
Models of Machines and Modules
for Mapping to

Minimise Makespan in Multicomputers

Michael G. Norman
Edinburgh Parallel Computing Centre

University of Edinburgh
Edinburgh, Scotland

EH9 3JZ

Peter Thanisch
Department of Computer Science

University of Edinburgh
Edinburgh, Scotland

EH9 3JZ

Abstract

It is now more than a quarter of a century since researchers started publish-
ing papers on mapping strategies for distributing computation across the
computation resource of multiprocessor systems. There exists a large body
of literature on the subject, but there is no commonly-accepted framework
whereby results in the field can be compared. Nor is it always easy to assess
the relevance of a new result to a particular problem. Furthermore, changes
in parallel computing technology have made some of the earlier work of
less relevance to current multiprocessor systems.

Versions of the mapping problem are classified, and research in the field
is considered in terms of its relevance to the problem of programming
currently available hardware in the form of a distributed memory multiple
instruction stream multiple data stream computer: a multicomputer.

Categories and Subject Descriptors: C.1.2 [Multiple Data Stream Archi-
tectures]:Multiprocessors, Parallel Processors; C.2.1 [Network Architecture
and Design]; F.1.2 [Models of Computation]: Parallelism and Concurrency.

General Terms: Multicomputers.

Additional Key Words and Phrases: Partitioning, Mapping, Scheduling,
Multicomputer Load Balancing.

1

Symbol Usage�����
An instance of a model�
A set of module to processor mapping functions�
A set of interprocessor links�
Makespan�
A set of processors	
An undirected graph of processors
��
The total cost of a mapping
 ����
The set of valid schedules for a mapping function
 ����������
Processing time spent doing useful calculation���������
Processing time associated with message transfer�������
Time processors spend waiting for others to finish�� !��"$#&%
Processing time spent on “housekeeping”��'�(��%
Time processors spend idle��' �)��*
Processing time spent initialising message transfer��' �)*+%�,
Processing time associated with “interference” between modules��- %��&�����
Processing time spent on repeated calculation� - ��".*/%
Processing time spent through-routing messages��01�&2.% (
Processing time spent on scheduling-related computation��34%�,��
Processing time spent receiving messages��56����*/7
Time processors spend waiting for messages that are in transit��56����*/8
Time processors spend waiting for messages that have not yet been sent� 56����*
Time processors spend waiting for messages9 �
The computation cost of a mapping
 �: �
The communication cost of a mapping
 �;=<?>/@�A&BDC
Idle time before executing task

B
;=<?>/@�EFA&B4C

Idle time spent waiting for messages in transit before executing task
B

;=<?>/@�0DA&BDC
Idle time spent waiting for unsent messages before executing task

B
G

A set of directed arcs between tasksH
A set of tasksI
A task dagBJ�LK
Tasks

M An integer communication delay<N��O��QPR��S
Parameterisations of quiet network message latencyT
Cost functions (possibly subscripted)

 � A function returning the set of processors to which a processor is mappedU �
The inverse function of
 �V
The cardinality of a set of modules

W The index of a mapping function
X The cardinality of a set of processors
Y An ordered set of tasks
Z ��[Processors
\ A scheduling function@

Task deadline
] Interprocessor links travelled by a message
^ Length of a message
_ The cardinality of the set of modules mapped to a processor

2

Contents

1 Introduction 4
1.1 Scope of Literature Under Review ��� 4
1.2 An Informal Discussion of the Problems ��� 5
1.3 The Structure of the Review ��� 8

2 An Introduction to Modelling the Mapping Problem 9
2.1 Modelling Costs ��� 10
2.2 Modelling Processors ��� 10
2.3 Modelling Modules ��� 11
2.4 Mapping vs Partitioning ��� 11

3 A Framework for Discussing Models of a Multicomputer 12
3.1 The Basic Four States ��� 12
3.2 Time Spent Calculating ��� 12
3.3 Time Spent Communicating ��� 12
3.4 Time Spent Housekeeping ��� 13
3.5 Time Spent Idle ��� 14
3.6 Makespan in Terms of the Model ��� 14

4 The Influence of the Communications Network 14
4.1 Quiet Network Performance ��� 15
4.2 Busy Network Performance ��� 15

5 No Task Precedence 15

6 Tasks with Precedence 18

7 Task Precedence and Communication Delays 20

8 Cost Based Models 23
8.1 Applying Stone’s model ��� 25
8.2 Interference Between Processes ��� 26
8.3 Processor Graphs ��� 26
8.4 Introducing Precedence ��� 28

9 Finding the parameters of the model 30
9.1 Parallelisation of Sequential Code ��� 30
9.2 Explicitly Parallel Languages ��� 32
9.3 Uncertainty in Parameters ��� 32

10 Concluding Remarks 33

11 Acknowledgements 34

3

1 Introduction

One of the key problems in the area of parallel computing is that of mapping computation across
processors. There has been a huge number of papers published dealing with this problem, over
more than twenty years, and it is difficult to understand how they relate to each other in the
context of programming a particular architecture. This review concentrates on the distributed
memory multiple instruction stream multiple data stream computer which we shall refer to as
the multicomputer.

The class of parallel computer systems that we have in mind has the following characteristics.
Each processor has its own memory. There is no global memory. Processors communicate
by passing messages. We allow the possibility that processors may execute asynchronously.
Informally, the processors need not all be on the same chip, but should be in the same box,
that is we are not interested in distributed systems. With regard to the software, we consider
a “space shared machine” where programs do not compete for resources. We are interested in
the time to completion of a program rather than the throughput of jobs.

1.1 Scope of Literature Under Review

With the current interest in the multicomputer architecture—one can buy multicomputers off
the shelf from a number of manufacturers—we believe it is is timely to consider the way in
which work in related fields can be usefully applied to the multicomputer mapping problem.
By restricting our discussion to multicomputers we are excluding related areas in scheduling for
VLIW architectures and hardware data-flow architectures (eg. McDowell and Appelbe [1986],
and the complexity results of Fellows and Langston [1988]); we are not directly interested
in the issues in scheduling pipelined or vector processors, as reviewed recently by Krishna-
murthy [1990]; and we are not interested in issues of language design for multicomputers (see
Bal et al. [1989]). We ignore the interactions of multicomputer programs with operating system
facilities, such as the file system, such as those discussed by Chu and Lan [1987]. We shall be
drawing upon work on analysis of operating systems and of distributed systems, and on work
in scheduling theory. Having restricted ourselves to just this small part of the literature, it is
still clear that the possible confusion between results comes from the differences in the models
that are being used in the various papers. In fact the main thrust of the review is to describe
the various models at a level of abstraction that enables the multicomputer programmer to
ascertain the relevance of a mapping strategy to their particular programming environment
and application.

In order to further limit the range of our discussion, although we consider models of parallel
computers, we frame our discussion from the point of view of their ability to effectively
model multicomputers rather than the efficiency of a multicomputer in emulating any given
architectural model. Thus we make no discussion of the universality of models over the
architecture such as that proposed by Valiant [1990] for his XPRAM, and indeed our discussion
of PRAMs is limited to considering the availability of PRAM algorithms for mapping to our
architectural models which are not framed in terms of the PRAM.

The review is restricted to work published in international journals (except where important
results published elsewhere have not been included in such journals) and only covers work
published up to and including the calendar year 1990. Our intended audience comprises not
only the users of multicomputers but also those intending to do research on the mapping prob-
lem for multicomputers. Mapping and scheduling are hard computational problems so it is not
surprising that a large proportion of the review is devoted to the published complexity results

4

on the mapping problem, ie. the “negative” complexity results
�

and the “positive” results
describing heuristics, approximations and the special cases that avoid NP-hardness. Unlike
Casavant and Kuhl [1988] whose taxonomy for describing mapping strategies is determined
by the types of algorithms being used

�

, we are interested primarily in the way the problem is
being modelled. That is, we attempt to make explicit the assumptions of the models of parallel
computation that are implicit in the aforementioned results. In doing so, we hope to make it
easier for the reader to assess the relevance of a result to a particular concrete mapping problem.

1.2 An Informal Discussion of the Problems

In general, a multicomputer is harder to use than the so called von neumann, ie. sequential,
computer. A fact easily overlooked by computer scientists is that, by and large, people only use
a multicomputer if they wish their software to run faster. In order to introduce our terminology
and notation, we look at the problem of programming a multicomputer from the point of view
of a programmer who is developing some software for a multicomputer and wishes to optimise
its performance.

There are several different ways to formulate this “optimisation” problem. For example:
for software such as operating systems, it is useful to construe the optimisation in terms of
maximising the throughput of jobs. In a real time system design problem, the designer may
be interested in the minimum number of processors that can guarantee a particular level of
performance. Alternatively, the number of processors in the multicomputer may be fixed, and
the performance of the software may be optimised with respect to a single program.

The throughput based formulation has been used by a number of authors eg. Baccelli and
Liu [1990] and Bokhari [1981]; the problem of finding a minimum number of processors has
been addressed by others such as Fernández and Bussel [1973], Al-Mouhammed [1990] and
Houstis [1990]; but in this paper we formulate the problem for a fixed number of processors
and a single program and therefore consider the minimisation of makespan, which is the elapsed
wall-clock time between the moment when the multicomputer starts to execute the program
to the moment at which the result is presented.

The work that we shall be reviewing makes the assumption that the designer of the software,
be it human or machine, has some abstract model of his, her or its program. As with any
modelling exercise, this abstraction will emphasise some features of the program’s behaviour at
the expense of, or even to the exclusion of, some other features. In order to identify the problems
we shall begin by making a common assumption: that the program can be represented as a
set of tasks which communicate their results to other tasks only on termination, and that the
structure of the computation can be represented as a task graph in which a directed arc connects
a pair of distinct tasks if and only if the task at the head of the arc requires the results of
computation from the task at the tail of the arc.

The task digraph represents a partial order for an agenda of activities. It may be, for example,
that at two or more separate stages in the computation it is necessary to perform a given
computation—for example a sort operation on two different sets of data. This would be
represented by two separate tasks/nodes in the task digraph. Consequently it is clear that in a
valid task graph, there cannot exist a cycle in which a given task requires the results of a task
to which it, in turn (either directly or indirectly) supplies results. The task graph is always a

�

We assume that readers are familiar with the concepts of computational complexity as outlined, for example,
by Garey and Johnson [1979].

�

In their terms, our discussion is restricted, for the most part, to the static mapping problem.

5

directed acyclic graph or dag.

Let us imagine that the program’s designer can model the computation as a set of tasks with
dependency arcs. Most researchers in the area of the mapping problem would expect the
model to be labelled: the task nodes are labelled with the execution times of the tasks, and the
communications arcs are labelled with the volume of the communication that is required to
flow from the tail task to the head task.

Assuming that such a labelled task graph can be created—no mean feat in itself—the mapping
problem becomes the problem of mapping tasks to processors and giving the processors local
schedules for their tasks, subject to two constraints: no processor is executing more than one
task at a time; and the tasks that are defined to precede a given task have finished executing
before that task is started. We can consider two ways of doing this: we could decide upon
the mapping to processors before we start the processing, or we could map tasks to processors
on the fly during the computation. The former is referred to as the static mapping problem
the latter as the dynamic mapping problem. In this pedagogical section of the review we
shall consider only the former, although dynamic mapping is discussed to some extent in later
sections.

Let us consider an example task graph (shown in Figure 1), one which has a single sink node
corresponding to the task that presents the final result to the user, and a single source node
corresponding to the task that inputs the user’s request to start the computation.

A common assumption made by those considering the mapping problem is that inter-task
communications delay is zero if both the tasks involved in the communication are assigned to
the same processor. In this case, we may wish to identify the critical path in the task graph,
ie. the path from source to sink such that the sum of the node weights is maximised. The
significance of the critical path is that regardless of the number of processors, the sum of the
execution times labelling the nodes on the critical path represents the minimum achievable
makespan for this task graph (assuming the program’s designer got the labels correct).

This path has been identified on Figure 2, and corresponds to the shaded nodes. We can consider
mapping the tasks to two processors (there is no point in using more, since the maximum width
of the dag is two). We might generate a schedule which can be represented by the Gantt chart
shown in Figure 3. Here we show the activity of the processors, through time, and also show
communication events as arrows, and the buffering of messages that are received. The time to
completion of the schedule we have used is the makespan. Since to one of the two processors
we have mapped the critical path, and only the critical path, the makespan of the schedule is
minimal. If this minimum makespan is too long, the programmer has three courses of action.

1. To buy a faster processor for handling the critical path.

2. To reduce the sum of the labels of the critical path tasks by finding a more efficient
algorithm to implement the computation.

3. To change the task graph of the program by finding more parallelism, ie. by dividing a
task on the critical path into a number of independent parallel tasks, the sum of whose
computation might well be greater than the computation associated with the whole task

�

.

