Department of Computer Science

Handbook
1980-81

University of Edinburgh



UNIVERSITY OF EDINBURGH

COMPUTER SCIENCE DEPARTMENT HANDBOOK

Section 1: Introduction

Section 2: Survey of Courses
2.1: Undergraduate courses
2.2: Postgraduate study

Section 3: Undergraduate course in Information Systems
3.1: Introduction
3.2: Presentation of the course
3.3: Syllabus
3.4: Course assessment

Section 4; Undergraduate courses in Canputer Science
4.0: General introduction

Conputer Science 1

: Computer Science 2

: Computer Science 3

: Computer Science 4

Section 5: Postgraduate Master of Science course

.1: Introduction

2: MSc in Computer Systems Engineering

3: Course modules

4: Entrance requirements

5: Assessuent

(SIS C IRV -}

Sectio Postgraduate study programme in Computation Theory

n 6
6.1: Outline and purpose of the programne
6.2: Course structure
6.3: :Syllabus

Section 7: Research projects

Section 8: Computing facilities

Section 9: Members of Staff

Editors: Hamish Dewar
Jeff Tansley




§
|
é

SECTION 1 INTRODUCTION

This handbook, summarising the work of the Department of Computer
Science at Edinburgh University, is intended as an introduction to the
Department for visitors, new students and staff.

The Department of Cowmputer Science was created in 1966 when the then
Computer Unit was sub-divided as a consequence of the Flowers Report on
computing for the Universities and Research Councils. The Department
inherited responsibility for teaching and research in Computer Science.
There already existed a Postgraduate Diploma and a first-year course in
the subject, together with a major research and development project, the
Edinburgh Multi-Access Project, from which sprang the interactive
computing system (EMAS) which provides the service now enjoyed by the
University. The Flowers Report established major Computing Centres at
Edinburgh, London and Manchester and the Edinburgh Regional Computing
Centre was soon active in the role of providing service to the
University and research institutes in the Edinburgh area.

As funds became available, the Department purchased its own small
computers and the number of staff was increased from the original
half-dozen. Second and third year courses were introduced in 1968 and
1970 - the latter made possible by the co-operation of the Mathematics
Departinent in setting up a Jjoint Honours school. At this time the
Department moved to new accomnodation in the James Clerk Maxwell
Building, thereby acquiring the laboratory space required for the kind
of teaching that it regarded as central to courses in Computer Science.
By 1972 it became possible to launch a Final Honours year in the subject
and an Honours degree in Computer Science alone became available.

Since then, teaching effort has been devoted to improving the
structure and content of the course, not least as a result of the
feedback from the first contingents of students to go through it. The
Department has been fortunate in the level of support it has been able
to achieve and the laboratory facilities have been contirmusly upgraded.

On the research side, the project on multi-access systems came to an
end and was largely replaced by work on software for mini-computers.
Early work on Compter-Aided Design has now been succeeded by a group
actively working on design methodology for Very Large Scale Integrated
(VLSI) circuits. In the last few years, work in the field of Theory of
Couputation has expanded and this is now a major research focus. Other
areas include distributed systems, communications, databases and
micro-processor control.

The Department is housed in the James Clerk Maxwell Building at The
King's Buildings, which is the Science campus at Edinburgh University
situated about two miles from the City centre. Few would claim that the
appearance of the buiding 1is worthy of Edinburgh's architectural
tradition, but it does provide extensive and modern accommodation for
the six departments which occupy it, including lecture theatres, machine
halls, a library and common-rooms.

All the teaching for the second and subsequent years in Coumputer
Science is carried out in the James Clerk Maxwell Building, but most of
the first-year teaching takes place in the Appleton Tower in the central
area.



SECTION 2 SURVEY OF COURSES

2.1 Undergraduate courses

The Departument offers & first-year course in Information Systems.
(describsd 1in Section 3) and an Honours course in Computer Science
{described in Section 4). The first of these is a non-specialist course
designed for those who would like to develop an understanding of the
computer systems and computer-based facilities which are increasingly
encountered in all walks of 1life. The second aims tc provide a
grounding in the principles of computation and the art of programming,
and, In the later years, to analyse a number of aspects of the design
and construction of computer systems. ’

2.2 Postgraduate study

The Department offers facilities to study for the Research degrees of
M.Phil. and Ph.D. and to participate in a course leading to an M.Sc.
degree in Computer Systems Engineering (described in Section 5). The M.
Sc. is a one-year course with a specific syllabus and timetable. For
the Research degrees, the ncrmal period of registration is two years for
the M.Phil. and three years for the Ph.D. Part-time study is available
if the candidate is either a member of staff of the University or of an
'"Associated Institution’, or an Edinburgh graduate, Candidates are
nermally registered in the category of 'Supervised Postgraduate Student'
for the first year of study, prior to transfer to the degree course
considered appropriate, with back-dating of registration.

During their first year, postgraduate students are expected to
participate in an appropriate study programme. For those interested in
computational theory a specific course is provided (see Section 6).
Students intending to pursue systems and other research may be directed
to particular advanced courses, and are expected to participate in
postgraduate study seminars. It is normally expected that, during their
first year, students will focus their attention on one of the programnes
of research being pursued within the Department. Some accommodation of
interests is possible, but it is usually in the student's interest to be
associated with one of the existing active research areas.

Prospective research students are encouraged to visit the Department,
both to see research 1in progress and to discuss particular
opportunities. A sumsary of current research work is provided in
Section 7. A short note on the research interests of individual members
of the Department is included in section 9.

Financial Support for Postgraduates

United Kingdom students may be eligible for Science Research Council
Studentships, the value of which depends on age, experience and family
circumstances. A first-class or upper second-class degree is usually
required. The Department usually receives a quota of studentships each
Spring to which students can be nouminated.

The University has a small number of postgraduate awards open to a
wide class of applicants including those from overseas. Competition for
these is extremely keen. Details can be obtained by writing to the
Secretary to the University, 0ld College, South Bridge, Edinburgh.




Applicants from Comnonwealth countries may be eliglble for
Commonwealth scholarships. Details of these can be obtained from the
High Commission in the student's own country. The Department does not
have Demonstratorships or Teaching Assistantships for students. Small
amounts of money can be earned by supervising practical classes or doing
occasional programming work.

Fees covering tuition and practical work have recently been increased
by the Government to approximately £3000 per aunum, but United Kingdom
and EEC students pay approximately £1500; some speclal grants are
available to cover the difference for outstanding overseas students.
The British Council also offer studentships to ~overseas students.
Student living costs in Edinburgh are approxlmately 42000 per annum,

Postgraduate admissions

Admissions to Research degrees are handled by Dr. L.G. Valiant and to
the M.Sc. course by Dr. D.J. Rees. The Department's address 1s:
Department of Computer Science,
University of Edinburgh,
The King's Buildings,
Mayfield Road,
EDINBURGH EH9 3JZ.

Related Departments

The Department of Artificial Intelligence, the Machine Intelligence
Research Unit and the Department of Electrical Engineering conduct their
own postgraduate programumes and applications for these should be sent
direct to them. Students are normally free to attend lectures and
seminars which interest them in other departments.



SECTION 3 UNDERGRADUATE COURSE IN INFORMATION SYSTEMS
3.1 Introduction
Course Co-ordinator: M.P. Atkinson

The first-year Informations Systems course is offered for the first
time in Session 1980/81. The motive in presenting this course is to
increase the number of people In society who are well Informed about
computers, The computer is becoming very much cheaper, a process which
has been accelerated by the microprocessor., This removes one of the
imped iments to its increased application. (It is already a significant
tool in many aspects of our society). There are other impediments to
its application which are not so easily overcome. Deciding what it
should be used for, precisely what is required and how these facilities
should be made available, are typical examples. Such decisions cannot
become or remain the prerogative of the computer scientist alone. It is
fmportant that future managers, politicians, lawyers, doctors etc.,
should be well equipped to make or influence such decisions. It is the
aim of this course to nudge them into taking an interest in this field,
and initiating them into the acquisition of the relevant. knowledge.

It is envisaged that those on the course may one day find themselves

in a position akin to one of the following:

a) As a sclientist, doctor, linguist or soclologist who has Lo decide
whether it is worth trying to use a computer to assist in the
solution of a particular problen.

b) As a manager who has to decide whether resources shoul.d be made
available for some computing project.

c) As a politician who has to decide what changes in social ieconomic
policy are feasible in a given timescale, '

d) As a lawyer who has to draft new laws to incorporate Thé changes
appearing in soclety as a consequence of our dependence on digital
systens,

e) As a member of a design team or planning body conslderlng bhe
design of a new information system,

It is qulte impractical for many of the people who will find
themselves in these positions to become experts in the construction of
computer systems, It 1is, however, entirely sensible and desirable that
as many as possible should be well informed, in general terms, about
computer-based dystems. It is this; function which the course sets out
to fulfil. Consequently, students/from any faculty, in any year and
with any background (other than havlng already attended a Computer
Sclience course) will be welcomed on the course.

