centres.

To define the future needs of industry from the Initiative,
and the Centres in particular, with respect to the balance
of the facilities and services the Centres offer and to the
most effective ways of spending uncommitted funds through
the remainder of the project.

The survey was commissioned at a time when relatively little
freedom of action to make changes remained: only £120,000,
available over 2 years, remained uncommitted. We were not
asked to contain our recommendations within this sum, but we
have borne in mind that improvements in effectivenss rather
than radical change were being sought.



METHODOLOGY

4.

6.

Sequence We have done the work in 3 phases:-
Familiarisation with the Initiative and Questionnaire design
Questionnaire administration and analysis

Interviews with selected companies

Development of conclusions and recommendations

At the beginning of the project and at the end of each
phase, a meeting was held with the Coordination team. A
preliminary report was compiled at the end of September 1989
and submitted to the Coordinator. IT World was invited to
present this report to the SERC/DTI committee which provides
guidance to the Coordinator on 5 October 1989. This final
report contains a small amount of clarification and
additional comment relating to issues raised during the
discussion on that occasion, but no substantial changes have
been made.

Initial Familiarisation After an initial meeting with the

Deputy Coordinator, we made contact with the Regional Centre
managers or administrators, either by telephone or by
personal visits. Meetings were subsequently held with two
centre directors and with other members of the coordination
team. Meanwhile, members of the study team spent a small
amount of time reading periodicals and papers and reviewing
literature from the Centres and from Suppliers.

Questionnaire Design A set of three questionnaires was
designed by the study team, and the wording of all the
guestions was then reviewed by an independent consultant to
avoid biassed or leading questions. The forms were
designed so that separate questions could be addressed to:-



1. General managers responsible for investment decisions

2. Functional managers (eg. IT Director or Technical
Director) responsible for computer . system
implementation

3. Technologists

A note setting out the background to the survey was attached
to each form and a covering letter was forwarded with each
set. Specimens of these documents are at Annex A.

Questionnaire Distribution It was felt to be important that
a random sample of companies, including the prescribed

numbers of smaller companies, should be approached. The
following numbers of companies are included in the terms of
reference: -
Engineering Non Engineering
Sector Service Sector
Large 6 4
Medium 12 8
Small 12 -

We considered that no useful purpose would be served by
mailing questionnaires to companies with only limited use of
computers, eg those confining their use to word processing
or standard accounting packages, but that we should not seek
to locate experience in parallel processing technology. We
therefore decided to use a standard commercial directory
(Kompass UK Volume III Company Information) and a random-
number generator program to identify random page numbers.

We then started at the top of each identified page, and
telephoned companies in the sequence listed on each page to
seek the agreement of an appropriate manager to
participation.



10.

As the number of respondents built-up, companies not
conforming to the size and manufacturing/service industry
profile required were ignored. A total of 138 companies
were contacted, and 42 agreed to participate. A list of
these companies is at Annex B.

Questionnaire Response Questionnaires were sent out to
companies who had agreed to participate in mid-August.
Initially response was quite rapid, but the total number of
respondents has proved disappointing. A summary of all the
responses received is at Annex C.

Interviews Interviews were arranged with a variety of

companies known to be involved with advanced computing. The
Terms of Reference envisaged a total of 20 interviews with
companies, not more than half of whom were to have been
involved with the questionnaires. In the event, taking into
account the poor response to questionnaires and the need to
find more parallel processing users, a total of 26 companies
were interviewed. A summary of the responses is at Annex D.
Copies of individual interview reports are being made
available separately.

Other inputs This report does not include any conclusions
or recommendations which did not arise from at least one
respondent (questionnaire or interview). However, a
relatively small number of respondents has any detailed
familiarity with the technology and we have taken into
account inputs from opinion-formers, user, consultants,
academics and others in weighting our conclusions. We make
no claim for statistical validity.



PERCEPTIONS OF THE INITIATIVE

OVERALL INDUSTRIAL AWARENESS

11.

12.

There is little awareness of developments in Information
Technology in industry generally. A recent study for the
DTI of awareness of various aspects of advanced IT topics
suggested that in only 8% of companies are their directors
aware of parallel processing, with an additional 2% being

aware of the commercial problems of INMOS. The Transputer

Initiative has to be judged against this background.

In the course of the study, IT World have, by questionnaires
and interviews, collected information from a group of
potential users of increased computing power. This group is
smaller than, but comparable with, the group surveyed in the
study referred to above. Those companies that participated
in the survey recognised their needs for better
communications between computers and for more speed, more
memory and "better" software, in varying degrees. In this
group, awareness of the Transputer Initiative is lower than
might have been expected, considering that only businesses
expressing an interest in developments in IT were included.
An analysis of the entire group of businesses with whom IT
World have had contact during this study is:-



Total Total Aware Used
Contacted Questionnaire of Centres
(Responses as Initiative
at 25/9/89)
and Interview
Reports

Engineering and
Manufacturing 111 26 10 3
Industry Users .

Service Industry 36 12 2 1
Users

Total Users 147 38 12 4
Suppliers 10 10

Total 157 48

13.

14.

Awareness in large engineering companies, who do not
generally rely on support from initiatives of this type, is
higher than amongst the general businesses surveyed.

Businesses that have received information on the initiative
will be aware of the existence of the regional centres.
Utilisation of the centres is perceived to be low by the
centres themselves, but against the national background this
is not suprising. Factors which affect the use of the
centres are discussed below.

We were not asked to consider the perceptions of the
Initiative amongst Universities and Polytechnics. However
many of the research students working in these institutions
will be going into industrial jobs after they have obtained
higher degrees and they will contribute to industrial

awareness.



Awareness of parallel processing, and of the transputer, is
widespread in tertiary education and the subject is
appearing in science and engineering curricula. Many
research administrators and educators believe that more
credit should be given to the Initiative, at the least for
an increase to the range and depth of research projects, but
also in some cases for promotion of involvement of
industrial collaborators in the hardware and software
industries, for support of technology transfer and for
dissemination of information (eg in the Mailshot and in
Parallelogram). However, transfer of technology "on the
hoof" is more effective at post-research level than in
graduate recruitment, and cannot be relied upon to influence
R&D programmes (cf the slow industrial take up of UNIX
despite its widespread use in universities).