In general the sum of the node weights along the critical path will underestimate the makespan.
This can happen for a variety of reasons, none of which is identified by the simple analysis of the
problem by identification of the critical path. First, the critical path processor might be idling
waiting for an input from a task residing on another processor. (This does not contradict our

�

Note that if this is the case then this course of action reduces makespan by increasing total execution time.

6

15ms

25ms

11ms

4ms

18ms

35ms

7ms

15ms

25ms

11ms

4ms

18ms

35ms

7ms

Figure 1: The Weighted Dag Figure 2: Dag with Shaded Critical Path

7

15ms

25ms

 7ms

35ms

18ms

11ms

 4ms

Processor 1 Processor 2

Time

Figure 3: A Schedule for the Dag

definition of the critical path, since the delay may be caused by, for example, message latency
in interprocessor communication.) Second, the critical path processor may be constantly busy,
but may have to spend some of its time on communications-related computations, rather than
on processing the critical path tasks.

The above problems lead us to consider the other labels that the program designer has been
asked to supply to the mapping algorithm: the estimates of the volume of communication
between tasks. We shall ignore, for the purposes of this section, the extra computation associated
with communication events, and concentrate on the delay that may be introduced between the
point in time at which the results of a task are known at the processor on which they were
computed, and the point in time at which another processor becomes aware of them, perhaps
making it possible to commence a task which has been mapped to it and which requires the
result. This problem is illustrated in Figure 4, where the communication between processors
can be seen to incur a delay which causes the processor to which the critical task has been
mapped to be idle waiting for a message to arrive. Indeed the execution time for the schedule
is more than the sum of the execution times of all tasks.

If we use a more sophisticated mapping algorithm which takes into account communication
delays, we can still find a critical path. Informally, such an algorithm will tend to assign a
pair of tasks to the same processor if one task produces a large volume of data that the other
requires as input. The volume of communication can be used, along with some property of
the interprocessor communications system, to calculate the delay associated with the message
transfer. This is, however, dependent upon assuming that all the results of the task will be
communicated at the tasks termination.

1.3 The Structure of the Review

The rest of this review is structured in the following way:

8

15ms

25ms

 7ms

35ms

18ms

11ms

 4ms

Processor 1 Processor 2

Time

Figure 4: The Effect of Delays on the Schedule

First (Section 2) we give an overview of the way in which models of the mapping problem
are usually formulated. Next (Sections 3 and 4) we outline a framework for understanding
models of multicomputer architectures which we shall use when discussing the simplifying
assumptions of the models used in the papers that we review in later sections.

There follow four sections, each dealing with a class of models of the mapping problem.
Section 5 considers the simplest models of parallel processing where tasks are independent
and do not communicate. This has been the subject of previous reviews and so we outline
only major results and the most recent work. Section 6 considers models of parallel processing
where communication between tasks occurs, according to a set of precedence relations on the
tasks, but communication is assumed to be instantaneous and cost-free. Again this has been
subject to previous reviews. In Section 7 we move on to some recent work where tasks have a
precedence relationship and communication delays are taken into consideration. This contrasts
with Section 8 where communication between tasks, according to the precedence relation, is
modelled as a cost. In each of these sections we relate the different models to the framework.

Section 9 of the review is concerned with how parameters of models may be derived. We
conclude, in Section 10, by summarising the way in which results and heuristics may be of use
to the multicomputer programmer, and by outlining promising areas of research.

2 An Introduction to Modelling the Mapping Problem

The mapping problem consists of allocating various elements of a computation, which we shall
refer to as modules, to various components of a parallel computer, which we shall refer to as

9

processors
�
. In broad terms we can consider three aspects to the mapping problem which we

require to model: the processors and their communications facilities, the modules and their
communications patterns to be mapped, and the function which is used to determine the cost
of a mapping.

2.1 Modelling Costs

In this paper we wish to equate costs with the expected makespan—or time to completion—
of the program. Thus we consider the “mapping problem” to consist of finding a mapping
which minimises the expected makespan of a given program on a given multicomputer. We
discuss a number of papers which do not share our understanding of cost, and which attempt
to find a mapping that minimises a different property of the computation. As a result, in the
following subsections the word “cost” is used to represent quantities other than the expected
makespan—in particular we describe the cost of a communication, something that may relate
rather nebulously to any real overhead, and which is discussed in Section 8.

2.2 Modelling Processors

We shall refer to a set
�

of � processors. It is common (eg. Graham et al. [1979]) to consider three
ways in which the processors making up a parallel computer can vary in processing speed.
They may be identical, that is every processor processes all modules at the same speed as every
other. They may be uniform, that is the time of any given processor to process any module is
a constant integer multiple of a unit speed. Alternatively they may be unrelated, for example
a processor � could be faster than processor � at computing module � , but slower than � at
computing some other module � . Since we are considering the multicomputer we shall mainly
be interested in identical processors. The more general case of heterogeneous multicomputers
corresponds to models of unrelated processors.

In order to model communications facilities between processors we introduce a dependence of
the cost of communication between modules upon the processors to which tasks are mapped.

There are a number of options:
� The cost of communication between modules is independent of the processors to which

modules are mapped.
� The cost of communication between modules depends upon the processors to which they

have been mapped but in a way which is not based upon any property of the parallel
computer.

� The cost of communication between modules depends only upon whether or not they
have been assigned to the same processor.

� Processors are considered to be connected in an undirected graph �
	�� ��
���� in which
the nodes are the processors and an edge, ���
 ��� , exists in

�
if and only if processors � and

� are physically directly connected to each other; the cost of a communication between
modules mapped to a given pair of processors depends upon some properties of this
graph.

�
Some authors refer to them as processing elements since they may consist of more than just a simple processing

unit.

10

2.3 Modelling Modules

We shall refer to a set
�

of � modules that make up the computation. A module is a unit of
computation that is executed sequentially. Modules can be executed preemptively or non-
preemptively: that is they may or may not be allowed to be suspended. Modules are often
algorithmic units – perhaps functions in a functional decomposition. Alternatively in numerical
applications they may correspond to the computation associated with divisions of a data space.

There are three basic types of models, two of which were briefly mentioned in Section 1.2. First
there are models where no communication occurs between modules. Here we shall refer to
modules as tasks or processes interchangeably. Where communication is allowed there are two
different classes of computational models which we shall refer to as task based models and pro-
cess based models. Task-based models consist of tasks arranged in directed acyclic graphs where
an arc between a pair of tasks corresponds to both a precedence relationship and an associ-
ated communication event. Process-based models consist of processes arranged in undirected
graphs where an arc corresponds to a volume of communication between tasks. The directed
graph models tend to be used by researchers interested in scheduling problems whereas the
undirected graph models are used by those interested in modelling communications costs.

2.4 Mapping vs Partitioning

The correspondence between task-based and process-based models may be illustrated by con-
sidering the problem with using a task-based formulation in the context of programming
multicomputers. We can imagine searching through a program, expressed in a language such
as FORTRAN or c for tasks which can be identified as independent. The natural level of
modularity for finding such tasks might be the function or subroutine level. This will be an
appropriate level if functions are constrained to access external variables only when passed as
parameters. Otherwise it will be necessary to drop to a lower level of modularity such as the
compiler’s abstract machine instruction level.

It is clearly rather fanciful to expect a graph of abstract machine instructions to be of a fixed
topology since all that is required to make the topology variable is a non-predeterminable
loop termination condition. For this and other reasons, the mapping problem is often viewed
(for example by Efe [1982], Baxter and Patel [1989] and Sarkar [1989]) as the second step of
a two phase process for allocating computation to processors. The first phase, partitioning,
consists of merging tasks to grains, and then mapping consists of allocating grains to processors.
Since a grain corresponds to a larger volume of computation, for example to the computation
associated with a subspace of a data space, it is more appropriate to consider a static grain graph
than a static task graph, but it is now less appropriate to make the modelling assumptions that
grains only communicate on termination, and to require that all their constituent tasks be ready
to compute before any of them are started—not least because certain partitions would then
have cyclic dependencies.

In fact the distinction between partitioning and mapping is rather arbitrary, and this touches
on a central issue in the mapping problem. Sometimes it is useful to consider computation as
a set of atomic tasks, communicating on termination, sometimes as a set of processes sending
and receiving a number of communications during their computation. Neither model can
adequately capture all of the aspects of the mapping problem.

11

3 A Framework for Discussing Models of a Multicomputer

In this section we present a framework for discussing the activity of the processors of a multi-
computer. We consider the case of a calculation – that is a set of algorithms and a set of data
upon which the algorithms are to be applied – which is partitioned into a set of modules which
are executed on a set

�
of � identical

�
processors. The framework bears some resemblance to

the models of parallel computers described by Fox et al. [1988], or by Reed and Fujimoto [1987].
It differs in that it considers the state of the processor rather than the time for communication
or calculation events to complete.

3.1 The Basic Four States

It is assumed that at all times during a given execution of a parallel program any processor
� � � can be uniquely identified as being in one of four states

� Performing the computation required by the calculation
� Performing computation associated with message transfer
� Performing computation associated with housekeeping operations
� Idle

We shall refer to the time that a processor � spends in these states as �������
	 � � � , ������
�
 � � � , ����������� � � �
and ����� �
� � � � respectively. We also define:

� �����
	 	 �
���!

� �����
	 � � �

and similarly for all other values which are subscripts in T.

3.2 Time Spent Calculating

We can define � �����
	 to be a property of
�

and the calculation being performed, and completely
independent of the partitioning of the calculation into modules and the mapping of modules
to processors. Where the set of modules includes some re-calculation this will appear as a
component of � �"�����#� .

3.3 Time Spent Communicating

We can subdivide the term � ����
�
 � � � as follows

� ����
$
 � � � 	%� �'&�(*) � � �,+ �.- ��/#
 � � ��+ ��0 ���) � � � �
Where � �'&�(*) � � � , � - ��/#
 � � � and � 0 ���) � � � � are the amounts of time that a processor � spends per-
forming the computation associated with message initiation, termination and through-routing
respectively. Where processor � sends a message to processor � , the processing associated with
communication contributes to � �'&�(1) � � � and �2- ��/#
 � � � , and if, for example, through-routing of the
message causes costs to be incurred at processors other than � and � then it appears in �,0 ���) �

3
Recall our definition in Section 2.2.

12

on those processors. It should be noted that these quantities have nothing to do with the time
that a message may take to arrive

�

Two of the message passing overheads, ��- ��/#
 and � �'&�(*) , are defined to be a property of the
decomposition of the algorithm into modules, and independent of the mapping of modules.
They include all the computation which results from the partitioned address space: determining
whether a message transfer is required; generating a packet; function call overhead associated
with transfer and receipt of the packet and with generating any associated protocol; copying
into and out of local address space; and unpacketing. As far as these two values are concerned,
it is assumed that the computation associated with sending a message is independent of the
localisation of the pair of modules. If the computation associated with sending a message to a
module on the same processor is less than that for sending it outwith the processor, then this
will show up as a negative interference cost (see below).

��0 ���) � , the computation associated with intermediate node transfer of messages in a multi-
computer, is seen only on such machines as first generation hypercubes and Transputer based
multicomputers running message-passing systems. It is envisaged that this overhead will
disappear as the computation is taken over by dedicated hardware. This is not to say that the
influence of the underlying processor network disappears, since it continues to show up in
� ��������� and � ��� �
� .

3.4 Time Spent Housekeeping

� ��������� � � � is partitioned into three overheads according to

� �"�����#� � � � 	%��� 	�� � � � � �,+ � �'&�) ��/ � � ��+ � 0 �#	����
	 � � �

� � 	�� � � � � � contains the local overheads of local dynamic scheduling of computation where
processor � is assigned more than one module. It thus contains the cost of time-slicing be-
tween modules ie. the context switch, and of any algorithm being used to determine context-
switching

�
. Unfortunately � � 	�� � � � � � is not simply a function of the set of modules that has been

assigned to a given processor since it may be assumed that local scheduling will be dependent
upon the timing of communication events, and this is dependent upon the global mapping and
scheduling of modules.

���'&�) ��/ � � � is another term which is dependent upon the global mapping of modules. It contains
all the overheads which would not be there had processor � been assigned a single module,
and which are not related to module scheduling. An example would be the buffering of
arriving messages for a module while another module is being processed, given that, had the
first module not been scheduled, the message would be passed to the second module without
buffering.

� 0 ��	����
	 � � � is the overhead associated with recomputation of parts of the calculation on processor
� (which may be performed in an attempt to minimise makespan). The computation associated
with the calculation may appear only once in �������
	 . Recomputation, either of a whole module
or of part of a module, must appear in ��0 ��	����
	 . If calulation is performed more than once it is
useful to consider the first computation to be calculation, the others recalculation. If it is initiated
simultaneously on more than one processor then some arbitrary assignment of the computation
events to � �����
	 and � 0 �#	����
	 must be made.