The kind of understanding which.the course aims to develop is: :

1) An appreciation of the flexibility of digital systems and the
diversity of their potential application;

2) An appreciation of the interaction between the varilous technical
. developments-which are taking place today;

3) A critical faculty with whlch to evaluate statements made about
information systems;

4) An awareness of the many factors significant in the design of an
information system, and. some preliminary skills In assessing
whether these factors have been treated successfully and some
ability to contribute to such designs;

5) A reasonable fluency, based on experience, in using information
systems, and a confidence in approaching others.




3.2 Presentation of the:.course

nosTheisicourse :is imade .up. of :lectures, tutorials and practical work
(including a number of essays). Lectures are presented in the Appleton
Je-Iower:iat thenﬁeuowin& t.imes, D ey B s et L

Thursday 2 p Jm,
mm&Mprm

r *kgw%sbudents and_a manber qf bbe Department, Tutqr!als are held
31 atﬁ&%e sridte«df ones:pen: fortmnight -during- each. Leachlng term, The
zzipriddticakswork «ts carried out .In the Micro-computer Laboratory sltuated
doronsthefourth: floor of 'the.Appleton Tower which is.equipped with about a
ddzen :Apple 2 iand Terak :systems.as well as video terminals and equipment
fior experiments: -in:micro-processor control. Laboratory sessions, last
twio hours,-at:the rate of one a week.

Syllabus

In the first four weeks:"of. the course, an attempt is made to
viroduce: the ‘terminology and technology of this subject area, so that
{iitiloses any mythology, daunting aspect or popular press image it may

have, The next period of 5 weeks investigates the task of identifying

Lsproblems :and complete systems to "satisfy" people with those problems.
Problems which are familiar to most people are therefore taken,
tirpdentified more carefully, and some of the difficulties and methods of
solution are discussed. This is illustrated with various aspects of
‘handling text and documents, and finally by some user's experiences in
architecture,
In the next sectlon, lasting about 5 weeks, the nature of large
“‘information handling systems Ls examined . A progression is shown, from
the established systems, to those that are in the stages of early
experiment. The student is encouraged to discriminate between what we
»igan’ achleve;, what we can speclify, and what we should vaguely like to
“" wave, This discrimination 1s also encouraged by a review of various
‘ddvanced -aspects of: applying computers. This leads to a treatment of a
particular design problem (large scale electronic circult design) as an
:cexanple of the computer as a complementary tool to man’s abillty to make
priority and value -judgements and to be creative. Having studied, and
sigxpérimented with, a number of information systems, Lhe student will be
aware that the major component of such a system 1s its software, and
that this presents difficulties in its construction. However, writing
small“proghams”is easy, and frequently useful. ' To develop this ability
#8dandi4o spermit an appreciation of the .problems of the software industry,
~ the student is introduced to a high ievel programming language (a simple
iRt usable ‘subset of Pascal).
In the first part of the final term a general applicatlon area which
394§ of Sinbterestito many: people is considered in detalil. This year
medicine and health care is taken as an example. The aim is to note the
2 dfversity of ‘ways in which the camputer can have effects and to observe
@here-thése have been beneficial, and where they have been deletorious.
The “course concludes by relating the earlier topics to current events
and society, and with a number of visits to computer installations.




3.4 ) Course Assessment

The overall assessment of performance on the course is based on the
following in the indicated proportions:

Practical Work 30%
Essay Assignments 30%
Examination 40%

There are class tests held at the end of terms 1 and 2. If the
combined results of the class tests, the essay assignments and the
practical work generate a clear indication of good per formance,
exemption will be granted from the final examination. A poor
performance in the Degree Examination may be recovered at the resit
exanination, a poor performance in the essay assignments may ' be
compensated by writing two further essays in the summer vacation, but a
pass is required in the practical work alone, and there are no
arrangements for retaking the practical work.

The course does not normally lead to admission into the second-year
Computer Science course, although students who perform exceptionally
well may be admitted to Computer Science 2.




SECTION 4 UNDERGRADUATE COURSES IN COMPUTER SCIENCE

4.0 General Director of Studies: R. Candlin

Several Honours degrees are available at Edinburgh; a single Honours
degree in Coanputer Science, and five joint Honours degrees in which
Computer Science is combined equally with another subject. The
following degrees are offered:

Computer Sclence

Computer Science & Electronics
Computer Science & Management Science
Computer Science & Mathematics
Computer Science & Physics

Computer Science & Statistics

i}

An Honours degree normally lasts four years. During each of the
first two years, students take three subjects, of which one is Computer
Science. Students who intend to take a joint degree also have to take
prescribed courses relevant to that subject. There 1is usually the
possibility of taking one or two "outside"” subjects, which are not
essential components of a given Honours course, but which give students
the opportunity to broaden their interests. In thelr final two years,
students follow courses in their chosen speciality.

The degree structure is very flexible, and students can to a certain
extent keep their options open until the end of their first or second
year, as far as their choice of degree is concerned.

For example, a student registered for a joint degree can easily
change to a single Honours degree in one or other component by opting to
do so at the beginning of the third year, Many students take the first
and second year courses of Computer Science as outside subjects for
other Honours degrees (for example in Engineering or Business Studies).
In some cases, they become so interested in Computer Science that they
decide to transfer to Computer Science Honours. This can usually be
done quite easily, provided that Computer Science has been included as a
subject from the first year.

Computer Sclence is often an lmportant component of the Ordinary
B.Sc. degree, which provides a three-year course for those who do not
wish to speclalise. A recently introduced compromise between Lhe
unspecialised Ordinary B.Sc. degree, and the highly specialised Honours
degree is the Ordinary B.Sc. in a designated discipline. For this
degree, students continue their study of Computer Science into Cthelir
Lhird year, by following selected parts of the full Honours course.

4.0.1 Entry Requirements

Prospective students must satisfy the University's "general entrance
requireaent”, which demands a certain level of achievement over a range
of subjects. Details can be found in the University Undergraduate
prospectus. For most Computer Science Honours courses, qualifications
above the minimum are required. Each application is considered on its
own merits, but as there are more applicants than places, a good
standard of performance in Higher or A-level examinations has become



necessary for an applicant to be offered a place. In the past, grades
of AABB at Higher, or BCC at A-level have been required. There are no
prerequisite subjects, and students who have taken only Arts subjects
are accepted, provided they have shown their ability, However, there is
a consliderable amount of mathematically-based material taught in the
third and fourth years, so that it is preferable for a student to have
continued with Mathematics to Higher or A-level, Applicants for joint
degrees must of course satisfy the requirements of the other subject as
well, '

4.0.2 Overall course description

For thelr first two years, students spend one third of their time on
Computer Sclence. Many students have had experience of working with
computers at school, but there are many who have not, and the first year
forms a broad introduction to the subject. From the very first,
students are expected to obtain a practical experience of using a
computer, which in this case is the University's large multi-access
system, 2900 EMAS. 1In the second and subsequent years they have the
opportunity of working with a variety of other computer systems ranging
fran the Department's VAX multi-access system, down through small
wini-computers, to microprocessor systems. In the early years, students
Wwrite software for existing hardware configurations; later they
construct their own hardware frow standard components, and have the
opportunity to design their own VLSI chips.

Throughout the course, emphasis is lald on the idea that a computer
system is a fusion of hardware and software design. The fundamental
ideas behind computers and computing can also be represented in
mathematical terms, and this abstract and theoretical treatment forms an
important part of the third and fourth year courses,

4.0.3 Assessment ;

There 1s a written examination in June each year, which is referred
to as a "degree" examination. Passes in the first, second and third
years are counted towards an Ordinary B.Sc. The Honours degree is
awarded on the basis of the third and fourth year examinations. 1In all
these examinations, work carried out during the year contributes towards
the assessment, '

In the first three years there are also less formal "class"
examinations during the year, which enable students to check their own
progress.




%
|
E
§

4.1 Computer Science 1 (1st year)

Course Co-ordinator: F. Stacey
4.1.1 Introduction

The aims of this course are to develop basic skill in the production
of the software components of computer systems and to give an
understanding of the principal problems and common solutions encountered
in the design of effective systems. The first aim cannot be achieved
without considerable practical experience. To this end much importance
is attached to the practical work component of the course, to the extent
that it forms an significant part of the final assessment.

4.1.2 Course structure
i
Lectures take place in the Appleton Tower at the following times:
Tuesday 2 p.m. (but see below)
Thursday 2 p.m.
Thursday 4 p.m,

Because ©f a time-table clash with Engineering Science 1, an alternative
for the Tuesday lecture is given on Monday at 2 p.m., in the James Clerk
Maxwell Building.

