

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

The Production of Optimised Machine-Code

for High-Level Languages using

Machine-Independent Intermediate Codes.

Peter Salkeld Robertson

7>
I ? 2

Ph. D.

University of Edinburgh

1981

ABSTRACT

The aim of this work was to investigate the problems

associated with using machine-independent intermediate

codes in the translation from a high-level language into

machine code, with emphasis on minimising code size and

providing good run-time diagnostic capabilities.

The main result was a machine-independent intermediate

code, I-code, which has been used successfully to develop

optimising and diagnostic compilers for the IMP77 language

on a large number of different computer systems. In

addition, the work has been used to lay the foundations

for a project to develop an intermediate code for portable

SIMULA compilers.

The major conclusions of the research were that

carefully designed machine-independent intermediate codes

can be used to generate viable optimising and diagnostic

compilers, and that the commonality introduced into

different code generators processing the code for

different machines simplifies the tasks of creating new

compilers and maintaining old ones.

Contents

1 Introduction

2 Intermediate codes

2.1 Uncol

2.2 Janus

2.3 OCODE

2.4 P-code

2.5 Z-code

2.6 Summary and conclusions

2.6.1 Error checking and reporting

2.6.2 Efficiency

2.6.3 Assumptions

2.6.4 Interpretation

3 Optimisations

3.1 Classification of optimisations

3.1.1 Universal optimisations

3.1.2 Local optimisations

3.1.2.1 Remembering

3.1.2.2 Delaying

3.1.2.3 Inaccessable code removal

3.1.2.4 Peephole optimisation

3.1.2.5 Special cases

3.1.2.6 Algebraic manipulation

2

3.1.3 Global optimisations

3.1.3.1 Restructuring

3.1.3.2 Merging

3.1.3.2.1 Forward merging

3.1.3.2.2 Backward merging

3.1.3.3 Advancing

3.1.3.4 Factoring

3.1.3.5 Loop optimisations

3.1.3.5.1 Iteration

3.1.3.5.2 Holding

3.1.3.5.3 Removal of invariants

3.1.3.6 Expansion

3.1.3.7 Addressing optimisations

3.1.4 Source optimisations

3.2 Combination of optimisations

4 The design of the compiler

4.1 General structure

4.2 The intermediate code

4.2.1 Objectives

4.2.1.1 Scope

4.2.1.2 Information preservation

4.2.1.3 Target machine independence

4.2.1.4 Decision binding

4.2.1.5 Simplification

4.2.1.6 Redundancy

4.2.1.7 Ease of use

3

4.3 Code layout and addressing

4.3.1 Nested procedure definitions

4.3.2 Paged machines

4.3.3 Events

4.4 Data layout and addressing

4.5 Procedure entry and exit

4.5.1 User-defined procedures

4.5.2 External procedures

4.5.3 Permanent procedures

4.5.4 Primitive procedures

4.6 Language-specified and compiler-generated objects

4.6.1 Internal labels

4.6.2 Temporary objects

4.7 Object-file generation

4.7.1 Reordering

4.7.2 Jumps and branches

4.7.3 Procedures

4.7.4 External linkage

4.7.5 In-line constants

4.7.6 Object-file format

4.8 Summary

5 Review of the overall structure

5.1 Division of function

5.2 Testing and development

5.3 Diagnostics

5.3.1 Line numbers

5.3.2 Diagnostic tables

5.3.3 Run-time checks

4

6 Observations

6.1 Suitability of I-code for optimisation

6.2 Performance

6.3 Cost of optimisation

6.3.1 Compile time

6.3.2 Space requirement

6.3.3 Logical complexity

6.4 Comments on the results

6.4.1 Register remembering

6.4.2 Remembering environments

6.4.3 Array allocation and use

6.4.4 Common operands

6.4.5 Parameters in registers

6.4.6 Condition-code remembering

6.4.7 Merging

6.5 Criticisms and benefits of the technique

6.5.1 Complexity

6.5.2 I/O overhead

6.5.3 Lack of gains

6.5.4 Flexibility
6.6 Comments on Instruction sets and Optimisation

5

7 Conclusions

7.1 Viability of the technique

7.2 Ease of portability

7.3 Nature of optimisations

Appendix Al Simplified I-code definition

A2 I-code internal representation

A3 Results

References

6

1. Introduction

Compilers for high-level languages form a significant

part of most computer systems, and with an ever increasing

number and variety of machine architectures on the market

the problems of compiler development, testing, and

maintenance consume more and more manpower and computer

time. Moreover, as computer technology is improving and

changing rapidly it is becoming evident that software costs

will increasingly dominate the total cost of a system.