�
The above definition applies for multicast messages if they are considered to be multiple message transfers.�
If, for example, receipt of communication causes a context switch to allow associated computation then this

appears as a communication cost not a housekeeping cost.

13

3.5 Time Spent Idle

� ��� �
� � � � , the time processor � spends idle, is also partitioned:

� ��� �
� � � � 	%� � � (*) � � ��+ ��� (*& � � �

� � (*& is the time processors spend idle, having completed all their modules. It can be thought
of as a place-filler. There is no cost associated with the extension of processing into � � (*& .

� � � (1) � � � , the time that processor � spends idle with none of its modules executing, before it has
performed all the computation associated with its modules, is a property of the global mapping
of modules, and can be regarded as the overhead associated with load imbalance. Again there
is no cost directly associated with extension of processing into � � � (*) � � � and so, for example,
��0 ��	����
	 � � � can be extended at the expense of � � � (*) � � � , corresponding to re-computation of values
so as to minimise overall makespan. It is often useful for � � � (*) � � � to be considered to be the
sum of two components:

� � � (*) � � � 	%� � � (*) 8 � � �,+ � � � (*) 7 � � �
Where � � � (1) 8 � � � is the time processor � spends waiting for messages before they are sent, and
� � � (1) 7 � � � is the time that processor � spends waiting for messages that are in transit. If � ’s
next scheduled task is awaiting more than one message from tasks on other processors then
the time clocks up against � � � (*) 7 � � � only if all outstanding messages are in transit. Although
this explanation assumes an asynchronous or datagram service (see Tanenbaum [1989] for
an introduction to this area) of message passing between modules, there is a corresponding
explanation for synchronous transfers since, in all the models we deal with in later sections we
can assume that no processor is ever waiting for another processor to read a message.

3.6 Makespan in Terms of the Model

Having developed our model, and stated that at any given time the processor can be in one
and only one of the aforementioned states, for any given execution of a parallel program we
can define � � � � , the time a processor spends processing, as:

� � � � 	 �#� ����
$
 � � �,+ � �����
	 � � ��+ � �"�����#� � � �,+ � � � (*) � � � �
Note that � � (1& is not included in the above, which allows us to define

�
the makespan of the

program as
� 	����	����! � � � � �

4 The Influence of the Communications Network

The properties of the interprocessor communications network have only briefly been alluded
to in the above analysis, since they affect only indirectly the makespan of the program. Apart
from the contribution to � through � 0 ���) � , it is only possible for the network to extend the
makespan of the program if it causes an extension of � � � (*) 7 in the critical path. Unfortunately
the times of arrival of messages may change the critical path. As a general rule, it is not
necessary to expedite a message simply so that it can sit in a buffer at destination, whereas if a
message is being awaited by an idle processor it should be sent as speedily as possible. This
said, the way in which the network and the application interact to determine � � � (*) 7 depends
critically upon the way in which tasks send and receive messages.

14

The interprocessor network is often described as having quiet and busy network performance
characteristics. The former are often well understood, the latter are more complex.

4.1 Quiet Network Performance

Recall our definition of a processor graph � 	 � ��
���� in Section 1. Clarke [1990] (see also
Wallace [1991]) has shown that the performance of a number of interprocessor networks can
be characterised in terms of a simple model. The time to completion of a message transfer, � is
given by

� 	��
+���� +���	 +�
�	��

where
	

is the number of edges in � being traversed,
�

is the number of words being transferred
in the message, � ,

�
,
�

and

are hardware specific constants constants.

In the case of packet switched networks, we can identify that the quantity �
+����

, comprising
the components of message transfer time which are independent of the number of edges
being traversed, is associated with � �'&�(*) and �2- ��/#
 , the processor overheads of sending and
receiving the message. We can also identify

�
	
, a fixed overhead associated with every step the

message takes, as being partially attributable to ��0 ���) � . Finally,

�	��

is simply a property of the
communications network. See Seitz [1990] and Dally [1990] for more discussion of message
latencies in packet switched and circuit switched networks.

It should be stressed that there is no strong causal link between the components of � ����
$

and the components of � described above. The latter are the combination of pure network
properties and a subset of what shows up in the former. For example the components of � ����
$

which are associated with packeting and unpacketing of messages do not appear in � .

4.2 Busy Network Performance

It is useful to consider the above quiet network analysis as a lower bound on the value of
� for busy networks. Busy network performance may be considered as being governed by
contention for network resources. As in a conventional computer network, performance may
be governed by one or more of switching mode (eg. packet switching, circuit switching or
wormholing), routing strategies, queueing disciplines, the availability of queueing resource,
flow control protocols and error correction protocols.

It is important for an analysis of communicatons performance in a busy network to be per-
formed, especially for those programs which are close to saturating network bandwidth, either
locally or globally, but detailed analysis of application specific performance of multicomputer
routing systems is rarely made and contention is rarely analysed in models of parallel process-
ing except in the context of PRAM emulation, which we have excluded from our discussion.
Kruskal and Snir [1989] give an analysis of processor interconnection networks in terms of
utilisation, but their analysis is framed form the viewpoint of processor network design rather
than mapping to a fixed network.

5 No Task Precedence

We can identify a number of papers which consider the mapping of independent tasks across
processors. The time that a processor spends computing its tasks is independent of the order
in which it performs them, and of the mapping that has been made to other tasks.

15

Model 1: No Precedence

An instance
�

of the model is a 3-Tuple � ��
 �
�� 	 � , where
�

is a set of �
processors,

�
is a set of � tasks and

� 	�� �����
	� is a function such that
� 	 � � �

returns the time taken to compute task � .

Let ��
 denote the set of all surjective mappings from
�

to the collection
of singleton subsets of

�
. This may be thought of as the set of possible

task mapping functions. For each �
 � �
 we let �.
 � ��� ��� denote
the function which returns the set of tasks mapped to a given processor by
mapping function �
 .

We define
�
 , the makespan associated with the mapping function �
 to

be:

�
 	 ��� ����! �
�
� � ����� ���

� 	 � � � �

Model 1 is extremely limited. When an instance of the model is mapped with a function �
 ,
we can consider the times processors spend in the states defined in our framework as shown
in Table 1.

Clearly � ����
�
 	�� , since there is no communication between tasks. Furthermore, � � � (*) 	�� ;
there is no waiting since a processor can simply start another task as soon as it has completed
a previous one. We have no housekeeping costs: � 0 �#	����
	 	�� , since there is no recomputation;
� � 	�� � � 	 � since scheduling is non-preemptive or instantaneous; �,�'&�) ��/ 	!� since tasks are
assumed not to interfere with each other. � �����
	 � � � is merely the sum of the execution times of
the tasks allocated to processor � , and the time a processor spends having finished its work
appears as � � (*& � � � .
The model corresponds to the execution of independent programs, say for example by a parallel
batch server, in a way that multicomputer programmers often refer to as embarassingly parallel
(eg. Fox and Furmanski [1988]) or event parallel (eg. Pritchard et al. [1987]).

This model, and Model 6 outlined below, correspond to the formulations that are the basis of
scheduling theory, which developed from the 1950’s onwards and still is of current interest
(eg. Ramamithram et al. [1990]). Although they underly much of what is discussed in the later
sections of this review, it is not our purpose to discuss the results in detail, merely to put them in
the context of multicomputer programming. As a result we refer interested readers to a number
of previous reviews and books (Graham et al. [1979], Conway et al. [1967], Coffman Jr. [1976]
(including the chapter by Sethi [1976]), Krishnamurthy [1990], Gonzalez [1977]), and summarise
a number of relevant results.

We can pose the following decision problem:

� �����
	 � � � " � � ���#� ��� � 	 � � �
� ����
$
 0
� �"�����#� 0
� � � �
� � � � (*) 0

� � (*& � � � ��� �%$ �! � �����
	 � � �'& � �����
	 � � �
Table 1: Model 1 in Terms of our Framework

16

Decision Problem 1 Given an instance
�

of the above model and a positive integer
�

does there exist
a function �
 � �
 such that

�
�� � ?

Decision Problem 1 is NP-complete (Bruno et al. [1974]) in the case of two or more identical
processors. It is related to the bin packing problem (See Coffman Jr. et al. [1984] and Garey and
Johnson [1982]). As a result, it is natural to consider polynomial algorithms which, although
they are not guaranteed to find the best solution, are guaranteed to find solutions which are
close to the optimum. Such algorithms are known as approximation algorithms, or in the
case where their solutions are guaranteed to be at most � +�� times the optimal solution, as�
-approximation algorithms. An early partial review of this area can be found ion Garey et

al. [1977].

Graham’s Longest Processing Time (LPT) algorithm[Graham, 1969] guarantees to find
�

such
that

��� �	��

� & ��

� � � � � �)

where
� � �) is the optimum makespan. Coffmann et al. [1978] give an algorithm based on

techniques from bin packing and improve this to � � � � � � �) . Sahni [1976] produced a family
of approximation algorithms for any guaranteed performance

�
, whose running time was

polynomial in � but exponential in � . More recently, Hochbaum and Shmoys [1988a, 1988b]
have developed a family of

�
-approximation algorithms which is polynomial in both � and � .

Nevertheless the problem is still the focus for algorithm development, for example, Hellerstrom
and Kanal [1990] consider an interesting approach to the problem, embedding it in a mean-field
thermodynamic neural network, similar to that used by Hopfield and Tank for the travelling
salesperson problem [1985].

As an extension to Graham’s work, Coffman et al. [1978] consider the expected makespan for
LPT scheduling under the assumption that tasks’ execution times are independent, identically-
distributed, random variables. They show that LPT makespans converge stochastically to
optimal makespans for a range of distributions of task execution times. It is interesting to
compare this approach to an analysis of the common multicomputer programming technique
of scattered decomposition by Nicol and Saltz [1990], which considers the effect of correlations
between tasks (associated with processing a dataspace), on the performance of a mapping.

Other authors (eg. Kafura and Shen [1977] and Garey and Johnson [1975]) have extended
Model 1 to allow constraints upon allocations of tasks so that they compete for resources,
thereby modelling the situation in multicomputers which do not allow virtual memory and
have localised software interfaces and special purpose hardware.

Another generalisation of the model, by Bła �� ewicz et al. [1984,1986] allows tasks to require more
than one processor and corresponds closely to the subcube allocation problem for hypercubes
studied by Chen and Lai [1988] and Chen and Shin [1987]. Bła �� ewicz et al. [1986] show that the
problem is NP-complete if tasks can require arbitrary numbers of processors, but give linear
time complexity algorithms for an exact solution in the case of each task either requiring one
or
�

processors. Du and Leung [1989] show that the problem is strongly NP-complete only if
the number of processors on which the task graph is to be scheduled is greater than or equal
to five. The fact that tasks require many processors task can be generalised to a requirement
for arbitrary sets of resources, and so made to model access to the operating stystem. See
Zhao [1987] for an approach to this.

The above results for the non-preemptive scheduling of tasks are in contrast to a more positive
set of results for preemptive scheduling. McNaughton [1959] produced a simple polynomial
time algorithm and Martel [1988] shows that this version of the problem is in the complexity

17

class NC defined by Pippenger [1979]. In the case of preemptively scheduled tasks requiring
more than one processor, Du and Leung [1989] show that the problem is ordinarily NP-hard
if processes require either one or

�
processors, and strongly NP-hard if they are allowed to

require an arbitrary number of processors.

6 Tasks with Precedence

Multicomputer programs with inter-task communications are better modelled by an alternative
formulation. Below we describe a model of non-preemptive scheduling where tasks show
dependencies, and the dependency is satisfied at the termination of the precedent task. In
terms of our multicomputer this corresponds to tasks performing and completing all their
communication instantaneously at the point in time at which they finish executing.

Model 2: Precedence With No Cost

An instance
�

of the model is 3-tuple � ��
 �
 � 	 � , where
�

is a set of � proces-
sors;

� 	 � �
�� �
is a directed acyclic graph where

�
is a set of � tasks and

�
represents a partial order on the tasks;

� 	 � � � � 	� is a function such that� 	 � � � returns the time taken to compute task � .

Let �
 denote the set of all surjective mappings from
�

to the collection
of singleton subsets of

�
. This may be thought of as the set of possible

task mapping functions. For each �
 � �
 we let �
 � ��� � � denote
the function which returns the set of tasks mapped to a given processor by
mapping function �
 .