4.1.3 Syllabus

Lectures and practicals during the first 2 weeks of the course form
an Introduction to computing systems and thelr use through a large
multi-access system. During the remaining 10 weeks of the first half of
the course 2 lecture streans run in parallel. The first, at 2 lectures
per week and almost all the practical, is devoted to programming in a
systematic way using the language PASCAL. The second stream deals with
methods of reascning precisely about potentially very large amounts of
data. Emphasis is given to a relational model of databases. The
abstract ideas are presented against the background of a number of
actual systems which are described in sufficient detail to 1illustrate
the differences between theory and current practice,

For the second half of the course (12 weeks) the emphasis is changed
somewhat. A stream of 1 lecture per week develops the basic progranming
skills acquired, introducing a selection of standard techniques such as
l1ist and tree processing and a selection of standard searching and
sorting algorithms. The last few lectures in this stream are used to
introduce other programming languages in order to set PASCAL in a more
general context. The other stream (of 2 lectures per week) concerns
itself with aspects of computer systems in general. Twelve lectures are
devoted to a functional description of the principal hardware and
software components: memories, processors, operating systems, memory
management and file store management. A further 6 lectures are devoted
to a description of the techmologies of communications and computer
graphlcs. The mutual interactions of developments in these technologies
and computer technology are then described. The last few lectures are
devoted to a description of the effects of the preceding technologies on
the printing and publishing industry.

10



Half Courses

It is possible to take a half course in computer science in the first
year as follows:-

Computer Science 1Ah: consists of the first half of Computer Sclence 1,
that 13 the material described in the first paragraph of the
previous section.

Computer Science 1Ch: consists of the second half of Computer Science 1
that is the material described in the second paragraph of the
previous section. Prior attendance at Computer Science 1Ah is
required for entry to thls course.

4.1.4 Assessment

Assessment is made on the basis of the course work and the degree
examination in June, the two camponents counting equally towards the
final result. There are also class exaninations in December and March
whose prime purpose is to give information on progress to teachers and
students but which also give practice for the June degree examination
which takes the same short answer format.

A student who maintains a high standard throughout the year in both
course work and class exams may be awarded a merit certificate. Any
student awarded a merit certificate will also be granted exemption from
the degree exanm,

A student attending Computer Science 1 is treated, for assessment
purposes, as though attending Computer Science 1Ah followed by 1Ch.
There 1s a distinct break in the course work at the halfway stage. With
the exception of the class exam in December, all written exams are in 2
distinct halves. A student who does not attain sufficient standard in
Computer Science 1 as a whole may be awarded a pass in either Computer
Science 1Ah or 1Ch separately. %

There 1is also a practical examination in June from which the
overwhelming majority of students gain exemption by achieving a
satisfactory standard of course work during the year,

1

"




4,2 Computer Science 2 (2nd year).

Course Co-ordinator: R.Candlin.

During their second year, students move towards a more specialised
practical and theoretical study of computer systems. They continue to
~ build on the programning capability developed in Computer Sclence 1, but
\the emphasis changes towards a more general and abstract view of
computer programs. This involves not only a study of various useful
data structures like sets and trees, which can be used in many different
contexts to model the external world, but also an introduction to
methods of proving that algorithms compute correct results. Also during
the second year, students begin to learn about the problems of the
definition and translation of programming languages - work that will be
continued in the third year course.

An important aspect of second year work 1s that students learn to
back up their intuitive results with mathematical analysis. This point
of view becoumes even more important in the third and ‘fourth years and
the foundations for a mathematical treatment of computing systems are
therefore laid at an early stage.

At the same time as students are moving in the direction of a greater
abstraction, which permits the power of mathematics to be applied, they
are learning how computers work. This is done by studying a simple
computer system in detail, so that an understanding is gained of how a
machine-code program is executed, and how input/output is controlled.
Again, the emphasis is on those principles which are common to all
computers, rather than on the idiosyncracies of a particular machine,

4.2.1 Course Structure

Classes are held in the James Clerk Maxwell Building. The course
consists of 69 lectures, plus tutorials and practical work. Lectures
take place at the following times:

Tuesday 2 p.m.

Tuesday 3.30 p.m.

Thursday 2 p.nm.
There 1s one tutorial hour a week. The majority of tutorial groups meet
on Thursday afternoons at 3 p.m. or 4 p.m. In addition, students are
expected to spend about ten hours per week on work associated with the
course (reading, programming, theory exercises and laboratory work) .
Students work in their own time, apart from a period of six weeks in the
second term when the microprocessor exercises are scheduled. The
microprocessor laboratory is open for several hours each day during this
period.

12



B.2.2 Syllabus
Computer Systems

A study of computer systems at several different levels. The
material in the lectures is illustrated by reference to various
computers used by the students. Practical work includes the
opportunity to werk with mlicroprocessors.

The functional parts (processors, memories, input/ouput devices) and
information flow round the system.

A more detalled study at the register-transfer level of a typical simple
processor (a commonly used micro-processor); communication between
processor and memory; the execution of a machine-code progranm;
communication with the outside world; problems of interfacing input
or output devices,

Some useful hardware components described at the digital loglc level:
gates, flip-flops, registers and counters.

Technologies commonly used to implement computer systems. Recent
technological developments, and their influence on the design of
computer systems.

Computational Structures

Further high-level language programming; simple techniques for proving
programn correctness; relationship between iterative and recursive
programs.

Graphs, trees and lists; some algorithms relating to these structures;
graphical output; sorting and searching techniques.

Abstract data structures; their use in program construction; further
proof methods,

An introduction to some parsing and compiling techniques.

Theory

Mathematical preliminaries; review of sets, functions and relations;
general notions in algebra. .

Finite state automata; acceptors and transition graphs; regular
expressions; minimizatlon of automata.

The algebra of sets; Boolean algebra; the algebra of propositions;
minimization of Boolean forms.

3

4.2.4 Assessment

There is a class examination at the end of the first and second
terms. In each case this consists of a single two-hour paper.

In the degree examlnation in June there are two papers, each lasting
two hours. The resit examination in September has the same form. In
both the June and September examinations, performance of course work
throughout the year is taken into consideration. The final assessment
is made up as follows:

Paper 1 one third

Paper 2 one third

Course work one third
Satisfactory completion of course work is a prerequisite for taking the
degree examination in June or Spetember.

13




i
¥

|
%

4.3 Computer Science 3 (3rd year)

Course Co-ordinator: J.Tansley.

4.3.1 Introduction

The third year provides a basic foundation for the design and
implementation of computer systems. Computer hardware design is given
greater emphasis, reflecting recent developments in methods of hardware
implementation. Software continues to be studied, though more effort is
now devoted to the overall design of software systems and to their
interaction with underlying hardware. Throughout the course the
theoretical foundatlions of computational ideas are also examined.

4.3.2 Course Modules '

Switching Theory

Boolean Algebra. Functions and expressions, duality, simplification and
manipulation of expressions. Complete sets of logic primitives.
Combinational circuits, Analysis - Karnaugh maps, simplification, SP

and PS forms, min terms. Decompostion of logic clircuits.

Sequential circuits. Sequential machines, a simple taxonomy. Memory
elements, delays, clocks. Analysis and synthesis of synchronous
circuits. Functions not realizable by finite state machines, large
scale design limitations.

Timing and Structure. Asychronous machines in detail, their analysis
and synthesis.

Modular logic design. Universal logic modules, other logic modules e.g.
selectors and multiplexors., Bounds on terminals. Cellular arrays.

Standard MSI and LSI components. The 7400 series etc. Use of these
components. Logic simulation,

Computing Technology

Digital abstraction -- some necessary structural requirements for
computation. The physical world and representation of information.
The digital world some theoretical constructs,

The digital-analogue boundary, mainly from an electrical point of view.
Information transmission, manipulation and storage. Some basic
electrical theory, models at both an analogue and digital level.

Insulated gate MOS semi-conductor technolgy; an example technolgy for
digital systems implementation.

Development of a design methodology.
Storage, RAM, ROM, dynamic and static cell designs.

Other technologies, semi-conductor and other solid state based devices.
E.G. IIL, bubbles and magnetic media.

Timing and structure. Asynchronous and synchronous systems; the meta
stability phenomenon.

VLSI system, intefaces, modules, system building, testing. The 68000
and a 64k ram.



Control of Data Flow

Overview: precisely describing digital systems; implementation
independent properties of digital systems; fundamental limitations;
cost and performance of various realisations (implementations) of
digital systems. :

Directed graph description of systems. Implementation independent
properties; determinacy. Asynchronous modular systems, Pipeline
schemata, Pipeline systems. Petri nets; reachability; vector

addition systems; hierarchical modelling; liveness; safeness; proper
termination. DEC RT-modules (PDP16 kits); interpretation of
liveness, safeness and PT in terms of asynchronous modules and
RT-modules; relationship of AMs to RTMs. Basic computation
schemata; variable depth computations; determinacy of basic
computation schemata. Basic modular systems; relationship to RTMs.
Signalling level correctness of AM and RTM implementations.

The link with synchronous systems; unification of the synchronous view
and the asynchronous view; microprogramming.

Implementing sequential automata with PLAs; microsequencers.
Microprogramming; levels of concurrency; describing microprograms;
introduction to machine-independent microprogramming.

Fundamental limits: synchroniser failure; clock skew.
Other directed graph and token-flow models of computation.

Introduction to Digital Communications

Communications theory, digital communications, parallel and serial
forms, codes, errors etc, Parallel synchronisation, handshakes
ete,. Serial synchronization, bit synchronization, frame and
character synchronization.