PERCEPTIONS OF THE INITIATIVE BY THOSE ALREADY AWARE

lSI

16.

17.

The Initiative and the Centres are naturally perceived as
being academic, in that they are staffed by SERC or
academics and staff of most of the centres work on research
projects in academic environments. An additional
perception, in some cases, is that the Centre staff are seen
as computer scientists with academic objectives rather than
being aware of current (post-research) industrial need.

The Initiative has not been positioned in relation to other
DTI awareness initiatives. The lack of a visible overall
programme structure causes confusion, especially in view of
a current increase in the range of DTI IT-related awareness
activities.

Many people in industry would prefer to see money spent on
direct support for innovation rather than on promotion or
awareness. Government support of innovation inside
individual companies has a long history and broad
expectations of the role of government are slow to change.



18.

19.

20.

IT-suppliers are in general, well aware of parallel
processing and the Initiative but still have some
reservations. In particular some software suppliers think
that the Centres, in developing software solutions, may be
competing with them, when they could usefully promote what
is already available.

There seems to be some doubt about the provision of
proprietary demonstration software for the Centres. We
believe that the Initiative coordination team should
continually seek new demonstration packages, and arrange if
possible for these to be loaned to as many Centres as can
use each demonstration. However, we believe that the Centre
managers should have wide discretion to borrow, rent or buy
(funds permitting) additional demonstration material. In
general, we believe that many benefits would flow from
closer relations between the Centres and companies in the
software industry. Not only would suspicions be dispelled,
and some duplication of products be avoided but the smaller
software suppliers could benefit from exposure to user views
available through the Centres. The Centres could, no doubt,
provide some guidance on market needs but more important in
the short term, they could influence the quality and product
support standards especially in the smaller emerging

companies.

Success in the activities already going on, which would be
enhanced by some of the measures now proposed, will itself
lead to the dispelling of doubts about the commercial
viability of the centres after 1991/1992 and the influence
of the centres will thus be further enhanced.

The approach to the titles of the Centres, to the use of
special titles for promotional purposes and to corporate
image matters is seen as fragmented and confusing.



Factors aggravating this confusion are the coexistence of
other DTI-supported centres which are involved in parallel
processing and the use of the title "Transputer Centre" by
centres outside the Initiative.

INDUSTRIAL NEEDS

INTRODUCTION

21.

In the course of this study we have not found any marked
mismatch between the activities of the Initiative and the
needs of industry. Many of our recommendations are
therefore directed to improving the effectiveness of the
Initiative as a whole in meeting its original objectives.
However, some of the Centres’ activities are directed to
meeting needs which can be met outside the Initiative and we

are suggesting some changes in emphasis.

Industrial needs in relation to a developing area of
technology can be characterised as follows:

Awareness

Information on the technology

Specific information on products, including availability and
compliance with standards

Opportunities to try out products and assess their
performance

Technical Advice and Consultancy

Training for managers and technical staff

We deal with these, individually, below.
The desire of industry for information on, and

demonstrations of, "real" applications has repeatedly been

articulated during the survey.



The wish for reality embraces a variety of aspects of
technology transfer, but information on availability and
conformance to standards, and effective product support
(including good manuals) are of more and more importance.
Interesting and well documented demonstrations are
increasingly required.

It is also necessary to engender confidence: there is still
a tendency to describe parallel processing as Advanced
Technology and there is a fairly widespread feeling that
vadvanced" means either "unproven" or "very complex" (or
both).

This is especially true of small and medium-sized companies,
who can often recognise the relevance of a technology to
their own business if they see it applied, but who may not
have the resources for adequate investigation of a
technology that may prove to be inapplicable.

AWARENESS

22.

As noted above, general awareness of IT issues amongst
industrial managers is low. Responsibility for improving
this situation cannot be undertaken by an Initiative which
covers a specific technology. A number of government
initiatives are being undertaken on IT-related issues. The
effectiveness of this group of initiatives would be improved
if the structure of an overall programme were published, so
that industrial managers can select appropriate events for
staff at different levels. Furthermore, awareness of the
Transputer Initiative could, given better coordination, be

more widely promoted in other initiatives.

10



23.

At the technical management level, except in large
companies, overall awareness of the Initiative is also low.
We believe that it could be improved by a number of
relatively simple measures which would not require large
changes in resource allocation. Such measures are discussed
in more detail below.

INFORMATION

24.

25.

26.

27.

Technical managers involved in parallel processing will Dbe
happy to rely on the Initiative for information on products,
for diaries of events and for guidance on sources of data
that they need.

We believe that the Mailshot has a valuable role to play and
that it should be continued in its present low-cost form:
some minor improvements in sub-division, pagination etc
could be included at very little extra cost. A diary of
events would be a popular addition, which could well improve
coordination with other awareness activities and reduce
clashes of dates eg between events at Centres and
Institution events.

The inclusion of more reportage and some case study material
in the Mailshot is, we understand, already planned and will
be well worth while.

The Centres have opportunities to distribute product
literature to visitors and this activity should be
encouraged, provided that care is taken to avoid any
impression that products are thereby being endorsed.

The Initiative staff take part in exhibitions, and provide a
presence at conferences where they distribute information.
This activity is appreciated and, in our opinion, is
effective, especially if stands can be manned by people who
can answer questions.

11



28.

The Initiative takes a leading role in organising an annual
international conference and exhibition. We visited the
exhibition at Liverpool in September and were impressed by
the enthusiasm of most of the exhibitors and the
appreciation of the role of the 1Initiative by the
academically-based exhibitors in particular. The range of
commercial products is now rapidly increasing and it will be
important at future events to recognise that maturing
products need rather more elaborate presentation if the
impression that they are still in the research phase is to
be dispelled.

TRAINING (AT CENTRES)

29.

30.