For each �
 � �
 let �
 denote the set of all functions with domain
�

and
range

�
	� such that for any � � �

� if � �
 ��� � � then � � � �,+ � 	 � � � � � � � �
��� � � ��
 � �
 � � �
 � � � if ���	 � and � � � �
	 � � � � then � � � ��	 � � � ��+ � 	 � � �

�
 is the set of valid schedules for a given mapping �
 .

Now the makespan of a schedule � is given simply by

� � 	 ���	�� � � ��� � � ��+ � 	 � � � �

Given an instance
�

of Model 2, a mapping �
 � �
 and a schedule � � �
 we can consider
the activity of processors according to our framework as shown in Table 2.

� �����
	 � � � , the time that a processor � spends computing, is again just the sum of the computation
time of the tasks assigned to it. We assume no communications costs so � ����
$
 	 � . Again
there is assumed to be no recomputation, no preemption costs, and no interference costs so
� ��������� 	 � . Since we assume there is no delay associated with communciation, processors are
never idle waiting for messages in transit, ie. � � � (1) 7 	 � ,. They can, however, be idle waiting
for a precedence relation to be satisfied, and this contributes to � � � (*) 8 . Finally, the time they
spend idle after all their tasks have been computed shows up as � � (1& .

Complexity results for this model were presented in 1975 by Ullman [1975].
�
Martin and Estrin [1967] give methods for transforming directed cyclic graph based models of computation to

directed acyclic graph based models.

18

� �����
	 � � � " � � ����� ��� � 	 � � �
� ����
�
 0
� �"�����#� 0
� ��� �
� � � � (*) 8 � � � ���	� � � ����� ��� � � � � �,+ � 	 � � � ��& � �����
	 � � �

� � � (*) 7 0
� � (*& � � � ���	� � � � � � � � �,+ � 	 � � � ��& ��� � � � ���'� � � ��� � � ��+ � 	 � � � �

Table 2: Model 2 in Terms of our Framework

Decision Problem 2 Given an instance
�

of Model 2 and an integer
�

, does there exist a mapping
function �
 � �
 such that there exists a schedule � � �
 such that

� � � � ?

Decision Problem 2 is NP-complete for general � , even if the range of
� 	 is

� ��� , or in the case
of � 	 � if the range of

� 	 is
� �
�� � . Garey and Johnson [1977] show that the problem is NP-

complete even if � 	 � and the range of
� 	 is

� ��� if for all � � �
, � � � � is required to be earlier

than some deadline � �
More recently, Vazirani and Vazirani [1989] have shown that if � 	 � , Decision Problem 2 is in
Random NC, and a stronger result by Hembold and Mayr [1987] shows that it is in NC. Due to
differing delays in the reviewing process, this stronger result was published first. Showing the
two-processor scheduling problem is in NC implies that it can be solved on a concurrent read
concurrent write PRAM with a number of processors polynomial in the size of the problem in
time which is a polylog of the problem size. In the case of Vazirani and Vazirani the component
of their algorithm with highest order parallel complexity requires � � ����� �

� � on �
�

processors.
Remember it is only scheduling two.

Du and Leung [1989] give complexity results for the scheduling of precedence constrained tasks
which require more than one processor. This is NP-complete even if the precedence constraints
consist of a set of chains, and there are only two processors.

In a similar way to the serial complexity results there are results for the parallel complexity
of special classes of task graphs. The problem is in NC if the precedence constraints are
represented by a collection of outtrees (Dolev et al. [1986]). However, as a complementary
result shown in the same paper, it is unlikely that it is in NC if the precedence constraint is
either a collection of outtrees and intrees or if the number of processors varies with time.

Algorithms for solving or approximately solving the mapping problem as formulated above
have been appearing in the literature with remarkable frequency. In the cases where the problem
is not NP-complete there are a number of exact polynomial time algorithms. Otherwise,
heuristic approaches have often been used. This version of the mapping problem has been
the subject of previous reviews (see Chen and Liu [1975] for a discussion of various similar
heuristic approaches). Indeed it is often considered in the same reviews as Model 1, and as a
result we only describe a selection of the results and heuristics.

Hu [1961] showed that where the task graph is a tree, and the range of
� 	 is

� ��� , a schedule
based upon sequential processing of layers of the tree is optimal. Kaufmann [1974] extended
Hu’s algorithm to the case of non-unit length tasks, and showed bounds on its performance
which allowed him to consider it “almost optimal”.

This work contrasts with Graham’s List scheduling approaches [Graham 1966, Graham 1969].
In 1972 Coffman Jr. and Graham [1972] showed an algorithm, for any task dag, which generates
optimal schedules for � 	 � and

� 	 with range
� ��� . Their algorithm may be generalised

to arbitrary � . Lam and Sethi [1977] showed that if
� � is the optimal makespan of the

19

graph, then Coffman and Graham’s algorithm will generate a schedule of makespan
�

, where
�
 � � ��� & �
 � . Gabow [1988] showed a linear time algorithm for scheduling on two
uniform processors (recall our definition in Section 2.2), again with unit length tasks, which
generates optimal results with certain fixed ratios of processor speeds and nearly optimal
results otherwise. Cho and Sahni [1980] give bounds for list schedules on general uniform
processor systems. Cole and Vishkin [1988] show logarithmic time parallel implementations
of list scheduling on an EREW PRAM. There are also a number of results for preemptive
scheduling of precedence constrained jobs (eg. Muntz and Coffman Jr. [1969] for 2-processor
systems), and in this context we refer the reader to the reviews outlined in Section 5 and to
Lawler [1982].

Relatively few authors consider applying their algorithms to real problems. An exception
is Kasahara and Narita [1984] who give a branch and bound based approach which they
demonstrate on a number of task graphs. In this context it is interesting to compare Martin
and Estrin [1967] with Shirazi et al. [1990]. The former use a heuristic optimisation method
to refine an initial heuristic mapping of tasks to processors. They show simulation results for
a number of program-derived task graphs in a model which allows probabilistic branching.
The latter analyse the worst case performance of three different heuristic based approaches
to mapping task dags, and show simulation results for random task graphs, and for other
program-derived task graphs. In the intervening twenty three years, no consensus has evolved
over a meaningful way of comparing heuristics, either for their performance on a given task
graph, or, as Martin and Estrin point out, for their robustness to variations in the topology and
labelling of task graphs. See Adam et al. [1974] for some discussion of this latter issue.

7 Task Precedence and Communication Delays

The model described in Section 6 captures the essence of interprocessor communication in
terms of the implied precedence, but fails to capture any of the overheads associated with
message transfer. This and the following sections explain extensions to the previous model
which attempt to characterise the overheads of communication in different ways. This section
describes an approach where messages are simply delayed. The area has been the subject of a
recent short review (Veltman et al. [1990]).

In the simplest form of the delay based models there is assumed to be a uniform communication
delay between the result of a computation being generated and it being known to all processors.
In the case described by Papadimitriou and Yannakakis [1990] tasks may be assigned to more
than one processor, that is they may be re-computed if it is more efficient to do so than to
wait for the results of the computation to arrive from elsewhere. Again the model refers to
non-preemptive scheduling.

Model 3: Precedence with Communication Delay

We define an instance
�

of the model to be a 4-tuple, � ��
 �
�� 	
 � � where
�

is a set of � processors;
� 	 � �
 � �

is a directed acyclic graph such that
�

is
a set of � tasks and

�
represents a partial order on the tasks;

� 	 � � � � 	�
is a function returning the time for execution of a task; and � is an integer
communication delay.

Let �
 denote the set of all mapping functions, �
 , such that

�
 � ��� �

20

� �����
	 " � � � � 	 � � �
� ����
�
 0
� �"�����#� ��0 �#	����
	 " ���! " � � � � � � � � 	 � � � & � �����
	

� � 	�� � � 0
� �'&�) ��/ 0

� ��� �
� � � � (*) � � � ���	� � � ���#� ��� � � � �
 � �.+ � 	 � � � �#& " � � � � � � � � 	 � � �
� � (*& � � � � � & � �	� � � � � � ��� � � � �
 � ��+ � 	 � � � �
Table 3: Model 3 in Terms of our Framework

Function �
 � �
 returns the set of processors on which a task is executed
in the mapping defined by �
 . Task replication is permitted in this model,
but by defining that �
 returns a set of processors we have also defined
that the mapping ensures that no task is executed more than once on the
same processor. (Under the terms of the model this can only ever increase
makespan.)

For each �
 we define a corresponding function:

�
 � � � � �

which, given a processor � returns the set of tasks
� � � � � �
 � � � 	 � � .

For each �
 we define the set ��
 of allowable schedules � such that

� � ��� � ���
	�

where, for any given � � �
 , if � �� �
 � � � , then � � �
 � � is undefined,otherwise
� � �
 � � is the time at which task � is executed on processor � . The value of
� � �
 � � is constrained such that.

��� � �
 ��� � � � � � �
 � � �
– if � � �
 � � � then � � �
 � ��+ � 	 � � � � � � �
 � �
– otherwise � � � �
 � � � such that � � �
 � ��+ � 	 � � �,+ � � � � �
 � �

��� � � � � �
 � � �
 � � � if � �	 � and � � �
 � � 	 � � �
 � � then � � �
 � � 	
� � �
 � �,+ � 	 � � �

Given a mapping function �
 � �
 , for any given � � �
 ,

� � 	 � �	����! ���	�� � ����� ��� � � � �
 � �.+ � 	 � � � �

Again we can consider the times processors spend in the states referred to in our framework.
For any given schedule � of any given mapping �
 of any given instance

�
of Model 3. This is

shown in Table 3.

Here we are defining � �����
	 to be the sum of the time it would take to execute each of the tasks
once. Any other time spent executing tasks is assigned to � 0 �#	����
	 . We define the wait time of
each processor to be the time to it finishing its last task less the time it spends calculating or
recalculating, and the time it spends finished to be the time between it finishing its last task

21

and the last processor finishing its last task. It is also possible to partition the time in � � � (1) � � �
to � � � (*) 7 � � � and � � � (*) 8 � � � in the following way.

Let � 	 � �
 � � � � . We define the ordered set ��� � � 	 � � �

 � �

� � �

 ��� � as the ordering of the tasks in
�
 � � � in the order in which they are executed. In other words, ��� � � satisfies the inequalities

� � � �

 � � � � � � �

 � � � � � � � � � � ��� �

 � � � � � � �
 � �

For
� 	 �
 �
 � � �
 � , we define � �

� � � � (
 � � to be the idle time on processor � before � (can start to
execute on � . For � � ,

� �
� � � � �

 � � 	 � � � �

 � ��& � �

For
� ��� � � ,

� �
� � � � (
 � � 	 � � � (
 � ��&	� � � � (� �

 � ��+ � 	 � � (� �
��

�

We can distinguish between idle time waiting for messages in transit and idle time waiting
for messages that have not been sent when � becomes idle. These two quantities are denoted
� �

� ��� � � (
 � � and � �
� � � � � (
 � � .

� �
� �
� � � (
 � � 	 ����� ��� �

� � � � (
 � �
 � �
and

� �
� � � � � (
 � � 	�� �

� � � � (
 � �#& � �
� � � � � (
 � � �

Now we can define
� � � (*) 7 � � � 	 �

� � ����� ���
� �

� �
� � �
 � �

and
� � � (1) 8 � � � 	 �

� � ����� ��� � �
� � � � �
 � � �

Decision Problem 3 Given an integer
�

and a 3-tuple � 	 � �
�� 	
 � � , where the range of
� 	 is restricted

to
� � � , does there exist an instance

� 	 � ��
 �
�� 	
 � � of Model 3 for which there is a mapping function
�
 � ��
 , and an associated scheduling function � � �
 such that

� � � � ?

Papadimitriou and Yannakakis [1990] show Decision Problem 3 is NP-complete. Their proof
implies it is NP-complete even if recomputation is forbidden. Rayward-Smith [1987a] shows
the problem is � � complete for unit length tasks with � 	 � . Rayward-Smith [1987b] shows the
preemptive version of the problem is NP-complete for ��� � , and gives a polynomial algorithm
for the preemptive version with � 	 � . Chrétienne [1989] gives polynomial algorithms for
tree-like precedence contraints without replication.

Following work deriving algorithms for special task graphs as described in Papadimitriou and
Ullman [1987] which have a cost based communications model (see Section 8), Papadimitriou
and Yannakakis show a polynomial-time approximation algorithm with worst case ratio 2 for
the delay based problem with general task graphs, possible task replication and no preemption.
This is based upon computing a function � on the depth of a task which is the time before
which it cannot be computed. For each processor, their algorithm then computes the � highest
in � value ancestors of any task that it has been assigned and receives the rest from other
processors. Another positive result is shown by Jung et al.[1989]. Although Decision Problem 3
is NP-complete, they show algorithms that are � � ��� 	 � �

. That is they are polynomial in the
problem size once � is fixed. A variable number of processors is used by these algorithms. In

22

the case of Jung et al. there must be as many processors as tasks. In the case of Papadimitriou
and Yanakakis, the algorithm devises a schedule, and not a mapping and it is not clear how
do derive a processor efficient mapping (ie. one that uses few processors) from the schedule. In
both cases it may be possible to use Brent’s scheduling principle [Brent 1974] when the number
of physical processors available is less than the number of tasks that may be simultaneously
processed.