Packet formats and protocols, polled, asynchronous, half duplex, full
duplex, BSC, HASP ML,. HDLC, DDCMP. Packet network control,
congestion, flow control, error control.

Network services, high level protocols.

Programming Methodology

The ML language. An introduction to its use and its ideas.

The ADA language — a critical review.
The ADA project and its aims.
Expressions and statements, types and declarations, subprograms and
parameters.,
Packages and abstract data types.
Concurrency; seperate compilation; exception handling.

The co-routine concept.

Program design. Discussion of systematic design of programs, starting
with formal and informal specification.
Attention to specifying modules, data types and procedures.
Examples of non-trivial program design. ML as a programaing
language.

15




Operating Systems

Review of batch processing system programs, their components, operating
characteristics, user services and their limitaions.

Implementaion techniques for parallel processing of input/output and
interrupt handling.

Overall structure of multi-programming systems consideration of
multi-processor configurations.

Details of addressing techniques, Store management, file system design.
Interprocess communication, design of system modules and interfaces.

Compiler Construction

Review of programming language structures, translation, loading,
execution and storage allocation.

Compilation of simple expressions and statements. Organisation of a
compiler including compile-time and run-time symbol tables.

Lexical scan, syntax scan, object code generation, error diagnosis.
Object code optimization techniques and overall design. Use of
compiler writing languages. Bootstrapping.

Data Base Design
This is an introductory course into the use and construction of
DBMS. The ground covered includes a survey of applications, an

introduction to physical storage and access methods, query
languages, language embedding, the relational and network models.

Modelling and Systems Performance

Application of probability to computer systems, simple queueing theory,
Markov chains, state diagrams, forward-backward equations, steady
states, birth and death processes, Little's theorem,
Kintchine-Pollaczek equation, network models, decomposability,
Buzen's algorithm, diffusion approximation.

Simulation modelling, performance measurement of real systeus, workload
characterisation, synthetic workloads, bench marks, performance
evaluation and prediction.

Analysis of Algorithms

Introductory concepts. Algorithms based on splitting. Recurrence
relations. Comparison problems, analysis of sorting, merging and
selection problems. Information theoretic lower bounds. The class

NP. Reducibilities among problens. NP-campleteness. Fast
algorithms for multiplying integers and polynomials. The finite
Fourier transform. Matrix problems, algorithms and reductions,

(e.g. Boolean transitive closure, shortest paths, deteruinates).

16



Computability and Formal Languages

Introduction, Cantor's diagonal argument, Turing's thesis. Turing
machines, partial recursive functions, TM techniques, variations on
TMs, simulation arguments,

Other models of computation, stack machines, counter machines, queue
machines, equivalence to TMs.

Universal Turing machines. Undecidabiltiy, halting and other problems,
recursive and recursively enumerable sets. McCarthy recursion
equations, operational semantics. Chomsky hierarchy, grammars
versus machines, closure operations, normal forms, decision
processes, parsing.

Type 0 languages, context sensitive languages, regular languages, CF
grammars, parse trees, Choamsky normal form.

Push down automata, equivalence problem, Parsing, Younger's method,
LL(k) parsing.

Semantics

Operational semantics of recusion equations and of simple imperative
programming language P, the approach and proof of their equivalence,

Data domains and function domains under complete partial order,
monotonic and continuous functions, the least fixed-point operator,
and its application in solving recursion equations. Proof of
properties of recursively defined functions using least
fixed-points, ,

Denotational semantics of the language P, using complete partial order
domains, equivalence with operational semantics, proof of properties
of language P, use of continuations, extensions to P (including
declarations and procedures) and their senmantics.

Systems Architecture (10 seminars)

Input and output organisation, handling of simple devices, intelligent
devices e.g. FEP's, file store, etc. ?

Storage organisation, one level storage, storage hierarchy, caches,
cost-performance, capabilities, addressing schemes.

Processor organisation, pipelines, stacks. Inter-system communication,
buses, multi-processors.

1
The above concepts are illustrated with examples taken from IBM 360

& 370, DEC PDP-11 and VAX 11/780, CDC 6600/7600, Burroughs
5500/6500, ICL 2900. Reference is also made to other systems.

17




4.3.3 Composite Practicals

The aim of these practicals is to introduce students to the methods
of coping with the problems that arise with the design and
implementation of large scale computer systems.

It is intended that by following the series of composite practicals
students will gain experience in deciding how to:

design system
discover and use relevant information
choose the appropriate means of implementation
schedule their work load
present their findings and implementations in a clear and concise
way.
The practicals are:
Term 1

1. Compiler Construction
2. Communications Protocol Implementation

Term 2

3. Design and construction of a sequencer
4, Processor Design Study

Term 3

6. Computer Architecture Essay

4.3.4 Assessment

The degree examination for the Honours ct rse is held in June, and
for the Ordinary degree in June with the resit in September.

(a) Honours. There are three 3-hour written examinations, which
comprise two thirds of the total marks, the remaining one third coming
from coursework. For Honours, a student must pass this examination in
June, at the first attempt.

(b) Ordinary. An Ordinary pass is awarded for satisfactory performance
on any two of the three papers and corresponding course work.

A class examination (one 3hr paper) is set at the end of the first

term. Performance in this exam is taken into account when awarding
merit certificates.

18



4.4 Computer Science 4 (4th year)

Course Co-ordinator: N. H. Shelness

4.4.1 Aim of Course

The final year honours course is designed to provide a student with

an opportunity to: -

1. Study subjects that were outwith the core curriculum studied in the
third year.

2. Study subjects to a greater depth than they were studied in the
third year.

3. Undertake a number of mini-projects which give first hand experience
of implementation and/or problem solving in a particular subject area.

4. Produce an honours thesis based on a major implementation or
research project.

Most fourth year course units last for four weeks each at a rate of
three meetings a week, and commence in the first and sixth weeks of
teris one and two. The VLSI unit lasts for ten weeks at the rate of one
meeting a week, commencing in week one of term one.

4.4.2 Course Units

Local Area Communications

The advent of inexpensive, high bandwidth methods of interconnecting
computing systems over distances of up to one kilometer is making
possible both new applications of computing systems such as the
electronic office, and altering the basic assumptjons under which
computing systems are built, This unit studies the technology and
application of methods of local communication.

Computational Complexity

Time and space as resources for Turing machines, nondeterminism.
Complexity classes, padding arguments and time and space hierarchies.
Polynomial, reducibilities and Cook's theorem.

Problems complete in PSPACE and #P.

Provably intractable problems, finite and infinite.

Time/space tradeoffs, pebbling and Savitch's theorem.

Axiomatic complexity theory.

Computer Graphics

Device-independent graphies.
Interactive graphics.
Three-dimensional graphical techniques.
Raster-scan graphics.

19




Linear and Integer Programming

The solution of Linear Prograamipg problems by the Simplex Method
constitutes the biggest commercial application of optimization
techniques. Similarly, the Branch and Bound Method 1is the most
widely used procedure for solving Integer Programming problems. A
nunber of aspects of these two methods are studied:

The Simplex Method and a simple scheme for the solution of small
problems by hand; Accuracy considerations and sparse problems; The
revised Simplex Method; Branch and Bound Methods; Practical
considerations affecting efficiency in Branch and Bound Methods.

A Calculus for Communicating Systems

The calculus is built on the notion of synchronized (or "handshake")
communication. This notion covers not only the communication
between independent modules of a system, but also the act of
observing, or communicating with a system from outside.

The formalism of the calculus, explained through simple examples.
Applications of the calculus, including data flow, parallel
nunerical algorithms, descriptions of machines and data structures,
and semantic description of high level programming languages.

A :brief survey of, and comparison with, other wmodels of concurrent
computation (eg . Petri's Net Theory, Hoare's Communicating
Sequential Processes).

The theory of "observation equivalence" of systems (that is, systems
which look the same to a user or to another part of a larger
system) .

Algorithmic Graph Theory

Many real life problems to be tackled by computer scientists have
natural graphical formulations; for example, the problems of
routing, scheduling and the design of reliable computer networks.
The aim of this unit is to introduce some of the algorithms which
efficiently solve graphical problems, and to give some feel for the
gulf which seems to exist between tractable and intractable (though
often seemingly innocuous) problems,

Definitions and terminology, examples of the formulation of
practical problems in graphical terms, illustration that finite does
not imply computationally tractable, data structures for graphs,
measuring the efficiency of algorithms.

Algorithms concerned with paths and communication: The shortest path
in a graph, finding non-separable components, finding strong
components.

Network flow: Maximum flow - minimum cut theorem, an algorithm for
minimal s-t flow.

Optimisation: Minimal spanning tree, maximal watching in a bipartite
graph, the Huffman algorithm.

Scheduling : The critical path method, minimum nunber of processors
required to ensure no delay in completing a task.

Dealing with *"hard" problems: Exanples of NP-canplete problems,
wethods of obtaining approximate solutions.