Indeed, it may not be long before the lifetime of software

regularly exceeds that of the hardware on which it was

originally implemented, a state of affairs quite different

from that envisaged by Halpern when he concluded that "the

importance of the entire question of machine-independence is

diminishing .." [Halpern, 1965]. In addition, there is a

need to encourage the slowly-developing trend to write the

majority of software in high-level languages. Even though

the advantages of such an approach are many, a large number

of users still have a love of machine-code, usually fostered

by thoughts of "machine efficiency". Clearly, techniques

must be developed to simplify the production of usable

compilers which can "optimise" the match between the

executing program and the user's requirements, be they for

fast execution, small program size, reasonable execution

time but with good run-time diagnostics, or whatever.

7

One popular method for reducing the complexity of a

compiler is to partition it into two major phases: one

language-dependent and the other machine-dependent. The

idea is that the language-dependent phase inputs the source

program and deals with all the syntactic niceties of the

language, finally generating a new representation of the

program, an intermediate code. This is then input by a

second phase which uses it to generate machine-code for the

target computer. In this way it should be possible to

produce a compiler to generate code for a different machine

by taking the existing first phase and writing a new second

phase. This ability to move a large portion of the compiler

from machine to machine has led to such compilers being

referred to as "portable compilers" even though the term is

perhaps misleading, as only part of the complete compiler

can be moved without change. In practice many existing

compilers generate intermediate representations of the

program which are passed around within the compiler, for

example the "analysis records" produced by the syntactic

phase of compilation, but for the purposes of this work it
is only when these representations are machine-independent

and are made available outwith the compiler that they will
be termed intermediate codes.

Much of the emphasis in designing intermediate codes has

been on enabling a compiler to be bootstrapped quickly onto

a new machine - either by interpreting the intermediate

code, or by using a macro generator to expand it into

a

machine-code [Brown, 19771. Once this has been done the

intention is that the quality of the code so produced can be

improved at leisure. While this approach has been very

successful and relatively error-free, it has been the

experience of several implementors that it is difficult to

adapt the scheme to produce highly optimised code [Russell,

19741; apparently considerations of portability and

machine-independence have caused the problems of

optimisation to be overlooked. The aspect of

intermediate-code design which has received most debate

concerns the level of the code: low-level with a fairly

simple code-generator, or high-level with a more complex

code-generator [Brown, 19721.

This thesis attempts to put machine-independence and

optimisation on an equal footing, and describes the use of

an intermediate code which takes a novel view of the

process. Instead of the intermediate code describing the

computation to be performed, it describes the operation of a

code-generator which will produce a program to perform the

required computation. This effectively adds an extra level

of indirection into the compilation, weakening any linkage

between the form of the intermediate code and the object

code required for a particular implementation.

In essence I-code attempts to describe the results required

in a way which does not constrain the method of achieving

those results.

9

In particular it should be noted that the code described,

I-code, was designed specifically for the language IMP-77, a

systems implementation language which contains many of the

constructions which pose problems for optimisation

(Robertson, 1979). It in no way attempts to be a

"universal" intermediate code. Notwithstanding, the code,

with a small number of minor extensions to cover non-IMP

features, has been used successfully in an ALGOL 60 compiler

and is currently proving viable in projects for writing

Pascal and Fortran 77 compilers.

