

INPUT ROUTINES .

Tho permanent routines READ, READ SYMBOL, READ BINARY, NEXT SYMBOL, and SKIP
SYMBOL, are abreviated to R, R§, RB, N§, 55, respectively, in the Operating System.

Before they are called the address of [VARIABLE | is calculated and stored in
ASS, 55 assigns ASS to zero itself, R, NS, and S§ call RS, which in turn calls
RB. This last reads a character from the input device, echoing it if it is from
the teletype, and exits with it in the accumulator, The other routines operate
as described earlier, The buffering of a symbol by READ and NEXT SYMBOL is done
using the location SYM, which is otherwise zero. RS always tests SYM for zero
before calling RB to read another character, SYM is set by R and NS and cleared
by RS and 8§, RB has no access to SYM because it contains a symbol and not a
binary character.

Vhen R has a digit it first checks that the number so far read in is less than
205, because the new digit makes this 2050 which is too large and will cause over-
:flow in the multiply routine. However neither of these trap 2049 which is tested

for separately afterwards.

Y.

OUTPUT ROUTINES.

The permanent routines PRINT, PRINT SYMBOL, PUNCH BINARY, and WRITE, are
abreviated in the Operating System to P, PS, PB, and W, respectively, They are
ealled with the value of [EXPRESSION] in the accumulator and output it in the
manner described earlier,

TEXT calls the routine MSGE followed by the values of the symbols in the
text string in separate consecutive core locations and a zero terminating the
string. It would have been more sparing on store to make the final symbol
negative instead of taking an extra location for the zero. The message output
routine in the PDP-8 library was considered too long and too restrictive in its
available symbols. (It takes two stripped symbols packed to a word, using ® as
a terminator and excluding lower case letters.)

P and W use the same basic routine to decode and print numbers by setting
flags. The arithmetic is done on positive numbers in 13 bits, using the link
to extend the accumulator. This allows WRITE to treated a 12 bit number as
unsigned. PRINT takes the modulus of the number and sets SIGN to a 'spaco' if
it was positive, or ‘minus” if not, (The difference between these two symbols
is 13, stored in MCR.) The routine types leading spaces for zeros until a non-
tzoro digit is going to come up, when it prints SIGN and sets it to zero. It
SIGN is zero no further sign or spaces must be printed, so that for WRITE it is
initially set to zero. When a digit has been printed then PRNT is made non-zero
80 that later zeros are not suppressed, It is also set when the last digit is

about to be printed to ensure that 0 is printed,