Papadimitriou and Yanakakis give a generalisation of their algorithm to general
� 	 which allows

� to be a property of the task to which the communications arc is outgoing. One can rationalise
this as tasks outputting an equal number of unit length messages to all their postcedents, and
it may be that the work of Valiant and collaborators [Valiant and Brebner 1981], [Valiant 1982],
Upfal [1984] and others provides a framework within which it is possible to consider the time
for a message to be delivered to be independent of the other communications going on in the
processor network.

Lee et al. [1988] and Hwang et al. [1989] deal with a similar model, but � is dependent upon the
precedence relation that is being satisfied and the processors to which the communicating tasks
are mapped. Moreover, they deal with non-unit length tasks and a fixed number of processors
and so the problem can be seen to be a direct extension of the problem, outlined in section 6,
which is NP-complete (Ullman [1975]). Lee et al. [1988] show an algorithm which is similar
in flavour to Graham’s List scheduling algorithm [1969] which they refer to as Earliest Ready
Task (ERT) where tasks are scheduled at a processor in the order at which they become ready
to be computed. This time is clearly the time of arrival of the last message which is required
to service the precedence relations of the task. The time of arrival is clearly dependent upon
properties of the message itself and the properties of the communication network. They do
not, however, model contention. Their algorithm is shown to satisfy

� � � � & ��
 � � � � �) +��

where
� � �) is the optimal makespan, and

�
is a constant for a particular task graph. Although

it is not necessary to compute
�

to perform the scheduling, its value is derived from the length
of the longest chain in the task graph and they give a non-polynomial algorithm to compute it.

Baxter and Patel [1989] give a heuristic called LAST for scheduling graphs, however they
appear to be unaware of other work on Model 3 (most of their references use models similar
to Model 4), and give no comparative performance. The first such heuristic approach to
scheduling precedence constrained graphs with delays appears to be Wiliams [1983].

El-Rewini and Lewis [1990] have extended the above model by analysing contention in the
processor network. That is, � is dependent upon the existence of other communications in
the processor network, and communications claim communications resource for the duration
of their message transfer. This model is built upon a graph based model of interprocessor
communications similar to that outlined in Section 8. El-Rewini and Lewis present heuristics,
but no analytical results for their effectiveness, and simulated performance results for a set of
task graphs.

8 Cost Based Models

Section 7 has explained an approach to modelling communications overheads where there is a
delay associated with the results of a module becoming known. This section describes another,
historically older, approach whereby intermodule communications incur costs.

23

Feature Distributed Systems Multicomputer Systems
Work Profile Multiple Job Single Job
Processor Type Homogenous Heterogenous
Fault Tolerance Important Ignored
Optimisation Maximise Through-

put by Minimising System
Resource Consumption

Minimise Makespan

Ratio of Message Latency to
Instruction Cycle Time

Relatively High Relatively Low

Individual Job Execution Can be Required to be
Sequential

Parallel

Table 4: Relevant Differences between models of distributed systems and models of multicom-
puter systems

In this section we review work on mapping that is of more relevance to distributed systems
than it is to multicomputer systems. We include it in our review, firstly because there is
a grey area between the two types of system and, secondly, because several papers can be
viewed as attempts to adapt these research results to mapping problems for multicomputers.
Unfortunately, there are significant differences in the abstract models of computation being
used by researchers in the two fields; these are summarised in Table 4. We are not saying
that all researchers make these assumptions, rather we are conveying an impression of the
differences in emphasis between the two fields.

The basis of many of the models reviewed in this section is that there is a computation cost
associated with each module and a communication cost associated with each inter-module
message. The total cost of a mapping is the sum of all the computation costs and communication
costs. The majority of these models deal with inhomogenous processing systems, where the
computation cost of a task depends upon the processor upon which it is executed. Modules are
assumed to be persistent processes, and if they are multiprocessed, it must be assumed that they
can be preempted, and that the costs of preemption can be modelled. The models, however,
lack a precedence constraint on processes, and thus the strategy by which multiprocessing is
controlled is not part of the model.

We can formulate a model such as that used by Stone [1977].

Model 4: Communication Costs and Computation Costs

An instance
�

of the model is a 4-tuple � ��
 �
 � �
 � � � . � is a set of � processors,� 	 � �
�� �
is an undirected graph, where

�
is a set of � processes, and

�
is a

set of undirected edges corresponding to communication between processes;� � � � � � � � 	� is a function such that
� � � �
 � � returns the time required

to compute task � on processor � ;
� � � � � � 	� is a function returning the

cost associated with communication between processes if they are mapped
to different processors.

Given
�

, we can consider the set �
 of functions which map from
�

onto
�

.
This may be thought of as the set of possible task mapping functions. For
each �
 � �
 we can define a corresponding function

�
 � � � � �
which returns the set of tasks mapped to a given processor by mapping

24

function �
 .

Now the global cost of computation,
�
 associated with mapping function

�
 , is given by: �
 	 �
� � �
� � � �
 �
 � � � �

and the global cost of communication associated with �
 is:
�
 	 �

� ��� �����	��
 � � � ����
� � � � � �
� � � � �
 ��� �

And the total cost �
 of a mapping is given by:

�
 	 �
 +��

For the model we can define the following decision problem:

Decision Problem 4 Given an instance
�

of Model 4 and an integer
�

: does there exist a function �

in �
 such that �
 � � ?
There are a number of results for this model which relate to two-processor systems. These
stem from work by Stone [1977, 1978] based upon the use of network flow diagrams. Stone
shows an optimal algorithm for model 4 with � 	 � . An extension of Stone’s work to three
processors was performed by Stone himself [1977] and Bokhari [1981] cites an unpublished
result of Gursky that the four or more processor versions are NP-complete.

A substantial nail in the coffin of this model came in Fernández-Baca’s result [Fernández-Baca
1989] that Decision Problem 4 is NP-complete if all of the following restrictions hold:

� the range of
� � is

� � � ,
� the range of

� � is
� ��� ,

� � 	�� ,
� � is both planar and biparite.

Furthermore, Fernández-Baca [1989] showed that there can exist no
�

approximation algorithms
for the problem constrained in the above fashion and no exact local search algorithm that takes
polynomial time per iteration.

There were, however some positive aspects to Fernández-Baca’s paper in that he presented an
extension of some work by Bokhari [1981] on task graphs that were trees and by Towsley [1986]
who applied a dynamic programming approach to the problem with an arbitrary number of
processors but special types of task graphs. Bokhari had shown an algorithm that, if the task
graph is a tree, is guaranteed to find an exact solution in � � � � � �

time. Towsley had considered
series-parallel graphs, and shown an algorithm with time complexity � � � � � �

. Fernández-Baca
extended the results to other tree-like graphs. Rao et al. [1979] consider the case of Stone’s
original model but where one of the processors is constrained in memory, and show two
techniques which can reduce the complexity of the problem in some cases but not in general.
Gusfield [1983] solves the problem with a parametric computing technique, for the costs of
mapping tasks to the two processors varying as a function of two independent parameters.

8.1 Applying Stone’s model

We can rationalise Stone’s model in terms of our framework as outlined in Table 5.

25

� �����
	 � � � " � � ���'� � � � � � �
 � �
� ����
�
 0
� �"�����#� 0
� ��� �
� � � � (*) 7 �

� � � (*) 8 � � & � � �

Table 5: Model 4 in Terms of our Framework

The above rationalisation stems from the fact that Stone’s work considers only the case of
sequentially executing tasks. That is modules are executing on one of � processors, and the
other processors are idle for the duration of its execution. The cost of communication between
modules corresponds to a delay between a module terminating and another module starting.
The sum of the costs only corresponds to the makespan if the costs are incurred sequentially.

There is another problem with using Stone’s model in the context of multicomputers: in the
case of multicomputers with identical or uniform (ie. not unrelated) processors, the minimal
cost mapping will assign all modules to the same processor. (Interestingly Stone suggests
making the assumption of uniform processors in his proposed extention to dynamic mapping).

8.2 Interference Between Processes

Given the problem of NP-completeness, a number of heuristic approaches to the problem of
determining optimal mappings have been proposed. Many of these attempt to allow con-
straints upon the solution, for example memory resource constraints. Chu et al. [1980] consider
integer programming approaches in the presence of constraints. Gylys and Edwards [1976]
describe module clustering algorithms which satisfy constraints. Efe [1982] describes an ap-
proach where modules are mapped by a clustering algorithm, and then re-allocated to satisfy
constraints. Ma et al. [1982] use a branch and bound technique to solve a model which includes
constraints, including a redundancy constraint: certain modules must be allocated to more than
one processor.

Other authors have used constraints and costs to attempt to encourage the potential of par-
allelism between processes in the resulting mapping. Lo [1988] considers an alternative to
Model 4 where if � is mapped to processor � ,

� 	 � �
 � � is dependent upon the elements of �
 � � � :
that is there is a cost associated with interference between tasks. Houstis [1990] (in the con-
text of real-time systems) adds an explicit parallel processing constraint to the model: if two
processes can be executed in parallel then they must be executed on different processors – it
is not clear what the justification for this is. Gaudiot et al. [1988] use a less extreme version
of this constraint. Where two potentially parallel modules are assigned to overlapping sets of
processors (they allow tasks to require many processors) a cost is incurred which is included
in the cost of the mapping.

8.3 Processor Graphs

Chu et al. [1980], in what may be considered a partial review of the field, describe a version of
the above where the cost of communication between tasks is dependent upon the processors to
which they have been mapped. See also Chu [1969]. Sinclair [1987] applies a branch and bound
algorithm to the problem with general task graphs and mapping dependent communications
costs. He claims that it gives good results but can give no guarantees of its time complexity.

26

Houstis [1990] and Cvetanovic [1987] consider models of contention for communication re-
source, where the communications medium is considered to be a saturable bus, whose perfor-
mance for any communication is determined by its rate of utilisation. Although the inclusion
of contention makes the model more complete, this particular model of contention is not ap-
propriate for multicomputers. More relevant to the multicomputer programmer, there is a set
of models where the communication cost is dependent upon some property of the underlying
processor network. The problem becomes that of mapping an undirected graph of processes
into an undirected graph of processors so as to minimise the communication overhead. In the
case of a multicomputer, the overhead is often defined as some mis-match between the links
of the process graph and the links of the processor graph. The algorithms can either assume
as many processors as processes [Bokhari 1981], or can assume multiprocessing [Berman and
Snyder 1987]. Udiavar and Stiles [1990] use simulated annealing to solve a mapping problem in
which communications costs

�
between processors are variable – dependent upon the distances

between processors in a graph the topology of which is a parameter in the optimisation.

We can describe a model similar to that used by Bokhari [1987]

Model 5: Communication Costs Only

An instance
�

of the model consists of a 4-tuple � �
 �
 � �
�� � where � 	 � ��
����
is a graph of � processors, (the edges correspond to interprocessor links);� 	 � �
 � �

is a process graph where
�

is a set of � processes (ie. there are
as many processes as there are processors) and an edge

� �
 � � � � implies �
communicates with � ; � is the time required to execute any � � �

;
� � � � �� 	� is a function such that

� � � � �
 � � � returns an integer corresponding to the
amount of communication that � performs with � (bidirectionally) during
its execution.

For
�

we define a communications cost function

�
 � � � � ��� 	�
(where

�
 � �
 � � returns the cost associated with sending a message between
processors � and �) in the following way. A route in � between � and � is a
set of vertices ���

�

 �

�

� � �

 �
� � � � & � �
 � �

such that � �
 � � �
 ���
�

 �

� �
 � � �
 ���
� � �

 �
� �
 ���

�

 � � � �

�

We define the length of this route between � and � to be
	

. Now we define� � � �
 � � to be the length of the shortest route between � and � in � .

For our instance
�

, we can consider the set �
 of functions which map
from

�
onto a member of

�
. This may be thought of as the set of possible

process mapping functions. For each �
 � �
 we can define a corresponding
function

�
 � � � �

which returns the process mapped to a given processor by mapping function
�
 .

�
 , the cost of the mapping associated with any �
 � �
 is given by:
�
It is not clear from the paper whether their model associates delays with messge transfers as in Model 3 or

simply costs.

27

�
 	 � � + �
� � � � ���	� �

� � � � �
 � � � � �
 � �
 � � �
 �
 � � � � �

We define two decision problems for the above model.