20




Performance Evaluation

A survey of the tools and methods of performance evaluation; The
problems of systeas selection and performance prediction; Tuning a
working system; Program behaviour.

Computer Aided Design of Digital Systems

Computer-based aids to the design and construction of digital
systems are studied and related to several topics covered in the
third year (Control of Data Flow, Analysis of Algorithms, Design of
pata Bases and Compiler Construction).

Representation of design objects. Physical construction
(assignment, wire-wrap schedules, printed circuit board tracking,
ete). :

Production of Documentation.
Design Verification.

Very Large Scale Integrated Circuit Design

VLSI design represents a new and exciting field of Computer Science.
The treatment provides sufficient basic information about integrated
devices, circuits, digital subsystems and system architecture to
enable a participant to span the range of abstractions from the
underlying physics to complete VLSI computer systems. Emphasis is
laid on the need for computer aids and the importance of modularity
of design.

Micro-processor Technology

The internal architecture of typical micro-processor devices.
The internal architecture of related LSI devices.

Internal interfaces within micro-computer systems.

External interfaces to micro-computer systenms.

Micro-computer applications.

Data Base Systems
Data Models.
The relationship to programming languages.
DBMS architectures.
Implementation issues.

21




4.4.3 Mini-projects

An Operating System Implementation

The laboratory equipment for this wini-project consists of a pair
of linked Interdata 74 mini-computers. One of these Interdatas
serves as an operating system host, the other as an I/0 server.

The 1/0 server is pre-programmned to provide a small high level
set of I/0 functions to the host. These functions provide access to
a file containing job descriptions, access to files containing user
jobs, and a means of mechanizing user I/0.

The major design aim of the operating system is to run correctly,
and in as short an elapsed time as posible a set of jobs provided,
and described in the job description file, by the I1/0 server.

Linear and Integer Programming

This individual project consists of a nunber of exercises drawn
from the course unit of the same name.

Commercial and Industrial Data Processing

Each group undertaking this project carries out a qualitative and
quantitative analysis of the information needs of a particular large
organization, and produces a detailed report and a proposal for an
appropriate information system.

Organizations covered in previous years include a whisky
distiller, the administration of the Church of Scotland, the
administration of the University of Edinburgh and the library of the
University of Edinburgh.

Computer Graphics

The laboratory equipment for this project consists of the VAX
11/780 and the Department's high resolution (512x512 pixels) colour
raster display.

The aim 1is to design and implement a software system which
exploits the capabilities of a colour raster display to present
significant amounts of data in an easily comprehensible form. These
capabilities include an ability to display filled in areas in one of
sixteen colour shades selected from a set of four thousand, and an
ability to alter the image rapidly enough, within certain
constraints, to allow a posibility of animation.

A Database Management System Implementation

This project is undertaken in groups of three, with one student
designing and implementing the physical resresentation, one the
programming language interface and manipulation algorithms, and the

. third the user interface. Implementation is on the VAX 11/780.

A representative and workable sample of the crucial components of
a DBMS is designed and implemented. The data model chosen is a
siuple and flexible one, based on the work of W. Kent.

22




sy

Micro-processor System Implementation

This project is undertaken in groups of two, with implementation
on the micro-processor breadboarding systems.

The aim is to design and implement the functional components of
an automotive instrument display system.

VLSI Circuit Design

This project has as its goal, the design of a digital subsystenm
using the VLSI design techniques introduced in the fourth year
course of that name.

Students are encouraged to implement functions of their own
invention, but may also chose a function from a given selection.
Exanples of possible functions are an associative memory, part of an
ALU data path and a simple encoder.

CAD System Design

This project 1is undertaken individually, although the free
exchange of ideas, and information gleaned from the literature, is
strongly encouraged.

It involves the construction of a design rule checking progran
for IC designs expressed in CIF 2.0. The problems of design rule
checking are introduced and discussed during tutorial sessions.

4.4.4 Honours Thesis

Each student is required to submit an honours thesis based on a
significant research or implementation excercise, chosen from a set
of topics drawn up by members of the Department. While not
requiring the original research expected of a postgraduate thesis,
the topics are designed to provide an opportunity for the display of
initiative and persistence.

4.4.5 Assessment

There are two 3-hour written examinations in the June degree
exanmination, which together contribute one third of the total marks,
one third couing from the student's indivdual project work and one
third from course work associated with the options.

First, Second or Third Class Honours may be awarded. For Honours
in Computer Science, the results of the Computer Science 3 (Honours)
and Computer Science 4 examinations are given equal weight. For
joint Honours degrees, the results of Computer Science 3 (Honours)
and the corresponding examination in the second Department concerned
are given equal weight.

23



SECTION 5 POST-GRADUATE MASTER OF SCIENCE COURSE

Course Co-ordinator: L.D.Smith
5.1 Introduction

puring the 1978/79 session a wnodular® MSc scheme was introduced in
the Faculty of Science at Edinburgh University. Currently, three
departments collaborate in the scheme, the aim of which is to increase
the cost-effectiveness of the postgraduate teaching by reducing the
duplication of effort which arises when standard lecture material spans
traditional subject boundaries.

Under the modular scheme a student is registered in a department in
the usual manner and receives most of his or her teaching from that
department. However, up to half of the lecture modules taken by a
student may be taught by other departments in the scheme. This not only
saves duplication of effort, but has the additional advantage of
exposing students to a variety of points of view about current problens
and issues.

All MSc courses in the modular scheme share a common format
consisting of eight taught wmodules taken in the first half of the
academic year followed by a project of six months duration, the results
of which are presented as a dissertation. The courses are thus very
practical in nature. All three courses are approved by the Science
Research Council (SRC) for the purpose of tenure of its Advanced Course
Studentships and, in addition, SRC has provided financial assistance to
the University to increase support for two of them, the MSc in Computer
Systems Engineering (described in section 5.2) and the MSc in Design and
Manufacture of Microelectronic Systems (detaills of may be obtained from
the Department of Electrical Engineering), as part of a special
initiative designed to help the UK gain the maximum benefit from the
availability of advanced micrcelectronic technology.

5.2 MSc in Computer Systems Engineering

The underlying theme of this course is the design and construction of
computer systems. Lecture modules cover a broad spectrum of topics from
the construction of systems directly using very large scale integrated
circuit technology to the inplementation of large software systems in
which the underlying computer or microprocessor is a small component.

During the first six wonths of the course students attend eight
lecture modules chosen from about twice that number. Concurrent with
the lecture modules, students are expected to attend a series of
sewinars, the aim of which is to give a broad view of computer systems
engineering. A proportion of these seminars are led by representatives
from the computer and uicroelectronics industries.

In the final six months of the course students undertake an
individual project, typically involving the design and construction of a
relatively large software or hardware system, past projects have
included a high level language compiler ror an INTEL 8086 microprocessor
and a microprocessor bhased intelligent graphics display driver.
Projects are assessed by means of a dissertation which must be submitted
by the end of September.

2h



As a result of the Science Research Council's recent initiative in
microelectronics, future projects will include the design and
fabrication of very large scale integrated systems using silicon-gate
nH0S technology.

5.3 Course modules

The following subsections comprise brief descriptions of the lecture
modules available under the MSc in Computer Systems Engineering and the
MSc in Design and Manufacture of Microelectronic Systems. Section 5.3.1
decribes modules available to students registered for either MSc degree,
while section 5.3.2 describes the modules specific to the MSc in
Couputer Systems Engineering.

Certain modules, whose titles are marked with an asterisk, are also
available to outside interested parties on payment of the appropriate
fee

5.3.1 Modules open to students from both MSc courses

Computer organisation and high-level assembly programming *

This module, taught in the Department of Computer Science, examines
how to write programs in a high-level assembly 1language which
manipulate the machine-specific features of typical mini- and
micro-couputers., The influence of different computer organisations on
the writing of these programs is also considered and comparisons are
made between a number of well known mini- and micro-canputers.
Practical work includes the writing of some of the programs described
above and is performed on a user-friendly minicomputer-based program
development system,

Programning techniques and software tools #

This module, taught in the Department of Computer Science, examines
the practicalities of structured programming in a high-level language.
Emphasis is placed on language independent concepts and on choosing
the right language for the job, The design of data structures and the
analysis of algorithms are also considered. Practical work includes
the implementation of illustrative algorithms and data structures and
is perforumed on the Department's own multi-access computer system.

Computer aids to the design and construction of digital systems *

This module, taught in the Department of Computer Science, examines
how to implement effective computer aids to the design of large scale
digital integrated systems. The problems of conputational complexity,
data management, distribution of function and interface to the
designer are emphasised. Practical work comprises a design study of a
CAD system to meet some specified objectives.

25



Computer systems and VLSI technology (I and II) ®

These modules, taught in the Department of Coumputer Science,
examine the structured design methodology advocated by Mead and Conway
[M&C80] and its application to the implementation of coumputer systems.
The impact of very large scale integration on the architecture of
computer systems, the effectiveness of special-purpose design aids,
and the role of computer aids in the management of design complexity
are enphasised. Practical work involves the design of a digital
system such as a simple ALU and is performed using a variety of
computer aids to structured design and the Department's own design
stations which are based on special-purpose colour graphics terminals.