We do not believe that the Centres can usefully be involved
in general IT awareness activities which are covered by
wider initiatives of the DTI and by the Learned Societies
and Professional Institutions. Such general activities
will, increasingly, promote awareness of parallel processing
amongst general management and corporate planners. We
accordingly suggest that the Centres’ awareness courses
should be specifically targetted at technical management in
companies who have technical awareness needs.

The need for technical training is not yet very large and we
doubt whether many standard courses will be useful. The
continued local availability of courses in software methods
and languages (eg. Petri-Nets, occam) is obviously
important, but each centre should try to adapt the course
profile it offers to take into account the known interest of
local companies. Courses on Transputer hardware for
software providers are likely to be unique to the
Initiative, and should certainly be continued.

12



PRODUCT QUALITY AND AVAILABILITY

31.

32.

33.

We assume that the Initiative will maintain a -special
relationship with Inmos. We would suppose that a prominent
central activity will be the continued supply to the Centres
of information on Inmos'’s products and plans.

Many users are concerned about the quality of, and product
support for, transputer related software products.

We believe that a valuable contribution to the improvement
of both these characteristics of products from the smaller
suppliers can be made by the Centres. The general interest
of industry will be served by encouraging staff of the
Centres to comment on these issues - of which they have a
unique opportunity to gain experience - as they affect local
suppliers and to volunteer advice to suppliers with whom
they have local relationships.

A particular issue in relation to the take-up of Transputer-
based parallel processing is the complexity of the issues
facing a company which has a major investment in single-
processor versions of numerical analysis software. Many
such users would like to be able to "port" them to a
Transputer-based machine, so as to take advantage of the
increased speed available. DTI is supporting an
"Applications Portability" awareness activity which, at
least peripherally, addresses this problem. The portability
problem may also be addressed elsewhere but the mutual
exchange of specific information, especially if case-study
material were available, would be advantageous and should be
supported by the Initiative.

13



34.

Industrial users definitely need good up-to-date
information, especially from INMOS but also from software
suppliers, about new product specifications, release dates
and distribution arrangements. We have no doubt that the
Mailshot can provide a very useful addition to the normal
channel of promotion, both by inclusion of copies of
announcements and in special cases, by editorial comment.

TECHNICAL ADVICE AND CONSULTANCY, "HANDS-ON" TRIAL FACILITIES

35.

36.

Very few companies use these services of the Centres. This
may be because larger companies like to be autonomous whilst
smaller companies are not yet investing. The Centres do
each have a range of specific expertise which can form the

basis of a useful consultancy service, provided that:-

35.1 The services available (range and depth) are clearly
identified and specifically promoted
and

35.2 The Centres make clear to potential clients whether, or
not, relevant applications area knowledge is available.

The small staffs of Centres cannot be expected to have
knowledge of all applications of local interest, but they
should know how it can conveniently be obtained.

There is some concern amongst Initiative staff, not yet
widely reflected in industry, that the hardware and software
available at the Centres is obsolescent, on account of the
rate of technical change. In our opinion, this is an issue
that should be closely watched by the coordination team, but
we are inclined to the view that very impressive
demonstrations can be given on the systems at present
available, and that it is not essential that the latest
version of machines should be available.

14



There will be some exceptions on account of the need to
accommodate new software. However, it is important that the
facilities provided by the available software should be
fully representative of current developments. It is to be
hoped that suppliers will be willing to update software on
view at the Centres without charge, in their own interests.
There will, however, probably be some instances where new
procurement will be needed from suppliers who are loath to
provide free copies of new products. We believe that
information on software new products and the revisions
should be collated by the coordination team as well as
forming a subject of continuing dialogue between Centres and
local suppliers, and that the Initiative should not hesitate
to use its influence to obtain preferential terms. The
staffing of the coordination team should reflect the
importance of this area of work.

MARKETING OPERATIONS

317.

38.

The Initiative as a whole, and the Centres in particular,
are faced, in dealing with industry, with problems of
"technology transfer" ie the transfer of knowledge about
relevant applications and the transfer of confidence and
motivation to put this knowledge to effective use. The
means of doing this will be closely comparable with
industrial marketing, albeit with less financial content.
In what follows we have used the term "marketing" to embrace
all aspects of the technology transfer activities of the

Initiative other than those which are purely technical.

The management of marketing operations, like all other
operations, needs to be clearly structured, so that everyone
involved understands which decisions are taken by whom. The
head of the Initiative is known as the Coordinator; it is
clear that he cannot issue direction to the Centres (other
than that at RAL) except on matters in which he has total

control of funds and resources.

15



39.

40.

Such instances are limited: and the basic concept is
therefore one of management by consent. Such management can
be effective, but its practice requires more sensitivity
than does a hierarchical structure. Management by consent
only works well where there are very good communications and
simple rules and procedures accepted by everyone. When some
of the responsibility is undertaken on a non-executive or
part time basis as with centre directors, even more
importance attaches to communications.

We received the impression that the division of
responsibility for detailed marketing issues, as between the
Initiative coordination team and the Centres, is not clear
to all staff. Some activities are undertaken centrally (eg
the Mailshot, participation in national exhibitions, the
support to "community clubs”). Similarly, Centres naturally
deal with detailed arrangements for their own courses.
However, there are a number of topics on which economy and
effectiveness could be improved if actions were taken
centrally on the Centres’ behalf and others on which there
is scope for a steady flow of non-mandatory guidance and
information from the coordination team. A marketing survey
is not an adequate basis for a set of proposals about
divisions of responsibility, but we make some comments
below, and have made a small number of specific

recommendations.
staff Training

All staff involved in the Initiative have general training
needs and these should not be neglected. However, most
staff have little knowledge of marketing operations when
they join the Initiative and several of the scientific staff
are acutely aware of this.

16



41.

42.

We believe that all staff should attend short courses on the
structure and management of industrial business, the
problems of small and medium sized firms and the particular
problems of introducing new products.

No funds exist for such training of the University-based
staff and we believe that their training on these issues, as
well as the training of Initiative funded staff, will have
to be funded by the Initiative. We have no doubt however,
that this expenditure will be well worthwhile. Centre
managers and administrators should receive detailed briefing
on the mechanics of promotion, including the principles of
writing literature, means of printing, sources of address
lists and "image" matters generally. It may be that such
courses have to be specially arranged, although we believe
that much could be done locally if appropriate advice were
available. All staff should be briefed on the position of
the Initiative within the span of DTI awareness programmes.