Decision Problem 5 Given an integer
�

and an instance
�

of Model 5 where the range of
�
 is

restricted to
� �
 ��� and

� 	 � , does there exist a function �
 � �
 such that �
 � � ?
Decision Problem 6 Given integers

�
��
and a 3-tuple � 	 � �
�� �
 � � , does there exist a corresponding

instance of the above model
� 	 � �
 �
�� �
 � � , where � is a graph with degree at most

�
and there exists

a mapping �
 � �
 such that �
 � � ?

Decision Problem 5 corresponds to the question: can I allocate processes to processors in a
given processor topology so as to minimise through-routing? Decision Problem 6 corresponds
to the question: can I wire up my processors so that through-routing is minimised?

Bokhari [1981] points out that Decision Problem 5 is a notational variant of the graph iso-
morphism problem. The incorrect notion that graph isomorphism is NP-complete is endemic
in literature on the mapping problem; see, for example, Krämer and Mühlenbein [1989] and
Pountain [1989]. The complexity status of graph isomorphism is still an open problem (see
Garey and Johnson [1979]).

Thanisch and Norman [1990] point out that in the case of processor graphs that are chains,
and non-zero k, Decision Problem 5 is a notational variant of the NP-complete simple optimal
linear arrangement problem [Garey et al. 1976]. They also show that Decision Problem 6 is
NP-complete, although they require an unrestricted range of

� � . Pinter and Wolfstahl [1987]
show that it is an NP-complete problem to determine the minimum number of edges that must
be added to a linear graph of processors so as to allow a �
 such that �
 	 � .
There are some obvious extensions to the above model. First it is possible to consider contention
in the processor network, assuming that messages are routed between processors according
to some deterministic routing strategy. The overall cost of a set of message transfers is the
time to completion which is the maximum of any time to completion allowing for contention.
This approach is taken by Lee and Aggarwal [1987] and Berman and Snyder [1987]. The
second extension is to consider the problem when there are more processes than processors.
Berman and Snyder [1987] extend the analysis to consider multiprocessing, having contracted
the process graph to have the same number of processors as the processor graph.

8.4 Introducing Precedence

It is instructive to consider Model 5 in terms of our framework. If we assume that all processes
start waiting for communications at exactly the time they are sent, then the cost of the message,
which is dependent upon interprocessor distance, makes sense as a communications latency,
which that process must wait upon, and therefore shows up in � ��� �
� in our framework as
outlined in Table 6.

This analysis does not, however, bear up to close scrutiny since the time at which a process
comes into a waiting state will depend upon the other messages that it receives.

Another way of reconciling the cost of communication in terms of our framework is to consider
it to be contributing to � 0 ���) � . Here, we can assume that processors are always potentially
busy, that is they never wait for messages, and messages delay computation by taking up

28

� �����
	 � � � �

� ����
$
 0
� ��������� 0
� ��� �
� � � � (*) 7 �
 & � �

� � � (*) 8 0

Table 6: An Attempt to Rationalise Model 5 in Terms of our Framework

the processors’ time doing through-routing. Unfortunately, this too does not bear up to close
scrutiny since the through-routing costs are only additive on a per-processor basis—we are
interested in the bottleneck processor(s) not the total amount of through-routing. The function�
 does not apportion through-routing computation to a particular processor along the shortest
route(s), and so the relationship between the through-routing costs and the time to completion
of the program is undefinable.

In general, the cost functions in models 4 and 5, can be made more relevant by considering the
maximum cost across processors rather than the total, but there are problems in apportioning
costs to individual processors. Indurkhya et al. [1986], who considering randomly generated
programs, simply add all communications costs to the maximum of the processors execution
costs. See Nicol [1989] for the limitations of the results in this paper. Shen and Tsai [1985]
consider a function which assigns communication costs to both the sending and receiving
processor in a way that it is difficult to justify in the case of a multicomputer

�

.

Bokhari [1988] describes polynomial time algorithms for solving the above mini-max problem
in the case of chains of tasks and chains of processors with the constraint that communicating
tasks must be mapped to adjacent processors, and also in various other constrained task
formulations for host-satellite processor systems.

Shen and Tsai justify their claim by stating that they are dealing with a model where “little
or no” precedence relations exist between modules. They vary the cost of sending a message
according to its destination processor. A paper which attempts to address these issues head on is
Chu and Lan [1987] where for each processor, the costs of computation �������
	 � � � , message receipt
� - ��/�
 � � � and message sends ��� &�(*) � � � were identified, and the cost of a mapping was considered
to be its makespan which was the maximum of sum of these values for each processor. Chu
and Lan went on in the same paper to consider the effect of the precedence relation upon the
makespan and concluded that, where two tasks are connected by a precedence relation, if the
execution of the second module is much larger than that of the first module, then they should be
mapped to the same processor, whereas if the second is much larger than the first, they should
be mapped to different processors. They use this heuristic, and one which tends to group
heavily communicating modules, to form grains which are mapped to the same processor, and
then map the grains to processors by an exhaustive search which minimises makespan ignoring
precedence. They make no claims as to the guarantee of effectiveness of the algorithm, but
show simulation results for its use in an example task graph. By using a mini-max criterion
rather than a sum to optimise a mapping, both Shen and Tsai [1987] and Chu and Lan [1985]
allow the possibility of re-computation of tasks on processors so as to minimise the overall

�
One can argue that the approach of setting communication costs to zero for communications on the same

processor and
�

for non-local communications models the overhead associated with packeting and unpacketing
messages, in that local communications do not need to invoke the message passing system and therefore

� ' �)��*
and��3D%�,��

are zero. Alternatively we can consider the reduced costs of local mapping to be negative interference costs.
However this approach is equivalent to merging tasks mapped to the same processor into grains, and is an effective
re-partitioning of the computation. Partitioning is largely outwith the scope of this review, but discussed briefly in
section 10.

29

computation.

Another approach is to move back from the dag to a probabilistic and possibly cyclic graph
of module dependencies and branching probabilities. Queuing theory and markov decision
theory can be applied to estimated time to execution of the program. This approach is taken by
Kapelnikov et al. [1989] and Chou and Abraham [1982] and, for the special case of series-parallel
task graphs, by Mak and Lundstrom [1990]. Chu and Lan [1987] and Chu et al. [1984] use a
variation of this where the probabilities of branching are allowed to vary between intervals
during the program’s execution. This latter modelling approach may prove a useful alternative
to dynamic allocation of modules in some programs.

9 Finding the parameters of the model

So far during this review a few obvious questions have been avoided. These relate to the
problem of determining, for a given program, or more specifically for an execution of a given
program on a given architecture, the corresponding instance of a given model. That is, the costs
associated with computation of each task, the costs associated with communication between
tasks, the precedence relations between tasks, and even the number of tasks. In order for an
algorithm to map and/or schedule the computation it requires these values as input. They
need to be derived from the program. In general it is difficult to derive them without actually
performing the computation, and they need to be re-derived for any run of the program with
diferent parameters.

9.1 Parallelisation of Sequential Code

As discussed in section 2.4, we can view the allocation of computation to processors as a two
phase process consisting of partitioning followed by mapping. Sarkar [1989] considers these
two phases to be preceded by something he refers to as an identification of parallelism, which
is an operation performed upon a program and which may be thought of as a compilation.
The vanilla view of moving from a program to a parallel implementation is thus seen as a
compilation phase, which generates an atomic task graph, which is partitioned (by merging of
tasks) into something that may be referred to as a grain graph which is mapped to processors.
The process is summed up diagrammatically as the vertical flow in Figure 5.

The first problem with such a view is that the compilation phase—that is the phase where a task
graph is generated from the expression of the sequential program—is not usually tractable. For
a review of the subject see Padua and Wolfe [1986] or Polychronopoulos [1988]. In practice the
best that compiler technology can do, with standard languages, is the partial unravelment of
parallelism. In general short range independencies can be found—aided by the programmer’s
use of constructs such as DOACROSS (proposed by Cytron [1986]) and DOALL (see Zima [1990],
chapter 7 for explanation of both), but inter-procedural analysis is still the subject of intense
research effort (eg. Callahan and Kennedy [1988]). As a result, the graph of dependencies
that the compilation generates, which contains more than just simple precedence relations (eg.
Ferrante et al. [1987]), will overspecify the sequentiality of the underlying algorithm, although
not quite as drastically as the sequential program.

If we take the partitioning phase—even assuming an absolutely correct compiler—we still face
a number of problems with our vanilla approach. We can imagine some partitioning heuristic
which aims to minimise inter-grain communication, perhaps by tending to allocate tasks which
communicate with each otehr to a single grain. General heuristics for this process have been

30

Atomic Task Graph

Grain Graph

Sequential Program

Explicitly Parallel
Program

Compilation

Partitioning

Mapping

Parallel Implementation

Figure 5: Parallel Programming

proposed, for example, by McGreary and Gill [1989], Agrawal and Jagadish [1988], Kruatrachue
and Lewis [1988] and Sarkar [1989]. Algorithms for dealing specifically with some types of
numerical programs are given by Peir and Cytron [1989] and Berger and Bokhari [1987].

There are problems with separating the partitioning and mapping phases, some of which are
outlined in Kruatrachue and Lewis [1988]. If we, to use the terminology of McCreary and
Gill [1989], restrict the partitoning to defining clans—that is subgraphs all of whose constituent
nodes share common ancestor or descendant relationships—then the grain graph resulting
from partitioning a directed acyclic task graph is always another directed acyclic graph. Since
we assume that clans commence when scheduled, subject to the input to all their constituent
tasks having arrived, and communicate when all their constituent processes have terminated,
we are able to use standard scheduling techniques such as those outlined in sections 6 and 7
to map the grain graph to processors. In terms of our a priori model the partitioning phase, by
merging tasks into grains, is avoiding the � ����
�
 of communications within the grain. We still
have to take into consideration the effect of latency of communication and load imbalance, that
is we make considerations of � ��� �
� .
We can consider a technique, such as that used by Kruatrachue and Lewis [1988] which mapped
the task graph directly rather than the grain graph (this is symbolised by a curved arrow
bypassing partitioning in Figure 5), and one can clearly imagine ways in which the optimality
of grouping of tasks in the partitioning phase would depend upon properties of the processor
system to which they were to be mapped. Moreover, if partitioning is restricted to producing
a directed acyclic graph, where the grains only communicate on termination, this itself may
not be the optimal partition of the task graph. Indeed, it would seem to make little sense
for communication to be constrained to occur in bursts after large amounts of computation,
since the transfer of results of tasks within a grain is being delayed which might, for example,
correspond to an extension of the critical task path.

An alternative approach is to allow partitioning to generate grains which communicate during
their computation. This allows cyclic grain graphs and, indeed turns directed relations of

31

precedence between grains into undirected volumes of communication, analogous to model 5.
The problems with such models have been outlined in Section 8: the processing associated
with sending and receiving communication has been packaged up into the grains that are
being mapped, (except for � 0 ���) � , which we are ignoring for the purposes of this discussion).
Moreover the latency of communication cannot be handled by the model since it would require
detailed scheduling information at the task level in order to determine when it was that grains
were being interrupted.

9.2 Explicitly Parallel Languages

Given the above discussion we can introduce the mapping problems of the programmer who
has formulated his problem as a set of communicating sequential processes. Here the pro-
grammer has performed some of the process referred to as compilation and partitioning in
Figure 5. In the case where the program is described as a dataflow graph it may be considered
to be expressed as an atomic task graph. In the case of an occam program, or a c or FORTRAN
program with message passing extensions he can be seen to have specified a grain graph. In
such cases the parallel programming system has two choices: it may map the grain graph the
programmer has supplied, or it may derive from it an atomic task graph (symbolised as the up-
ward pointing arrow on Figure 5), and map that—with or without an intervening re-partition.
We can imagine a case where the second scenario would generate performance benefits: a
programmer specifies an object oriented program. The objects are modular, and the natural
level of granularity at which to map is the object or the object class. If, however, one of the
methods associated with one of the objects constitues the majority of the computation of the
program, it would be advantageous to map it at a granularity finer than the object or object
class.

9.3 Uncertainty in Parameters

To round up our discussion of the problems with the mapping problem, this review has
concentrated on mapping of static task graphs where the labels on the edges and the nodes are
known to be exact. As alluded to at the beginning of the section, the compiler is not in a position
to generate such task graphs from programs written in standard languages. If the programmer
does it, the labels will be—to quote Martin and Estrin [1967]—“estimated in an environment
of ignorance”. A number of authors have looked at the availability of parameters of models.
The problems of deriving parameters clearly depend upon the model under consideration.
Antonelli et al. [1989] use a model similar to Model 5, and derive the communication and
computation costs with the aid of a heuristic which considers statements will be executed at a
frequency which is dependent upon the depth of loop nesting in which they are found.