LSIC design

THis module, taught in the Department of Electrical Engineering,
examines the fundamentals of integrated circuit design and layout.
Practical work involves use of the SPICE circuit simulation package
and use of the GAELIC computer aided IC layout system to prepare
designs for fabrication.

Digital systems design with microprocessors ¥*

This module, taught in the Department of Electrical Engineering,
examines how to use microprocessors to implement digital systems., The
design of the interface hardware and systems software required to make
a microprocessor useful are emphasised. Practical work includes the
interfacing and handling of simple peripheral devices such as
keyboards and lights and 1is performed on the Department's Motorola
6800 microprocessor development systems.

Silicon processing

This module, taught in the Department of Electrical Engineering,
examines all aspects of the fabrication of integrated circuits, from
the production of single crystal silicon through the techniques of
photolithography, repitoxy, oxidation, diffusion, ion implantation,
etc, to the evaluation of finished devices. .

Hybrid circuits - technology and design *

This wodule, taught in the Department of Electrical Engineering,
examines techniques for the design and manufacture of thick and thin
film hybrid circuits and their application in analogue systems. The
interaction between technology, circuit design and system perforuance
is emphasised, particularly with respect to the trade-offs between
cost, complexity, yield, accuracy and stability.

26



Project Planning and Management

This wodule, taught in the Department of Astronomy, examines how to
plan and manage projects. The critical path analysis of coaplex
projects is considered and the motivation of managers and workforce is
emphasised.

5.3.2 Modules available only to MSc students in Computer Science

Fundamentals of programming

This module examines recent advances in methods of designing
prograns with partlicular emphasis on the use of abstract data types
and applicative programming languages.

Compiler design

This module examines the design of compilers for typical modern
high level programming languages such as PASCAL with particular
emphasis on the practical aspects of parsing, code generation and code
optimisation,

Introduction to operating systems

This module examines the structure of typical modern multi-task
multi-user operating systems such as the Edinburgh Multi-Access
System. Practical work is performed on a minicomputer development
system and allows students to test some of the ideas presented in the
lectures.

Digital communications and computer networks

This module examines the fundamentals of digital communications and
their application to computer networks. Practical work typically
involves the development of a protocol handler for a comaunications
standard such as X25 (level-2) and is performed on the Department's
own multi-access computer systenm,

Fundamentals of digital structures

This module examines some techniques for describing, analysing and
implementing register transfer level digital systems, Fundamental
limitations, the analysis of determinacy and the analysis of deadlock
are considered in the context of both asynchronous modular systems and
microprogrammed systems,

27



Advanced graphics

This module examines a number of advanced topics in computer
graphics such as 3D-graphics, raster-scan graphics, device independent
graphics (for example, the ACM CORE standard) and interactive
graphies. Practical work is performed on the Department's colour
raster-scan graphics terminals and typically involves animation or
interactive ganmes,

Design of databases

This module examines recent advances in the design . databases and
in the technology for implementing them. Examples ure drawn from
diverse application areas such as horse-racing administration and
computer aided aircraft design.

5.3.3 Introductory programming course

An introductory programming course 1is run in the week prior to the
start of the academic year. All students intending to take modules
taught in the Department of Computer Sclience are strongly recommended to
attend this course, regardless of their previous programming experience.

5.4 Entrance requirements

The entrance requirement for the MSc in Computer Systems Engineering
is a good honours degree, or its equivalent. Scme knowlege of the
physical sciences, Electrical Engineering, Mathematics or Computer
Science is essentlal, though this need not necessarily be at degree
level. Some experience of programming is helpful, though not essential
for otherwise suitably qualified applicants.

5.5 Assessment

Course modules are examined in April by means of two written
examinations, of three hours duration each, on the subject matter of the
prescribed modules. The examinations may cover material presented in
formal lectures, seminars and practical work.

Students who achieve a satisfactory standard in these examinations
are permitted to proceed to the project phase of the degree. Students
who fail to achieve a satisfactory standard may be permitted to transfer
their registration to the appropriate Diploma course if the Board of
Examiners so recommends.

In the final six months of the course each student works full time on
an individual project, This 1is assessed by means of a dissertation
reporting the work which must be submitted before the end of September.,

An oral examination may be required and may cover any aspect of the
lecture material, coursework and project work.,

28



SECTION 6 POSTGRADUATE STUDY PROGRAMME IN COMPUTATION THEORY

6.1 Qutline and purpose of the programme

The Department of Computer Science at Edinburgh University offers a
postygraduate study programme in the Theory of Computation, both pure and
applied. 1In their first year, students attend an informal course of
about 100 lectures, plus seninars, designed to give them a suitable
grounding for research in this area. As the first year proceeds they
are also guided towards a research topic.

These lectures are open to all, and a small number of one-year
visitors and non-graduating students, who wish to attend but not to
register for a degree may be accommodated.

Students require considerable mathematical training, for example an
undergraduate degree in Mathematics, Mathematics and Computer Science or
Mathematical Physics. Some computing experience is expected but a
substantial knowledge of Computer Sclence is not a requirement.

The aim {is to develop skill in applying mathematical ideas to
computing problems, notably the proof of properties of programs, the
gquantitative analysis of algorithms, the complexity of computing tasks
and the semantics of programming languages. Much progress has been made
in the last ten years using ideas from mathematical logic, algebra,
analysis, recursion theory, combinatorics and other branches of
mathematics. This work i{s now beginning to affect methods of developing
reliable and efficient software. Students will develop both
mathematical understanding and practical programming skills,

6.2 Course Structure

The lectures, numnbering about 100 in all, are given iIn the Autumn
term and early Spring term, and are divided into three broad sections:
Complexity, Pragmatics and Semantics. More advanced topics are covered
in seminars in the second half of the Spring term. Theoretical and
programming exercises are set in conjunction with the lectures. The
course is taught by four members of the teaching staff - R. Burstall, R.
Milner, G. Plotkin and L. Valiant - and by associated researchers.

All students do the associated coursework. Parts of the Complexity
and Pragmatics material may perhaps be omitted by students who have
covered these topics. Each student is asked to attend further lectures
and seminars which both link and further develop these areas. Those
with little practical experience may also be asked to attend a practical
course chosen from the rest of the Computer Science syllabus.

Most of the lectures and seminars are completed by Easter, to enable
students to concentrate fully upon their research topics thereafter.

29



6.3.1 Syllabus: Complexity

Analysis of Algorithms (18 lectures; CS3 course)

Introductory concepts. Algorithms based on splitting. Recurrence
relations. Comparison problems, analysis of sorting, merging and
selection problems. Information theoretic lower bounds. The class
NP. Reducibilities among problems. NP-completeness. Fast algorithms
for multiplying integers and polynomials. The finite Fourier
transform. Matrix problems, algorithms and reductions, {(e.g. Boolean
transitive closure, shortest paths, determinates).

Computational Complexity (12 lectures; CS4 option course)

Time and space as resources for Turing machines, nondeterminism.
Complexity classes, padding arguments and time and space hierarchies,
Polynomial reducibilities and Cook's theorem,

Problens complete in PSPACE and #P.

Provably intractable problems, finite and infinite.

Time/space tradeoffs, pebbling and Savitch's theorem.

Axiomatic complexity theory.

Further topics in couplexity (10 seminars)

Surveys of particular research areas e.g. parallelism, cryptography,

interconnection patterns, probabilistic analysis, algebraic
algorithms,
6.3.2 Syllabus: Pragmatics

Programming Languages (20 lectures/tutorials)

Getting started with the DEC-10. Introduction to POP-2. Introduction
to LISP. Introduction to PASCAL. Programming language concepts:
applicative languages, strongly typed languages, modules, data
abstraction. Common data types: sets, sequences, bags, maps, trees,
graphs. Programming exercises based on the above.

Elements of Computational Logic (with AI PG course)

First order predicate calculus and {its semantics. Introduction to
resolution based theoren proving.

Logical Analysis of Programs (8 lectures)

Methods of program specification. Methods of program verification.
Floyd assertions, Hoare's axiomatic approach, inductive techniques,
examples. Program transformation and synthesis.

30



6.3.3 Syllabus: Semantics

Denotational Semantics (12 lectures)

Syntactic and semantic domains. Notions of environment, abstract
store and continuations. Semantic functions. Treatment of ALGOL and
PASCAL features, input/output and errors, compile and run time type
checking.

Domains (14 lectures) Complete partially ordered sets, approximation and

limit, least fixed polnts and continuous functions. Typed
lambda-calculus, operations on domains. The inverse-limit
construction. Type-free lambda-calculus and other exanples.

Algebraic cpo's. Computability.

Algebras and Categories (6 lectures)
General algebras and homomorphisms. Introduction to category theory:
categories, functors, natural transformations, freeness, colimits,
Operational Semantics (8 lectures)

Abstract machines. Evaluation. Semantics as Inference. Relationship
with denotational semantics.