Identification of the Individuals in the ‘Target Audience"”

This is a key activity for all the Centres. We believe that
there should be a standardised approach to an IBM-PC based
address list data base, which would be built up locally, but
onto which would regularly be copied mailing list
information provided by the Initiative central staff in the
form of suitable coded files, derived from the Mailshot
distribution list and other information provided by SERC.
There can be no doubt that correctly addressed personalised
mailings are of great importance in awareness campaigns.

Corporate Image

We believe that all Initiative promotional material should

be clearly recognisable as such.
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43.

44,

This would entail; as a minimum, the distribution of
standard layout "grids": the economics of central printing
of some formats could be examined.

Press Relations

The Initiative is well placed to become aware of significant
developments. We believe that, occasionally, press
briefings should be arranged in London, to attract press

.coverage of significant events and achievements, ranging

from conference reports to project milestones. Recent
coverage of university computing in New Scientist or of the
NCC ‘Impact’ initiative in the Financial Times, is an
example of the type of coverage we think should be sought.
It may be that the Initiative would need to get help from
specialist staff or consultants to achieve a higher profile:
we believe that this would be worth while.

Internal Communications

There can be no doubt that the Initiative staff, centrally
and in the Centres, are well placed to judge external
awareness and to form opinions on possible improvements in
effectiveness. We suggest that feedback from individuals
should be encouraged and:-

44.1 An internal Initiative newsletter, of an informal
nature, should be produced.

44.2 Meetings of all Centre Directors with their Managers
should be held 2 - 3 times per year.

44.3 An overt policy of briefing staff on the commercial
prospects of the centres should be adopted.

18



44.4 Centre managers should be encouraged to have regular
meetings of full and part time staff, which Directors
should sometimes attend, feedback from which should be
passed back to the Coordinator.
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CONCLUSIONS

1.

10.

Industrial awareness of the Initiative is low, but not lower
than can be expected after comsidering the general awareness
of Information Technology issues in UK industry

(paras 11-13, 22,23).

Academic awareness of the Initiative is good (para 14).

Industrial perception of the relevance of the Regional
Centres is (despite improvements in relations between
universities and industry) affected by their academic
staffing and location. This perception may be modified by
improvements in promotion but the basis for it cannot
realistically now be changed (para 13, 15-20).

Industrial acceptance of the Initiative would be wider if it
were clearly positioned within a cohesive awareness

programme structure (para 16).

There is some suspicion of the Centres amongst suppliers.
(para 18).

A uniform corporate image for the Initiative is needed
(paras 19-20, 42).

The Mailshot is widely appreciated (paras 24-25).

Centres have an important role in the distribution of
product and general information (paras 26-27, 34).

Participation in exhibitions Dby the Coordinating Unit is
valuable (paras 27-28).

The International Conference is widely recognised but this
event and the associated exhibition are still seen as
research oriented (para 28).

20



11.

12.

13.

14.

15'

16.

17.

Awareness courses are needed for Technical Management.
General management awareness is being handled in other
initiatives (paras 29-30).

Technical training and the provision of consultancy services
should continue on the present lines, but better targetting

of promotion is essential (paras 30, 41).

There is scope for closer relationships between the Centres
and software suppliers, especially in bringing influence to
pear on standards of quality and product support

(paras 31-32).

There is some danger that the hardware and software at the
Centres will be unacceptably obsolescent. This issue can be
monitored by the Coordinating Unit: some expediture may be
needed (para 36)-.

Improvements in communications and clarity of procedures
throughout the Initiative are needed. There are some
weaknesses in staff training at the Centres. Central
funding will be needed for some of the training and other
improvements needed (paras 37-40).

A standard database format for address lists is needed by
the Centres, which could be fed with information on floppy
discs by the Coordination Unit (para 41).

A higher profile is needed in the press especially with the

computing correspondents of papers read by managers
(para 43).

21



RECOMMENDATIONS

General

1. The original objectives should be retained.

2. The positioning of the Initiative within the AIT programme
of DTI should be clarified and mutual reinforcement sought.

3. Coordination with relevant DTI awareness activities (eg on
Applications Portability) should be sought.

4. The corporate image of the Initiative should be strengthened
and confusing "brand names" should be avoided.

Activities

5. There should be increased emphasis on awareness courses for
Technical Management.

6. The Mailshot should be continued, and its technical content
enhanced. Every opportunity should be taken to expand the
mailing list.

7. Centres should distribute as much relevant product
information as they can.

8. The Coordination Unit should continue to participate in
exhibitions, with manned stands whenever possible.

9. The International Conference and Exhibition should be

planned to attract industrial attendance in 1990 and
thereafter.
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10.

11.

12’

The Centres should give more emphasis to relationships with
suppliers, and especially to influencing quality and product
support.

The Coordination Unit should monitor technical obsolescence
at the Centres, collate and disseminate new product
information and negotiate preferential terms with suppliers
when appropriate. The complement should reflect the
importance of this activity.

A higher profile should be sought in the general and semi-
technical press.

Training and Operations

13.

14.

Steps should be taken to provide some centrally funded basic
training on relevant aspects of marketing (eg address
location, structure of industry, literature design, event
management) for the staff of Centres at all levels.

More attention should be given to communication within the
Initiative. (An internal newsletter and the integration of
meetings with Directors and with Managers are examples of
apparently realistic measures).
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SGS-THOMSON
MICROELECTRONICS

Imaging

printers, x-terminals, scanners, image
processing systems

Computing

application accelerators, supercomputers,
disk arrays, robotics, industrial control

Communications

networking, switching, mobile and satellite
communications

For all these applications the T9000
transputer delivers

* exceptional single processor
performance

o scalable multiple processor
performance

ereal-time responsiveness
sease of use

elow system cost

ofast time to market

¢ easy upgradability

s extensive software support

s compatibility

The INMOS T9000

The T9000 transputer integrates a 32 bit integer
processor, a 64 bit floating point processot,

16 KBytes of cache memory, a dedicated
communications processor and four high speed
serial communications links on & single chip. It is
the first member of a new generation of
exceptionally high performance transputers and is
binary compatible with the first generation, giving
easy upgradability and access to the installed
base of transputer applications software.