In the case of models including precedence relations it is not enough to consider the mean
replication frequency of tasks and communications, it is also necessary to construct an instance
of an expected task graph. Martin and Estrin consider the transformation process from acyclic
representations (eg. those containing loops) to mean-value equivalent acyclic graphs. Such an
acyclic graph may be thought of as a typical execution. Chu et al. [1984] introduce probabilities
into the precedence relation, that is the execution of a precedent task may or may not cause the
execution of another task, and its associated communication, with a given probability. They use
this information to determine an expectation of the communications that will occur between
tasks in an acyclic graph in multiple executions of the same task graph.

Mapping algorithms may give bounds on optimality of scheduling, but no such guarantees

32

will be given for their effectiveness in the presence of uncertain data. Indeed, the task graph
structure itself may be uncertain, and un-derivable before the program runs. In this case
dynamic algorithms would appear to be called for, and these are outwith the scope of the
review (See Casavant and Kuhl [1988] for some references). We might imagine that mapping
strategies which are not based upon scheduling (Such as those using Model 5) would be less
amenable to problems of dynamic task graphs, but in that case the problems of inappropriate
granularity, discussed above, imply that if grains were mapped statically, it would be necessary
to allocate computation to them (ie to partition) dynamically.

10 Concluding Remarks

Our concluding remarks are addressed to two sets of readers, namely those intending to do
research on the mapping problem and those intending to use existing research results on the
mapping problem.

For applications programmers who intend to use the techniques described in this review, we
give the following advice. Firstly, you should assess the relevance of the model implicit in a
particular technique to your multicomputer. The summaries contained in the tables associated
with the various models should be compared to the characteristics of the hardware. For
example, is it a gross distortion to treat interprocessor communications delay as a quantity
that is independent of the relative location in the interconnection network? (If, however, your
multicomputer resembles Model 4, we suggest that you try to persuade your boss to buy a new
multicomputer.)

Secondly, you should assess the relevance of a proposed technique to your particular compu-
tation. For example, over how many executions of the software shall the cost of applying a
mapping technique be ammortized? If the software “behaves” the same for different inputs of
the same size, then it may be worthwhile using a more sophisticated technique.

As we have already stated, any modelling exercise simplifies reality. Each of the mapping
techniques that we have described embody a computational model that will simplify, or even
ignore, various features of your computation. For example, is there a huge variation between
the sizes of the data structures passed between different pairs of tasks corresponding to the
edges in your task graph? If so, and you attempt to use a model which treats these quantities
uniformly, then this convenient fiction may be a gross distortion.

In any review, such as the present one, it is obligatory to toss out a few remarks on “promising
research areas” for the benefit of those readers intending to carry out research in this field. (Of
course, if we really did have any such ideas, we would be working on them ourselves.)

Multicomputer mapping presupposes the existence of a multicomputer. It is strange, therefore,
that very little work has been done on speeding up the mapping process by doing it in parallel.
Even though the non-trivial aspects of scheduling algorithms are not known to be in NC, there
is still scope for investigating the use of parallelism at a coarser granularity. For example,
one might use a form of “speculative parallelism” (see Carriero and Gelerntner [1990]), by
running several different scheduling algorithms in parallel, possibly on different processors,
and comparing partial results.

As a second example, randomized optimization techniques, such as simulated annealing, can
usefully be implemented in parallel. Helerstrom and Kanal [1990] and Udiavar and Stiles [1990]
are examples of the approach, but there has been little in the way of systematic application of
such techniques to the mapping problem. This may be due to the difficulty in formulating the

33

way in which the search space should be explored by such techniques.

Trends in the economics and technology of multicomputers suggest that, in the future, re-
search on the mapping problem should be focussed more on the use of the interconnect than
on processor utilization. For example, very little has been published on contention in the
communications resource during multicomputer computation. Of course, this is partly due to
the computational cost of modelling such behaviour. It may be, however that developments
in VLSI or optical technology will separate out the interconnect from the processing unit and
render graph or queuing network based models of multicomputers inappropriate.

11 Acknowledgements

Edinburgh Parallel Computing Centre is a multidisciplinary project supported by major grants
from the Department of Trade and Industry, the Informations Systems Commitee of the Uni-
versities Funding Council and the Science and Engineering Research Council. M.G. Norman
is supported by the SERC Contract B18534: Novel Architecture Computing Research.

References

Adam, T., Chandy, K., and Dickson, J. (1974). A comparison of list schedulers for parallel
processing systems. Comm. ACM, 17(12):685–690.

Agrawal, R. and Jagadish, H. (1988). Partitioning techniques for large grain parallelism. IEEE
Trans. Comput., C-37(12):1627–1634.

Al-Mouhammed, M. (1990). Lower bound on the number of processors and time for scheduling
precedence graphs with communication costs. IEEE Trans. Software Engrg., SE-16(12):1390–
1301.

Antonelli, S., Baiardi, F., Pelagatti, S., and Vanneschi, M. (1989). Communication cost and
process mapping in massively parallel systems: a static approach. Technical Report TR-
12/89, Dipartimento di Informatica, Università di Pisa.

Baccelli, F. and Liu, Z. (1990). On the execution of parallel programs on multiprocessor systems
— a queueing theory approach. J. ACM, 37(2):373–414.

Bal, H., Stenier, J., and Tanenbaum, A. (1989). Programming languages for distributed com-
puting systems. Computing Surveys, 21(3):261–322.

Baxter, J. and Patel, J. (1989). The LAST algorithm: A heuristic based static task allocation
algorithm. In Proc. Intl. Conf. Parallel Comput., volume 2, pages 217–222.

Berger, M. and Bokhari, S. (1987). A partitioning strategy for nonuniform problems on multi-
processors. IEEE Trans. Comput., C-36(5):570–581.

Berman, F. and Snyder, L. (1987). On mapping parallel algorithms into parallel architectures.
J. Parallel Dist. Comput., 4:439–458.

Bła �� ewicz, J., Drabowski, M., and Wȩglarz, J. (1986). Scheduling multiprocessor tasks to
minimize schedule length. IEEE Trans. Comput., C-35(5):389–393.

Bła �� ewicz, J., Wȩglarz, J., and Drabowski, M. (1984). Scheduling independent 2-processor tasks
to minimise schedule length. Inform Process. Lett., 18(5):267–273.

34

Bokhari, S. (1981a). On the mapping problem. IEEE Trans. Comput., C-30(3):207–214.

Bokhari, S. (1981b). A shortest tree algorithm for optimal assignments across space and time
in a distributed computer system. IEEE Trans. Software Engrg., SE-7(6):583–589.

Bokhari, S. (1988). Partitioning problems in parallel, pipelined and distributed computing.
IEEE Trans. Comput., C-37(1):48–57.

Brent, R. (1974). The parallel evaluation of general arithmetic expressions. J. ACM, 21:201–206.

Bruno, J., Coffman Jr., E., and Sethi, R. (1974). Scheduling independent tasks to reduce mean
finishing time. Comm. ACM, 17(7):382–387.

Callahan, D. and Kennedy, K. (1988). Analysis of interprocedural side effects in a aprallel
programming environment. J. Parallel Dist. Comput., 5:517–550.

Carriero, N. and Gelernter, D. (1990). How to Write Parallel Programs. MIT Press, Cambridge
Mass.

Casavant, T. and Kuhl, J. (1988). A taxonomy of scheduling in general purpose distributed
computing systems. IEEE Trans. Software Engrg., SE-14(2):141–154.

Chen, G.-I. and Lai, T.-H. (1988). Scheduling independent jobs on hypercubes. In Cori, R. and
Wirsing, M., editors, Proc Conf. Theoretical Aspects of Computer Science, pages 273–280.

Chen, M.-S. and Shin, K. (1987). Processor allocation in a � -cube multiprocessor using gray
codes. IEEE Trans. Comput., C-36(12):1396–1407.

Chen, N. and Liu, C. (1975). On a class of scheduling algorithms for multiprocessor computing
systems. In Feng, T.-Y., editor, Lecture Notes in Computer Science. Springer, New York.

Cho, Y. and Sahni, S. (1980). Bounds for list schedules on uniform processors. SIAM J. Comput.,
9(1):91–103.

Chou, T. and Abraham, J. (1982). Load balancing in distributed systems. IEEE Trans. Software
Engrg., SE-8(4):401–402.

Chrétienne, P. (1989). A polynomial algorithm to optimally schedule tasks on a virtual dis-
tributed system under tree-like precedence constraints. European J. Oper. Res., 43:225–230.

Chu, L., Lan, M.-T., and Hellerstein, J. (1984). Estimation of intermodule communication (IMC)
and its applications in distributed processing systems. IEEE Trans. Comput., C-33(8):691–
699.

Chu, W. (1969). Optimal file allocation in a multiple computer system. IEEE Trans. Comput.,
C-18(10):885–889.

Chu, W., Holloway, L., Lan, M.-T., and Efe, K. (1980). Task allocation in distributed data
processing. Computer, 13(11).

Chu, W. and Lan, M.-T. (1987). Task allocation and precedence relations for distributed real-time
systems. IEEE Trans. Comput., C-36(6):667–679.

Clarke, L. (1990). Achieving Parallel Performance in Scientific Computations. PhD thesis, University
of Edinburgh.

Coffman Jr., E., editor (1976). Computer and Job Shop Scheduling Theory. John Wiley, New York.

Coffman Jr., E., Flatto, L., and Leuker, G. (1984a). Expected makespans for largest-first mul-
tiprocessor scheduling. In Gelenbe, E., editor, Performance ’84, pages 491–506. Elsevier
Science Publishers B.V. (North Holland).

35

Coffman Jr., E., Garey, M., and Johnston, D. (1978). An application of bin-packing to multipro-
cessor scheduling. SIAM J. Comput., 7(1):1–17.

Coffman Jr., E., Garey, M., and Johnston, D. (1984b). Approximation algorithms for bin-packing
– an updated survey. In Ausellio, G., Lucertini, M., and Serafini, P., editors, Algorithm Design
for Computer System Design, Berlin. Springer-Verlag.

Coffman Jr., E. and Graham, R. (1972). Optimal scheduling for two processor systems. Acta
Informatica, 1:200–213.

Cole, R. and Vishkin, U. (1988). Approximate parallel scheduling, part 1: The basic technique
with applications to optimal parallel list ranking in logarithmic time. SIAM J. Comput.,
17(1):128–142.

Conway, R., Maxwell, W., and Miller, L. (1967). Theory of scheduling. Addison-Wesley, Reading,
Mass.

Cvetanovic, Z. (1987). The effects of problem partitioning, allocation and granularity on the
performance of multiple-processor systems. IEEE Trans. Comput., C-36(4):421–432.

Cytron, R. (1986). Doacross: Beyond vectorisation for multiprocessors (extended abstract). In
Proc. International Conference on Parallel Processing, pages 836–844.

Dally, W. (1990). Network and processor architecture for message-driven computers. In Suaya,
R. and Birtwhistle, G., editors, VLSI and Parallel Computation, pages 140–222. Morgan
Kaufmann, Palo Alto, CA.

Dolev, D., Upfal, E., and Warmuth, M. (1986). The parallel complexity of scheduling with
precedence constraints. J. Parallel Dist. Comput., 3:553–576.

Du, J. and Leung, J.-T. (1989). Complexity of scheduling parallel task systems. SIAM J. Disc.
Math, 2(4):473–487.

Efe, K. (1982). Heuristic models of task assignment scheduling in distributed systems. IEEE
Computer, June 1982:50–56.

El-Rewini, H. and Lewis, T. (1990). Scheduling parallel program tasks onto arbitrary target
machines. J. Parallel Dist. Comput., 9:138–153.

Fellows, M. and Langston, M. (1988). Processor utilisation in a linearly connected parallel
processing system. IEEE Trans. Comput., C-37(5):594–603.

Fernández, E. and Bussell, B. (1973). Bounds on the number of processors and time for multi-
processor optimal schedules. IEEE Trans. Comput., C-22(8):745–751.

Fernández-Baca, D. (1989). Allocating modules to processors in a distributed system. IEEE
Trans. Software Engrg., SE-15(11):1427–143.

Ferrante, J., Ottenstein, K., and Warren, J. (1987). The program dependence graph and its use
in optimisation. ACM Transactions on Programming Languages and Systems, 9(3).

Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker, D. (1988). Solving Scientific
Problems on Concurrent Processors. Prentice Hall, New Jersey.

Gabow, H. (1988). Scheduling UET systems on two uniform processors and length two
pipelines. SIAM J. Comput., 17(4):810–811.

Garey, M., Graham, R., and Johnston, D. (1977). Performance guarantees for scheduling algo-
rithms. Operations Research, 26(1).