31



SECTION 7 RESEARCH PROJECTS

T.1 Very Large Scale Integrated Circuits

The fleld of Very Large Scale Integrated (VLSI) Circuit design, that
is the ability to integrate upwards of 100,000 devices on a single chip,
provides a focus for research workers in a number of areas within the
Department. Some of the areas are: novel systems architecture;
computer-aided design; special-purpose devices; and system correctness
and complexity. Emphasls is placed on principles of modular design and
decomposition based on the work of Mead and Conway at Ce!. Tech., and a
Library of artwork for standard components is being dev: oped.

Edinburgh University has recently been designated for special support

“in this field, support which is reflected in the facllities available

for this research. These include: software design alds on VAX, two

colour graphics terminals and two colour plotters. In addition the

Department has access to fabrication facilities in the Departuwent of
Electrical Engineering and the SRC Rutherford Laboratory.

7.2 Programming Methodology

This project, carried out by Rod Burstall, Halcolm Bird, David
Rydeheard, John Scott and postgraduate students, is funded by the
Science Research Council., The main topics are:-

a) Advanced programoing languages, with particular emphasis on
functional programming and the use of abstract data types and
modularity to structure large programs. An experimental functional
language HOPE has been designed and implemented (with the
participation of David MacQueen, ISI, Los Angeles); it is strongly
typed and is being extended with modularity features. Another
language IVY is oriented to the expleitation of a rich collection of
built-in data types.

b) Specification of problems and prograus. Specifications of large
programs can be complex and need to be presented in a clear and
modular way. CLEAR 1is a specification language developed in
collaboration with J.A. Goguen, SRI, Palo Alto, Extensions to CLEAR
and applications of it are being investigated.

c) Applications of Algebra and Category Theory. The semantics of CLEAR
has been given 1in an algebraic/categorical manner. This has
stimulated work on embodying categorical concepts directly In
programs, "categorical programming®.

32



7.3 Data Curator

This project, which is funded by the SRC, is carried out by Malcolm
Atkinson, together with Ken Chisholm and Paul Cockshott and three
research students; others are welcome to join it. The project has its
own 32-bit processor on which it is building a database server for a
local area network.

The work is distinguished by an interest in the relationship between
databases and programming languages. Its long-term aim is to eliminate
databases, at least as visible objects. To achieve this end, it intends
to support persistent data In a different way. It is assumed that the
notions of type as a means of description and constraint, modules as a
means of identifying the duration of persistence, and the standard
features of programming languages for manipulation can supplant the
present ad hoc methods used in most DBMS. This will lead to a more
coherent and consistent programming environment and to the development
of programning languages to include all aspects of late dynamic binding
of persistent data to specific program parts.

The project has constructed a message switching system which enables
processes to be distributed over a network, a database kernel system
which provides persistent space management, transactions and concurrency
control. Under development is a compilation and execution system for a
high-level language which incorporates a demonstration of the language
ideas. Theoretical problems of specification, consistent identification
and a consistent concept of type require attention. A model of the
program development, compilation and execution process in the context of
modular prograns and persistent data has been defined. Work is required
to discover how to present and operate on this model in a natural way.

7.4 Application studies in LCF

LCF is a fully 1implemented interactive proof system, in which
properties of computations (for example, of programs) may be rigorously
verified by a mixture of automatic and interactive methods.

The current project, being carried out by Robin Milner and Avra Cohn,
in association with Mike Gordon and F.V. Jensen (visitor from Aarhus
University, Denmark), is focussed upon case-studies of proof. The main
aim is to evaluate the methodology which has been developed, consisting
principally of (1) the organisation of problems and problem areas in a
hierarchic structure of theories, and (2) the use of a powerful
metalanguage ML (a high-level programming language in its own right) to
raise the quality of interaction by programming and combining partial or
total proof strategies. Of particular interest are the verification of
compilers and parsers, and establishing properties of useful abstract
types. Completed studies are: the verification of a simple but
non-trivial compiler, the modelling and analysis of Backus' FP systems,
and the investigation of some abstract data structures (for example,
binary search trees).

33



7.5 Mathematical Techniques in the Design of Telecommunications Systems

There are a number of mathematical models, as distinct from
programming languages, for concurrent communications systems; among them
are Net Theory (Petri et al), Path Expressions (Campbell, Lauer et al)
and CCS (Milner et al). The aim of this project, which is carried out
by Robin Milner and Mike Shields and is jointly funded by the SRC and
the Standard Telecommunication Laboratory at Harlow, is to conduct
non-trivial case studies, proposed by STL, in the application of these
models. The emphasis is upon the descriptive power of the models, and
the techniques they offer for analysis, specification and verification
of concurrent systems (particularly telecommunications systems). The
outcome should be not only techniques useful in real design problems,
but also feedback to the work in the Department on fundamental models of
concurrency.

7.6 Semantics of Non-deterministic and Concurrent Computation

This research, which is being conducted by Robin Milner and Gordon
Plotkin together with Matthew Hennessy and John Kennaway, concerns the
foundations of non-deterministic and concurrent computation, The aim is
to provide a uniform framework containing mathematical models for the
intuitive ideas of an event, of process comnunication and of
synchronisation. The mathematics involved is continuous, as advocated
by Scott, and uses tools from algebra and category theory.

1.7 Semantics of Abstract Data Types

The aim of this project, carried out by Gordon Plotkin together with
Mike Smyth, is to develop further the application of Scott's theory of
computation to the study of the synthetic approach to abstract data
types. It is intended to pursue a wide variety of topics ranging from
the detailed study of practical examples to theoretical problems and to
include systematic comparisons with other approaches.

7.8 Semantics and Correctness of Digital Systems

Work is being carried out by Mike Gordon to develop techniques for
modelling the functional behaviour of clocked synchronous systems such
as instruction set processors. Such systems can be described at many
levels, for example:

1. In terms of the connections between sequential devices such as
registers, memories etc., and combinational devices such as adders
or multiplexors. At this level the primitive operations are the
opening and closing of gates.

2. In terus of register transfers and tests. At this level the
interconnection topology has been abstracted away.

3. In terms of higher level data types and their operations. For
example, a processor could be described by its machine lnstructions
on bytes, words, integers etc.

The goal 1is to devise natural and tractable wathematical models for

these levels, and proof techniques for verifying that each level is

correctly implemented by the one below it.

34



7.9 Computational Complexity and Algorithms

This research, conducted by Les Valiant together with Martin Furer
and Kyriakos Kalorkoti, studies the space and time required for
computations, Topics 1include a wunified algebraic theory of the
complexity of algebraic and combinatorial computations, algorithms with
good probabilistic behaviour, size of basic hardware structures,
classifying problems by combinatorial difficulty and lower bounds on
complexity.

7.10 Stylistic Analysis

Many problems in literary studies have their origin in the uncertain
authorship of the texts. This is particularly true when historical
information is scarce and the decision about the authorship of the texts
must be based on an examination of their contents. Students of style
claim that from an examination of any composition its author may be
determined, given a text large enough to supply a reasonable specimen
and given enough material with which to compare it. However,
traditional stylistic analysis {is seriously defective. Where the
differences between two texts are large and numerous, that is, where a
method is least required, the results are most convincing; where the
differences are few and slight, that is, where a method would be most
useful, traditional analysis is least effective,

Clearly something better is needed than subjective evaluations of
style., A science of stylometry is needed in which personal elements in
composition are measured so that the works of any writer can be
distinguished from those of colleagues who might be writing on the same
subject, at the same time, for similar reasons and in an identical
historical and cultural situation.

This research, conducted by Sidney Michaelson and Andrew Morton, is
developing such a science and applying it to a wide variety of
authorship problems, ranging from the Homeric question to to disputed
wills,

35



SECTIOH 8 COMPUTING FACILITIES

The University computing service is provided by the Edinburgh
Reglional Computing Centre. The principal mainframe factiity for
University users is the twin ICL 2972 system housed in the James Clerk
Maxwell Building. This installation runs the Edinburgh Multi-Access
System (EMAS) to support in excess of 100 simuitanecus users at
interactive terminals sited throughout the University and connected by a
local network. The network also permits access to a number of other
processors, including another large ICL 2900 installation, and to a
variety of devices, such as printers, piotters and type-setters,
Specific research projects have access to the Science Research Council's
DEC-10 at Edinburgh; others have their own dedicated machines.

The princlpal departmental computing facility is a VAX 11/780 housed
in the Department's machine halls. This machlne was installed at the
end of 1978 and has since been upgraded to 2 Megabytes of main store and
1200 Megabytes of disk storage. It supports a maximum of around thirty
shioultaneous users on VMS and is connected to the ERCC network. The
main languages available are Pascal, IMP and Fortran.

In addition the Department has a number of wini-computers which are
used to provide hands-on experience and in a number of specialised
roles, These machines include a PDP-15/20, a PDP-15/40, an ICL 7502, a
Terak, 14 Interdata 70 series machines, and two high-quality graphics
terminals based on PDP-11 processors. Most of the machines are equipped
with high-speed general-purpose interfaces and peripheral devices are
interfaced to the same standard to permit the maximum flexibility of
Inter-connection, The interfaces, which were designed in the
Department, also allow inter-processor communication at rates up to 2
Megabaud.