More power, more performance

The ability to provide more power and more
performance while still retaining flexibility and ease
of use is the goal of systems designers, OEMs
and component manufacturers. Almost all
applications have these requirements, and all rely
uitimately on the microprocessor to provide them.
Some microprocessors force the designer to opt
for performance at the expense of ease of use;
some provide a low cost solution but are not
upgradable; some offer software support but not
device compatibility.

The T9000 transputer overcomes all these.

Specifically designed for the embedded systems
markets of imaging, communications and
computing, the T9000, like first generation
transputers, gives not only superlative
uniprocessor performance but also easily
adaptable mukliprocessor capability

It “future proofs” systems by enabling easy
upgrades and performance increases by the
addition of more transputers.

It has immediate access to the well established
industry standard software base of the existing
transputer range, as well as new software
platforms.

It is easy to use, giving the advantages of fast time
to market.

Its high level of integration means low component
count, leading to low system cost.

Multiprocessing made simple

As a single processor the T9000 is an exceptional
machine for all embedded applications. As the
requirements grow the T9000 can also be scaled
to a multiprocessor solution using the new high
speed links. This is achieved with very little
software modification and gives systems
designers the flexibility to design scalable products
with the confidence that software development
costs for upgrades are kept to a bare minimum.




Processor Pipeline
Address
/ Generalor / FPU
Works ace
Cache Address
Generator ALU

Virtual
Charnnel
Processor

System Services

Timers

16 Kbyte
Instruction
and Data

Cache

@ 200 MIPS peak / >70 MIPS sustained

& 25 MFLOPS peak/ >15 MFLOPS sustained
& 80 MBytes/s total bidirectional link bandwidth
® 200 MBytes/s memory interface bandwidth

® Submicrosecond interrupt response

® Per process error handling

@ Memory protection

® Virtual channel processor support for message

passing
@ .5 MHz clock input (50 MHz internal operation)
@ Programmable Memory Interface
# Fast single cycle bit and byte manipulation

@ Two 32 bit timers on—board

Embedded applications

The T9000 has been specifically designed for
embedded applications, which make special
demands on a processor in terms of its ability to
switch context efficiently when responding to
system interrupts or timeslices between tasks.

The T9000 provides direct hardwareSupport for
context switching and process scheduling with
sub—microsecond response time for multiple level
interrupts. Furthermore, its unique virtual channel
communications model provides direct hardware
support for message passing. The ability to
handle a single task error such as overflow without
resetting the system is an exclusive feature of the
T9000. No other microprocessor manufacturer has
been able to achieve these attributes in a single
design.

Application areas

The T9000 has been specifically developed for
three main application areas.

Its 200 MIPS peak execution rate, coupled with its
25 MFLOPS peak performance, make it ideally
suited for imaging applications.

The ability to easily build multiprocessor systems
enables thousands of MIPS and hundreds of
MFLOPS to be employed to achieve massive
computational power.

Networking and communications problems are
efficiently solved by the T9000’s communications
capabilities. )
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SGS-THOMSON

imaging

The imaging market covers a broad spectrum of
applications ranging from printers to image
processing systems. These applications require
the generation, manipulation and transmission of
image data, high performance processing for tasks
such as image compression, and Postscript
interpretation. These applications demand
efficient communication links for I/O and a high
level of system integration for minimal system size
and cost. The current range of transputers
effectively supports imaging applications with a
range of performance options and multiprocessing
capabilities. The T9000 offers, in addition to its
high performance, single cycle bit and byte
manipulation for fast image data handling and a
fast 2-D block move function for image
movement.

INMOS, together with SGS-THOMSON, is the
standard supplier of PC graphics components
such as the G171 Colour Look Up Table for IBM
PS/2 VGA PCs and is in an ideal position to
supply all products for a complete solution. Such
imaging products include the G3XX family of
Colour Video Controllers (a graphics subsystem
on a chip) and the SGS-THOMSON range of
image compression and manipulation products:
the STIXXXX family of digital signal processors.

Page printers

System cost and software support are key
elements in any high volume laser printer design
and consequently the choice of the CPU is the
focus for laser printer designers. The T9000 has
all the necessary characteristics for mid—range
and high—performance laser printers not only as a
uniprocessing solution but also as a truly scalable
element within a multiprocessing system. 1t
provides the raw processing power essential for
image manipulation, and has the added benefit of
an efficient Postscript interpreter.

@ Postscript support available

® C-Exec real time kernel available

# 200 MIPS peak integer performance

@ 25 MFLOPS peak floating point performance

& 10X raster image performance of current single
processor laser solutions

# High speed direct memory access (DMA) link
technology working concurrently with CPU for
image data transfer to main memory, print
engine and host interfaces

% [ ow memory interface costs, direct interface to
8 Mbytes DRAM (including on—chip refresh
logic)

® Demonstrator and Application Note available
from INMOS

MICROELECTRONICS



X-Terminals

Having a workstation dedicated to a single user
canbe an expensiv\b solution. X—Terminals bring
the features of a workstation to the desktop: local
intelligence, processing power and
communications at the price of a standard
personal computer. The transputer family offers a
variety of solutions from low end monochrome
systems using the T4 family to high—end,
high—resolution colour systems using the TS000.

Keyboard

SGS-THOMSON

& Industry standard software including fuil port of
X11R4 and TCP/IP

e Scalable performance

& System level solution — T9000 and INMOS
IMS G3XX Colour Video Controller

& Fast single cycle bit manipulation for graphics
operations

® 2-D block move instruction

® Hardware concurrency to support
communications, local computation and display
management simultaneously

& Direct support for 8 Mbytes of DRAM (on—chip
refresh logic)

e Demonstrator and Application Note available
from INMOS

Scanners

Similar in application to laser printers, but with an
emphasis on data stream manipulation, scanners
present designers with several problems: high
speed data stream routing, image compression
and optical character recognition. The T9000,
unlike most microprocessors, has the processing
power to cope with all these areas.