Garey, M. and Johnson, D. (1975). Complexity results for multiprocessor scheduling with

36

resource constraints. SIAM J. Comput., 4(4):396–411.

Garey, M. and Johnson, D. (1977). Two-processor scheduling with start-times and deadlines.
SIAM J. Comput., 6(3):416–426.

Garey, M. and Johnson, D. (1979). Computers and Intractability. W.H. Freeman and Co., San
Francisco.

Garey, M., Johnson, D., and Stockmeyer, L. (1976). Some simplified NP-complete graph prob-
lems. Theor. Comput. Sci., 1:237–267.

Garey, M. and Johnson, R. (1982). Approximation algorithms for bin packing problems – a
survey. In G. Ausellio, M., editor, Analysis and Design of Combinatorial optimisation, pages
147–172. Springer Verlag, Vienna, Austria.

Gaudiout, J., Pi, J., and Campbell, M. (1988). Program graph allocation in distributed multi-
computers. Parallel Computing, 7:227–247.

Gonzalez, M. (1977). Deterministic processor scheduling. Computing Surveys, 9(3).

Graham, R. (1966). Bounds for certain multprocessing timing anomalies. Bell System Technical
J., 45:1563 – 1581.

Graham, R. (1969). Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,
17(2):416–429.

Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A. (1979). Optimisation and approxima-
tion in deterministic sequencing and scheduling a survey. Annals of Discrete Mathematics,
5:287–236.

Gusfield, D. (1983). Parametric combinatorial computing and a problem of program module
distribution. J. ACM, 30(3):551–563.

Gylys, V. and Edwards, J. (1976). Optimal partitioning of workload for distributed systems. In
Proc. Compcon Fall 76.

Hellstrom, B. and Kanal, L. (1990). Asymmetric mean-field neural networks for multiprocessor
scheduling. Technical Report UMIACS-TR-90-99, University of Maryland Institute for
Advanced Computer Studies.

Helmbold, D. and Mayr, E. (1987). Two processor scheduling is in NC. SIAM J. Comput.,
16(4):747–759.

Hochbaum, D. and Shmoys, D. (1988a). A polynomial approximation scheme for scheduling on
uniform processors using the dual approximation approach. SIAM J. Comput., 17(3):539–
551.

Hochbaum, D. and Shmoys, D. (1988b). Using dual approximation algorithms for scheduling
problems: Theoretical and practical results. J. ACM, 34(1):144–162.

Hopfield, J. and Tank, D. (1985). “neural” computation of decisions in optimisation problems.
Biological Cybernetics, 52:141–152.

Houstis, C. (1990). Module allocation of real-time applications to distributed systems. IEEE
Trans. Software Engrg., SE-16(7):699–709.

Hu, T. (1961). Parallel sequencing and assembly line problems. Oper Res., 9:841–848.

Hwang, J.-J., Chow, Y.-C., F.D., A., and C-Y, L. (1989). Scheduling precedence graphs in systems
with interprocessor communication times. SIAM J. Comput., 18(2):244–257.

37

Indurkhya, B. and Stone, H. (1986). Optimal partitioning of randomly generated parallel
programs. IEEE Trans. Software Engrg., SE-12(3):483–495.

Jung, H., Kirousis, L., and Spirakis, P. (1989). Lower bounds and efficient algorithms for
multiprocessor scheduling of dags with communication delays. In Proc. ACM Symposium
on Parallel Algorithms and Architectures, pages 254–264.

Kafura, D. and Shen, V. (1977). Task scheduling on a multiprocessor system with independent
memories. SIAM J. Comput., 6(1):167–187.

Kapelinkov, A., Muntz, R., and Ercegovac, M. (1989). A modelling methodology for the anlaysis
of concurrent systems and computations. J. Parallel Dist. Comput., 6:568–597.

Kasahara, H. and Narita, S. (1984). Practical multiprocessor scheduling algorithms for efficient
parallel processing. IEEE Trans. Comput., C-33(11):1023–1029.

Kaufmann, M. (1974). An almost-optimal algorithm for the assembly line scheduling problem.
IEEE Trans. Comput., C-23(11):1169–1174.

Krämer, O. and Mühlenbein, H. (1989). Mapping strategies in message-based multiprocessor
systems. Parallel Computing, 9:213–225.

Krishnamurthy, S. (1990). A brief survey of papers on scheduling for pipelined processors.
Sigplan Notices, 25(7):97–106.

Kruatrachue, B. and Lewis, T. (January 1988). Grain size determination for parallel program-
ming. IEEE Software, pages 23–32.

Kruskal, C. and Snir, M. (1989). Cost-bandwidth tradeoffs for communication networks. In
Proc. ACM Symposium on Parallel Algorithms and Architectures, pages 32–41, New York.
ACM.

Lam, S. and Sethi, R. (1977). Worst case analysis of two scheduling algorithms. SIAM J. Comput.,
6(3):518–536.

Lawler, E. (1982). Preemptive scehduling of precedence constrained jobs on parallel machines.
In Dempster, M., editor, Deterministic and Stochastic Scheduling. D.Reidel Publishing Co.

Lee, C.-Y., Hwang, J.-J., Chow, Y.-C., and Anger, F. (1988). Multiprocessor scheduling with
interprocessor communication delays. Operations Research Letters, 7(3):141–145.

Lee, S. and Aggarwal, J. (1987). A mapping strategy for parallel computing. IEEE Trans.
Comput., C-36(4):433–442.

Lo, V. (1988). Heuristic algorithms for task assignment in distributed systems. IEEE Trans.
Comput., 37(11):1384–1397.

Ma, P.-Y., Lee, E., and Tsuchiya, M. (1982). A task allocation model for distributed computing
systems. IEEE Trans. Comput., C-31(1):246–252.

Mak, V. and Lundstrom, S. (1990). Predicting performance of parallel computations. IEEE
Trans. Paral. Distr. Comput., 1(3):257–270.

Martel, C. (1988). A parallel algorithm for preemptive scheduling of uniform machines. J.
Parallel Dist. Comput., 5:700–715.

Martin, D. and Estrin, G. (1967a). Experiments on models of computation and systems. IEE
Trans. Electronic Computers, EC-16(1):59–69.

Martin, D. and Estrin, G. (1967b). Models of computational systems – cyclic to acyclic graph
transformations. IEEE Trans. Elect. Comput., EC-16(1).

38

McDowell, C. and Appelbe, W. (1986). Processor scheduling for linearly connected parallel
processors. IEEE Trans. Comput., C-35(7):632–638.

McGreary, C. and Gill, H. (1989). Automatic determination of grain size for efficient parallel
programming. Comm. ACM, 32(9).

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management Science,
6:1–12.

Muntz, R. and Coffman Jr., E. (1969). Optimal preemptive scheduling on two-processor systems.
IEEE Trans. Comput., C-18(11):1014–1020.

Nicol, D. (1989). Optimal partitioning of random programs across two processors. IEEE Trans.
Software Engrg., SE-15(2):134–141.

Nicol, D. and Saltz, J. (1990). An analysis of scatter decomposition. IEEE Trans. Comput.,
C-39(11):1337–1345.

Padua, D. and Wolfe, M. (1986). Advanced compiler optimisations for supercomputers. Comm.
ACM, 29(12).

Papadimitriou, C. and Ullman, J. (1987). A communication-time tradeoff. SIAM J. Comput.,
16(4):639–646.

Papadimitriou, C. and Yannakakis, M. (1990). Towards an architecture-independent analysis
of parallel algorithms. SIAM J. Comput., 19:322–328.

Peir, J.-K. and Cytron, R. (1989). Minimum distance: A method for partitioning recurrences for
multiprocessors. IEEE Trans. Comput., C-38(8).

Pinter, S. and Wolfstahl, Y. (1987). On mapping processes to processors in distributed systems.
Intl. J. Parallel Programming, 16(1):1–15.

Pippenger, N. (1979). On simultaneous resource bounds (preliminary version). In Proc. 20th
IEEE FOCS, pages 307–311.

Polychronopoulos, C. (1988). Parallel Programming and Compilers. Kluwer Academic Publishers,
Norwell Mass.

Pountain, R. (1989). Configuring parallel programs. Part 1. Byte, (December):349–352.

Pritchard, D., Askew, C., Carpenter, D., Glendinning, I., Hey, A., and Nicole, D. (1987). Practical
parallelism using transputer arrays. In deBackker, J., Nijman, A., and Treleaven, P., editors,
Parallel Architectures and Languages, Lecture Notes in Computer Science, page 278. Springer
Verlag, Berlin.

Ramamritham, K., Stankovic, J., and Shiah, P.-F. (1990). Efficient scheduling algorithms for
multiprocessor systems. IEEE Trans. Paral. Distr. Comput., 1(2):184–194.

Rao, G., Stone, H., and Hu, T. (1979). Assignment of tasks in a distributed processor system
with limited memory. IEEE Trans. Comput., C-28(4):291–298.

Rayward-Smith, V. (1987). The complexity of preemptive scheduling given interprocessor
communication delays. Inform. Process. Lett., 25(2):123–125.

Reed, D. and Fujimoto, R. (1987). Multicomputer network operating systems. In Multicomputer
networks : message-based parallel processing, pages 177–238. MIT Press, Cambridge Mass.

Sahni, S. (1976). Algorithms for scheduling independent tasks. J. ACM, 23(1):116–127.

Sarkar, V. (1989). Partitioning and Scheduling Parallel Programs for Multiprocessors. Pitman,

39

London.

Seitz, C. (1990). Concurrent architectures. In Suaya, R. and Birtwhistle, G., editors, VLSI and
Parallel Computation, pages 1–84. Morgan Kaufmann, Palo Alto, CA.

Sethi, R. (1976). Algorithms for minimal length schedules. In Coffman Jr., E., editor, Computer
and Job Shop Scheduling Theory. John Wiley, New York.

Shen, C.-C. and Tsai, W.-H. (1985). A graph matching approach to optimal task assignment
in distributed computing systems using a minimax criterion. IEEE Trans. Comput., C-
34(3):197–203.

Shirazi, B., Wang, M., and Pathac, G. (1990). Analysis and evaluation of heuristic methods for
static task scheduling. J. Parallel Dist. Comput., 10:222–232.

Sinclair, J. (1987). Efficient comutation of optimal assignments for distributed tasks. J. Parallel
Dist. Comput., 4:342–362.

Stone, H. (1977a). Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Trans. Software Engrg., SE-3:85–93.

Stone, H. (1977b). Program assignment in three processor systems and tricutset partitioning of
graphs. Technical Report ECE-CS-77-7, Univ. Massachusetts, Amherst.

Stone, H. (1978). Critical load factors in distributed systems. IEEE Trans. Software Engrg.,
SE-4:254–258.

Tanenbaum, A. (1989). Computer Networks. Prentice Hall, New Jersey.

Thanisch, P. and Norman, M. (1990). Minimising message path lengths in multicomputers.
Technical Report EPCC-TR-90-17, Edinburgh Parallel Computing Centre.

Towsley, D. (1986). Allocating programs containing branches and loops within a multiple
processor system. IEEE Trans. Software Engrg., SE-12(10):1018–1024.

Udiavar, N. and Stiles, G. (1990). A simple but flexible model for determining optimal task
allocation and configuration on a network of transputers. In Stiles, G., editor, Transputer
Research and Applications 1, pages 24–32. IOS, Amsterdam.

Ullman, J. (1975). NP-complete scheduling problems. J. of Computer and System Sciences, 10:384–
393.

Upfal, E. (1984). Efficient schemes for parallel communication. J. ACM, 31(4).

Valiant, L. (1982). A scheme for fast parallel communication. SIAM J. Comput., 11:350–361.

Valiant, L. (1990). A bridging model for parallel computation. Comm. ACM, 33:103–111.

Valiant, L. and Brebner, G. (1981). Universal schemes for parallel communication. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, pages 263–267. ACM, New York.

Vazirani, U. and Vazirani, V. (1989). The two-processor scheduling problem is in random NC.
SIAM J. Comput., 18(6):1140–1148.

Veltman, B., Lageweg, B., and Lenstra, J. (1990). Multiprocessor scheduling with communcia-
tion delays. Parallel Computing, 16:173–182.

Wallace, D. (1991). Algorithms and architectures for grand challenges in physics. In Proc.
Conference on Very Large Scale Computing in the 21st Century. SIAM Press.

Williams, E. (1983). Assigning processes to processors in distributed systems. In Proceedings
IEEE Conference on Parallel Processing, pages 404–406.

40

Xhao, Ramamritham, K., and Stankovic, J. (1987). Preemptive scheduling under time and
resource constraints. IEEE Trans. Comput., C-36(8):949–960.

Zima, H. and Chapman, B. (1990). Supercompilers for Parallel and Vector Computers. ACM, New
York.

41