Most of the small systems have noc independent file or backing storage
but rely on connection to a common filestore for thelr filing systems.
The flilestore, based on an Interdata 70, supports about 16 client
machines (some with multiple users) with two 60 Megabyte disk drives: fit
also spools line-printer output.

The Department and ERCC have been jointly concerned with the setting
up of the micro-computer laboratory in the Appleton Tower, of which the
Information Systems course is a major user.

There is a micro-processor laboratory in the machine halls equipped
with prototyping kits which are used for experiments using the 6800 and
280 series micros in particular. There 1is also a well-equipped
electronics workshop which contains a selection of electronic measuring
equipment and hand tools.

36



SECTION 9

9.1

S. Michaelson

R.M. Burstall

P.D.A. Schofield

M.P. Atkinson

I. Buchanan

E.R.S. Candlin

H. Dewar

G.H. Efland

J.P. Gray

I. Hansen

M.R. Jerrum

P. McLellan

MEMBERS OF STAFF

Teaching staff

B.Sc., A.R.C.S., F.I.M.A., F.R.S.E., F.R.S.A.;
Professor of Computer Science.

The study of literary style with speclal reference to
problems of authorship and chronology.

Queue-related models of computing systems.

M.A., M.Sc., Ph.D.; Professor of Computer Science.
Progranming methodology: correctness proofs, program
transformation, specification languages. Semantics
using an algebraic/categorical approach.

B.Sc., A.R.C.S.; Senior Lecturer and Head of Dept.
Programmning techniques. Data structures.

B.A., M.A., Dip.Comp.Sci., Ph.D.; Lecturer.
Relationships Dbetween programming languages and
database systems. Development of techniques for the
design and construction of large-scale software.

B.Sc., Ph.D.; Part-time lecturer.
Computer-aided design and VLSI.

M.A., Ph.D.; Lecturer.
Introductory teaching and specialised micro-processor
systenms,

B.A., B.Phil.; Lecturer,
Small machine architecture., Text processing.
Speech input/output.

B.S., M.S.; Demonstrator (until 31/3/81).
VLSI design

B.Sc., Ph.D.; Part-time lecturer.
Computer-aided design and VLSI.

Mgr., Ph.D.; Lecturer.
Design methodology for microware description and
analysis.

B.A.; Demonstrator.
Complexity of canputation.

B.A.; Demonstrator.

Programming techniques. Distributed filing systems,
Small machine systems.

37



A.J.R.G. Milner

G. Plotkin

P. Rashidi

D.J. Rees

J.S. Rohl

N. Shelness

F. Stacey

L.D. Smith

J. Tansley

L.G. Valiant

A.S. Wight

B.A.; Reader.

Semantics of programming languages. Applications of
mathematical logic to formalise the statement and
proof of assertions concerning prograns. Abstract
models of concurrent computation.

B.Sec., Ph.D.; Lecturer.

The denotational semantics of programming languages
with emphasis on concurrency. Computational and
inductive logic.

B.Se., Ph.D., A.C.G.I., D.I.C.; Lecturer,
Signal processing and digital filtering.
Micro-computer systems. Numerical analysis.

B.Se., Ph.D., A.R.C.S; Lecturer.
VLSI design and associated design tools. Design and
implementation of multi-access operating systems. .

Visiting professor (until February 1981)
Programming and program transformation. Compilers.

B.A.; Lecturer,
Research into loosely-coupled computer systems.

B.Sc; Lecturer.
Systems software.

M.A.; Lecturer,
Design and simulation of digital systems. Computer
system architecture. Integrated circuit design.

B.Sc; Lecturer,

Switching theory. Descriptive methods in the design
and construction of digital systems. Digital methods
in signal and image processing.

B.A., M.A., D.I.C., Ph.D.; Lecturer.

Computational complexity, analysis of algorithms,
automata theory, combinatorial mathematics, parallel
computation,

M.A., Ph.D.; Lecturer (on leave of absence)

Camputer performance evaluation, Remote terminal
emulation. Workload characterisation.

38



9.2
K. Humphry

M.R. King_

W.A. Laing

R.N. Procter

A. Vernon

MR Cpartotime)

‘Hardware’ design “using’

Computing officers

First-year teaching. ~Filestore management.

B.Sc., M.Sc.
micro-processors.
Semi-conductor stores.

B.Sc., M. Phil,

The development of VLSI design and implementation
aids. Analysis and development of virtual memory
operating systems.

B.Sc., Ph.D.

Micro-computer systems. New technology for graphical
devices. Social impact of computers.

B.Sc.
VAX management.

Secretarial staff

H. Carlin (part-time)

J. Fisher

A. Fleming (part-time)

E. Kerse

D. HMcKie (part-time)

G. Tenple (part-time)

9.4

J. Dow
J. Johnstone
f.J. Lindsay

1. Thouson

Technical staff

Maintenance. Communications.
Information Systems Laboratory. Video interfaces.
Graphical devices. Link interfaces.

Equipment construction., Communications.

39



9.5

M.R. Bird

K.J. Chisholm

W.P. Cockshott

A.J. Cohn

M. Furer

M.J.C. Gordon

M.C.B. Hennessy

K. Kalorkoti

J.R. Kennaway

A.Q. Morton

D.E. Rydeheard

J.J. Scott

M.W. Shields

M.B. Smyth

Research staff

B.A.; Programming methodology.
Mathematical theory of computation. Applications of
category theory,

B.Sc.; Data Curator.
Programming languages and Databases. Computer-Aided
Design.

B.A., M.Sc.; Data Curator.
Programming languages and Databases. Message-based
languages.

B.S., Ph.D.; LCF Applications.
Semantics. Machine proof. Prograa correctness.

Dr.Sc.; Complexity.
Studies in computational complexity.

B.A., Ph.D.; Correctness of Digital Systems.
Formal description of languages and systems,
verification, functional programming.

B.Sc., M.A., Ph.D.; Concurrent Computation.

The mathematical semantics of programming languages
and the design of program-oriented logical proof.”
systems,

B.Se., Ph.D.; Complexity.
Studies in computational complexity.

B.Sc., M.Sc.; Concurrent Computation.
Semantics ~of non-deterministic and concurrent
computat fon

M.A., B.D.; British Academy Librarian,
The study of literary style in relation to questions
of authorship and chronology.

B.A.; Programming Methodology.
Applications of category theory to programming.
Specification languages.

M.A., Ph.D.; Programming Methodology.
Abstract data types.

B.A., Ph.D.; Mathematical Techniques in Telecomms.
Mathematical models, languages and proof techniques
for concurrent computation.

B.A., M.Phil., M.Sc., D.Phil.; Abstract Data Types.

Algebraic approach to data types. Computability in a
general setting. Some aspects of concurrency.

40



JAMES CLERK MAXWELL BUILDING

LEVEL1

Computer Science - i

/./K
¢ :
— —
“_l _|, North Machine Hall
1 E ]
alll -_LL N
ant Room e m& ﬁ E

Students Work

IR

— Stores —

e |

Rooms

\\

Kitchen

7
South Machine Hal _
Electronics
workshop [+

Nl
B[N R

CI1111T O
_ I

CCCLLLL

mputer 4

m:ow!.mlll 1T ~|| - |_ .

ERCC
Entrance



Prep. Rooms

e

cs, JTH
Main Entrance ____ L ...._

) - Main Entrance

LEVEL 2

1 SELCT T T T

1L 0l 1 H = |
!lﬁjﬁ_uxﬁjuju;ﬂuﬂﬁ{ _
LTI T30 _,Aﬁ L |
] = jm

= i
m__.._m .u.il_ |

l_..._lﬂl_L /i

—— y

MNMTFATICLO 00—

[T r——

2]

—




Lecture Theatres

LEVEL 3

Public consoles
Job reception for
ERCC facilities Hardware Labotatory

f L

Cs3

Lecture Advisory Services

room (3218)

|/ 7
KRR T | .

ERE G = =t
_ T
]

™ [T common o T

=L _T
1
Ccs4 .
Computer Science
o ! __ Mesting room D
! I (3309)
] - - :
|
— -
_ |
I“ | o
| >
] > Computer i
I M . Sci . a0
“
[]







	c01.tif
	c02.tif
	c03.tif
	c04.tif
	c05.tif
	c06.tif
	c07.tif
	c08.tif
	c09.tif
	c10.tif
	c11.tif
	c12.tif
	c13.tif
	c14.tif
	c15.tif
	c16.tif
	c17.tif
	c18.tif
	c19.tif
	c20.tif
	c21.tif
	c22.tif
	c23.tif
	c24.tif
	c25.tif
	c26.tif
	c27.tif
	c28.tif
	c29.tif
	c30.tif
	c31.tif
	c32.tif
	c33.tif
	c34.tif
	c35.tif
	c36.tif
	c37.tif
	c38.tif
	c39.tif
	c40.tif
	c41.tif
	c42.tif
	c43.tif
	c44.tif