@ High performance for optical character
recognition and image compression algorithms

® Link concurrency with CPU for simultaneous
image manipulation and data transfer

@ High integration for low cost and size

s 80 MBytes/s serial data transmission capability

MICROELECTRONICS
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Computing

The T9000 offers many ways of increasing system
performance. The T9000’s 200 MIPS peak
execution rate and 25 MFLOPS peak floating point
performance, coupled with the ability to build
multiprocessor systems, means that thousands of
MIPS and hundreds of MFLOPS can be employed
to achieve almost unlimited real-time
performance. Alternatively, system performance
can be increased by employing the T9000 in
subsystems such as disk arrays, application
accelerators etc.

Disk arrays

Whatever the power of the central processor in a
mainframe or a workstation, a major bottleneck is
in the data storage subsystem. System
down-time in many cases can be narrowed down
to failure of a hard disk drive within the
infrastructure. The way ahead lies with an array of
disks rather than one single large capacity drive.
The speed of data retrieval has become a major
issue in disk system design and a fault tolerant
architecture has become a necessity. The T9000,
along with the rest of the transputer family, is
suitable for disk array design in mainframe,
workstation or PC.

@ Link technology operating at 5 times the speed
of SCSI

# Fault tolerant design capability without external
arbitration logic

% Scalable architecture allows any configuration

® CRC error checking algorithms can be executed
as a concurrent process

Application accelerators

Used as an embedded processor in application
accelerators, the transputer provides transparent
processing power to overcome the problems of
increased performance requirements. From PCs
to mainframes there will always be a need for
more processing power, regardless of the
application running or the number of users.
Transputer—based application accelerators speed
up dedicated software such as financial modelling
packages, relational databases and complex
numerical algorithms, leaving the host CPU to
concentrate on the system tasks for which it was
intended.

@ Scalable solutions for performance upgrades to
main frames/PCs/workstations etc

@ Links to parallel interface chips

® Standard range of motherboards and modules
for many hosts

® Driver software available from INMOS

MICRCELECTRONMICS
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Supercomputers

Natural, scientific, engineering and commercial
tasks are inherently parallel. Sequential
processors are often unable to perform complex
calculations such as finite element analysis,
computational fluid dynamics and geographical
survey analysis efficiently. The transputer offers
almost limitless performance through its modular,
scalable achitecture and paraliel and
multiprocessing capabilities. The virfual channel
concept of the T9000 and the dynamic
configurability of the C104 packet routing switch
allow supercomputer designers to incorporate
various network topologies — N—cube, hypercube,
tree, mesh, ring, toroid etc — within the same
system. A key requirement for any large parallel
computeris the ability for each individual node to
communicate with others. In T9000/C104
networks, wormhole routing techniques ensure
that message latency is minimised and
transmission is continuous, allowing the
construction of large systems with full node
connectivity.

@ Exceptional performance — 200 MIPS,
25 MFLOPS (peak)

@ Minimal link latency.

& Dynamically configurable network topologies
using C104 routing switch

@& Modular, scalable, parallel architecture

@ Virtual channel message passing capability in
hardware

Robotics

From spot-welders to automotive production line
installations, real time control of machinery is vital
to efficient production. Communications capability
is essential'in a control system since processing
nodes in remote locations often need to relay
information about their status to a central control
unit. The numerous axes of a robotic arm can
now communicate and relay position and attitude
data to each other for accurate and fast
positioning through the use of INMOS’ link
technology. The ability to build fault tolerant
systems with ease is also important;
sub—microsecond response time is crucial for
safety—critical systems.

The transputer family provides the essential
communications and multiprocessing capability for
large and complex control systems. The T9000’s
unique ability to pre—emptively schedule and
reschedule interrupts to the pipeline, and to use
the interrupts as outputs, gives flexible real-time
responsiveness.

& Multitasking kernels available for real-time
control —VRTX and C-Exec

® Sub microsecond pipelined interrupt scheduling

® |ntegrated Floating Point Unit for accurate
positional control

@ Ability to mix current and T9000 family
members for optimum system efficiency

# Pre—emptive scheduling of interrupts

MICROELECTRONICS



Protocol Processing
Network Management

SGS-THOMSON

Communications

The worldwide telecommunications market is
going through a period of tremendous change,
with new communication standards and
technologies creating new growth markets. Digital
computer networking and network interconnection,
the digitisation of telephone networks, and new
markets like cellular radio all place greater reliance
on processing performance and software than
previous analogue systéms.

Internetworking

The market for the equipment that interconnects
different networks together, bridges, routers,
gateways, efc., has experienced rapid growth as
corporations seek to unify their networking
operations. Increasingly sophisticated protocols
and higher data rates, particularly with the 100
Mbit/s FDDI standard, raise the processing
performance required significantly. The
shared—bus architecture adopted in many of these
multi-processing systems becomes a significant
bottleneck as data rates increase, resulting in a
reduction in performance and network throughput.

Using the T9000, with its high—-speed
communications capability, for the interface card
controllers to token—ring, ethernet, FDDI, etc.

and the low latency C104 packet routing switch,
bridges, routers and gateways can be constructed
using the dynamic message routing architecture
which naturally fits the application. '

& Single CPU performance up to 200 MIPS for
fast, efficient protocol processing

@ Scalable, multi-processing architecture
supports flexible, modular equipment design

® Serial link speeds up to 100 Mbits/s provide
fast, flexible interprocessor communications

e Sophisticated message—passing architecture
avoids limitations of bus—based systems

Switching

Telephone switches, from small digital PABXs to
large Central Office exchanges, are classic
examples of real-time, distributed multiprocessing
systems. The message—passing architecture of
the transputer family provides an ideal foundation
for switch control systems, offering a close match
to the message—passing requirements of these
applications. A choice of interfacing techniques,
via INMOS links or bus—based cards like VME,
offers a smooth migration path for the large
systems that, of necessity, must evolve. At the
same time, the latest generation of transputers
and routing chips offers new opportunities for
smaller systems to avoid the performance
bottlenecks of conventional bus—based systems.

e High speed protocol processing

& Sub micro second message routing latency
using wormhole algorithms in hardware

@ 32 way virtual channel Packet Routing Switch
C104 allows non—directly connected processors
to communicate with minimal latency

s High speed interface between exchange and
networks using the new 100 MBaud T39000 links

MICROELECTRONICS



MNetwork interfacing

Building cost—effective interfaces to today’s high
performance networks makes exceptional
demands on the microprocessor at the heart of the
interfacing system.

Higher data rates and increasingly sophisticated
protocols require considerable processing
performance, for today’é 'nétworks and for
emerging communications standards. At the
same time, user demand for lower prices places
greater pressure on the interface designer to
minimise system cost.

Whatever the system, from low speed 64 kbit/sec
ISDN through Ethernet to FDDI1 and Broadband
ISDN interfaces, from single processor add—in
cards to distributed multiprocessing systems such
as telephone switches, the transputer family
satisfies all communications systems
requirements.

SGS-THOMSON

2 High performance interfacing to high speed
digital networks, e.g. ISDN, FDDI,
Ethernet/token ring

# High integration for low system cost

® 200 MBytes/s Programmable Memory Interface
to all types of memory with minimal external
logic. {No external circuitry for up to 8 Mbyte
DRAM)

® VRTX and Chorus (distributed UNIX) software
available

Mobile communications

Cellular radio has seen spectacular success since
its introduction in the early 1980s. New digital
celiular standards like the Pan—European ‘GSM’,
new systems such as Personal Communications
Network (PCN), and the next—generation ‘Digital
European Cordless Telephones’ (DECT) set the
scene for further growth.

The massive scale of these new networks and the
speed with which they have to be installed make it
even more important to keep infrastructure
investment as low as possible. With base station
and handset processing requirements rapidly
increasing as the networks go all—digital, the
transputer family offers high performance, and a
flexible upgrade path at the lowest possible price.

@ Simple multiprocessing for flexible, moduiar
base station design

¢ Low component cost + high integration = low
system cost

@ Low cost control of ‘RF line cards’
@ Base station control and management functions

® High performance protocol processing for call
set—up/clearance

MICROELECTRONICS



Satellite communications Global positioning

There is no more demanding environment for-any The T9000's fast, autonomous serial links, high
type of system than Space, but here, 100, performance CPU and low—cost package provide
designers are finding the transputer ideal for the all the elements necessary for building a complete
on—board processing systems of orbital vehicles GPS receiver. All signal processing can be

and probes. INMOS is working with the European performed in software by the CPU, eliminating.a
Space Agency (ESA) to produce transputers for costly ASIC, whilst interfacing to the RF front-end
use in space. is simplified enormously through the use of the

- . serial links.
# High integration/low system cost means space

saving designs and low mass The range of devices in the transputer family
means the designer can easily make the right
cost/performance decision. T4/T8 transputers
¢ Multiprocessing capability means easy to build provide an ideal performance level for the
multiple—redundant fault tolerant systems commercial GPS ‘P'—code products, whereas the
T9000 can satisfy the demanding requirements
for ‘Y’—code systems.

® Good intrinsic radiation tolerance

@ Economical single processor solution
® Low system cost

@ Fast acquisitic;n time

® Low power requirements

® No custom hardware required

® Global positioning software available from
INMOS

@ High accuracy positional determination

® Powerful enough for both ‘P’ and Y’ code
implementations

Military

Imaging, communications and control are all
applicable to the military market. INMOS’ ability to
provide high quality Mil-Std—883C compliant
products for all these applications is well proven
with the current generation of transputers, and the
T9000 brings a new level of processing capability
to the military segment. The high speed core of
the T9000 allows the use of a general purpose
processor in applications as diverse as phased
array radar and fault tolerant control systems. Its
integer and floating point capability mean that it is
an ideal vehicle for signal analysis applications
such as image processing and data acquisition.
The high /O capability enables the T9000’s use in
control applications for fast reaction to transducer
input for ultimate real-time response. The T9000
is also supported by verified software in the form
of ANSI C and the military standard ADA.

Lz, ESTHANE0N
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Development

System support for the T9000 reflects the
requirements of the embedded systems market
place. A range of industry standard software
support is available for the T9000: C—Executive
and VRTX real time kernels, and Chorus, a
real-time-distributed UNIX operating system.

The T9000 is supported by compilers for all the
major industry standard programming languages,
including ANSI C, C++, Fortran, ADA and occam.

A complete range of development tools is
available, building on INMOS’ experience in
providing software tools for multiprocessor
systems. These include system configuration,
loading and interactive windowing debugging
capabilities. All run on a wide range of industry
standard hosts including IBM and NEC PC,
VAX/VMS and SUN 3/4. Full binary compatibility
with earlier transputers means that the existing
base of transputer applications software can run
on the T9000.

This comprehensive range of operating systems,
compilers and development tools enables T9000
users to get systems to market in the shortest
possible time.

Standard hardware platforms

With the previous generation of transputers,
INMOS defined the 16 pin TRAnsputer Module
(TRAM) format, an ingenious method of
interconnecting hardware modules together onto
motherboards. The T9000 will.be supplied in the
original TRAM standard and also in a newly
defined TRAM standard to accommodate the
dynamic routing capability and also the new higher
speed links.

TRAMSs allow transputer systems to interface to
standard systems such as VAX, SUN 3/4 and a
variety of personal computer platforms, enabling
systems integrators to build large and complex
systems completely from a standard “off the shelf”
product portfolio.

The INMOS T9000 transputer excels in real~time
embedded applications, providing:

® superlative performance

¢ real time responsiveness

® low system cost

© ease of design

e fast time to market

® upgradability

® standard software availability
o compatibility

INMOS is a member of the SGS-THOMSON
Microelectronics Group, and supplies high
performance transputers, systems products and
colour graphics devices worldwide. The company
has sales offices throughout the world, and a
network of experienced Field Applications
Engineers to assist with design—in of the T9000.
For further details please contact your local
SGS-THOMSON Microelectronics sales office.
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Transtech Devices Ltd.
Unit 17,

Wye Industrial Estate,
London Road,

High Wycombe,

Ref: BS/KJV 3780 RS

Tel: (0494) 464303
Fax: (0494) 463686
Telex: 838844
2nd August 1990

Mr David Mercer

Commercial Director

EPCC

Edinburgh University Computing Centre
James Clerk Maxwell Building

The King’s Buildings

Mayfield Road

Edinburgh

EH9 3J2Z

Commercial - In Confidence

Dear David

I would like to thank you for inviting Transtech to present its
technology to your organisation. We came back with a warmer
feeling and have now taken steps in defining a number of task
packages.

The implementation on the Silicon graphics of GENESYS is currently
in progress, however for your requirement we have a very high
performance implementation in place which will derive Occam
programme on the transputer communicating to Fortran-77 or ‘C’
programs on the IRIS. I will be contacting Mike Norman with
reference to defining a schedule for the perceived project.

I have included two quotations for the 64 node 1860 requirement
that you currently have. Both configurations offer 16 MBytes of
memory on each of the nodes, the GENESYS operating system, the i860
Fortran-77 compiler and standalone server module with SunOS and

NFS. The first quote is based on the High Speed Link (HSL) product

Cont../2

Directors M J Cahill J Hipperson J Hodgkinson
VAT Registration Number: 442350185
Company Registration Number: 1990621



and the other is based on the i860 TRAM module. Both meet your
requirements however the HSL based configuration caters for the
future by providing the 200 MByte/s point to point communication.

If you wish to discuss these quotes further then please do not
hesitate to contact me.

Yours faithfully

EJALL?QABed P. S;U;QJL

Bee Singh
AREA SALES MANAGER

cc: Professor David Wallace
Professor Roland Ibbett
Mike Norman
Richard Kenway
R Tremayne-Smith
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QUOTE 1 -~ 64 i860 MBYTE NODES WITH HSL

PART NO

TRANS-HSL~40

TRANS-20

THSL16-40

MCP1600

MCS0320-1
MCS0300-1
MCS0380-1

Del & Inst

DESCRIPTION

40 slot HSL module
chassis

20 slot chassis,

16 MIPS SPARC, 1GByte
disk storage, Ethernet,
NFS, Sun0S, RS232,

1/4" tape

40MHz 1860, 16MByte
HSL node

Motherboard
FORTRAN-77 for i860
GENESYS II

TDB Parallel debugger

UK Delivery and
Installation

PRICE (EXCL VAT)

DISCOUNT (30%)

TOTAL. DISCOUNTED PRICE

S m
=
=3

Q
@,
142]
3

10,000

25,000

12,890

4,500

2,500

3,750

1,000

2,000

883,710
265,113

618,597

824,960

4,500

2,500

3,750

1,000

2,000
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QUOTE 2- 64 i860 MBYTE NODES IN TRAM FORMAT

PART NO

TRANS~-20

MCP1000
TTM100-16-1
MCS0320-~1
MCS0300-1
MCS0380-1

Del & Inst

DESCRIPTION

20 slot chassis,

16 MIPS SPARC, 1GByte
disk storage, Ethernet,
NFS, Sun0S, RS232,

1/4" tape

g m
H
~

>
(@]
1621
=

25,000

32 TRAM slot motherboard 4,500

40MHz i860, 1l6MByte

FORTRAN-77 for i860

GENESYS II

TDB Parallel debugger

UK Delivery and
Installation

PRICE (EXCL VAT)

DISCOUNT (30%)

TOTAIL, DISCOUNTED PRICE

9,995

2,500

3,750

1,000

2,000

745,930
223,779

522,151

72,000

639,680

2,500

3,750

1,000

2,000
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TRANSTECH NEW PRODUCTS
TTM100 Intel i860 TRAM

Intel i860 40 MHz 64-bit Microprocessor

IMS T805 floating point transputer

> 5 to 20 Mbytes of fast DRAM

> Sub-system control of reset, analyse and error
> Communicates via 4 transputer serial links

> Industry standard size 6 TRAM format

> Software drivers and maths library support

The Transtech TTM100 contains an INTEL i860 64-bit microprocessor, an IMS T805
floating point transputer, and 5 to 20 Mbytes of fast DRAM. The T805 is configured
with 1 or 4 Mbytes of local memory, and shares the other 4 or 16 Mbytes with the
1860.

The interface between the i860 and the shared memory system has been optimised
to give the i860 zero wait state access for page coherent memory cycles, such as cache
fill and cache flush operations. The 1860 busLock function is supported for operating
system and other special non-divisible memory cycles.

The inclusion of local RAM for the transputer allows both the i860 and transputer
to operate concurrently. A busLock mechanism is included in the transputer shared
memory interface to optimise block move operations between local and shared mem-
ory. :

Synchronisation of the transputer and i860 is achieved by a dual event mechanism.
This allows either processor to interrupt the other. In this way, either processor can
assume the role of system master.

The TTM100 returns the performance of up to twenty-four 30 MHz IMS T805',
using the 1860 which is capable of 80 MFLOPS (peak single precision), 60 MFLOPS
(peak double precision) and 85K Dhrystones.

The TTM100 is supplied with drivers for use with the Occam TDS, Toolset and
3L compilers, together with an array of over 200 vector library routines optimised to
take full advantage of the power of the i860.

v v

'T'TM32/34/38 high performance T801 TRAMs

IMS T801 floating point transputer

2, 4 or 8 Mbytes of fast 2 cycle page mode DRAM
> 32kbytes of 2 cycle SRAM

> Sub-system control of reset, analyse and error

> Communicates via 4 transputer serial links
Industry standard size 2 TRAM format

The Transtech TTM32, 34 and 38 consist of an IMS T801 floating point transputer,
2, 4 or 8 Mbytes of fast 2 cycle page mode DRAM and 32 kbytes of 2 cycle SRAM.
They have a sub-system port to control reset, error and analyse.

Fast access to the RAM is obtained by doing a very quick address comparison
on the present DRAM row address and the last DRAM row address, if they are the

v v

v