The intermediate code as finally designed is completely

machine independent, except inasmuch as the source program

it describes is machine dependent, demonstrating that the

problems may not be as intractable as thought by Branquart

et al. who state that "clearly complete machine independency

is never reached" [Branquart, 1973].

In addition to the problems of machine independence there

is also the question of operating system independence, as

nowadays it is common for machines to have several systems

available. For this reason the task of producing a compiler

is far from finished when it can generate machine code

[Richards, 1977). To simplify the generation of versions of

a compiler for different operating systems, a third phase of

compilation was added, although it soon became clear that

the extra phase could be used for other purposes as well, as

will be shown in section 4.

10

Throughout the text, examples are given of the code

produced by compilers written to demonstrate the power of

the intermediate code. The examples of the intermediate

code are couched in terms of mnemonics for the various code

items, although the production compilers use a compacted

representation. The code and its representations are

described in Appendix Al and Appendix A2.

In the examples of code generated for various

constructions, it should be appreciated that the exact

instructions and machine features used will depend very much

on the context in which the code is produced, and so only

typical code sequences can be given.

The machines for which code is demonstrated are indicated

by the following abbreviations in parentheses:

(Nova) Data General NOVA

(PDP10) Digital Equipment Corporation PDP10

(PDP11) Digital Equipment Corporation PDP11

(VAX) Digital Equipment Corporation VAX 11/780

(GEC4080) General Electric Company 4080

(ICL2900) International Computers Limited 2900

(4/75) International Computers Limited 4/75

(7/16) Interdata 7/16

(7/32) Interdata 7/32

(PE3200) Perkin Elmer 3200

11

2 Intermediate codes

This section gives a brief account of the more important

intermediate codes which have been discussed and have had an

influence on the design of I-code.

2.1 Un o1

UNCOL, UNiversal Computer Orientated Language, [Mock,

1958], was an early attempt to specify a means for solving

the M*N problem of producing compilers for M languages to

run on N machines. It was proposed that an intermediate

language, UNCOL, be defined which would be able to express

the constructs from any language, and which could itself be

translated into code for any machine, resulting in the need

for only M+N compilers. Indeed it was even suggested that

programs would be written directly in UNCOL rather than in

machine code.

These ideas were very ambitious, but were presented without

any concrete examples of what CICOL might look like.

Proposals were made for an UNCOL in [Steel, .1961] but the

work was abandoned before anything like a complete

specification had been produced.

An UNCOL-like technique which has been used extensively,

is to compile for a known type of machine, such as the IBM

360, and then emulate that machine on the target machine.

Unfortunately, to give this any chance of being efficient,

microcode support will be necessary and this is rarely

available to compiler writers.

12

2.2 Janus

The first attempt at generating an UNCOL which seems to

have been at least partially successful was JANUS [Coleman,

1974]. The approach was effectively to enumerate all the

mechanisms found in current programming languages and the

techniques used to implement them. From this large list was

defined a set of primitive data-types and operations upon

them. These primitives were then put together to model the

objects in the source language. Once JANUS code had been

produced the intention was that it would either be

interpreted or compiled into machine code by a macro

generator.

2.3 OCODE

Of all the languages which claim to be portable, perhaps

the most successful has been BCPL [Richards, 1971]. The

BCPL compiler generates the intermediate code OCODE which

can either be interpreted or translated into machine code

for direct execution. As BCPL is a fairly low-level

language with only one data type, the word, many of the

difficulties in designing intermediate codes do not arise.

This means that the code can be pitched at a low level and

be "semantically weak" without compromising the efficiency

of the compiled code to any great extent.

13

The OCODE machine works by manipulating single-word objects

held on a stack, into which there are several pointers.

e.g. R(1, 2, 3)

STACK 3 adjust the top of stack to leave two

cells free for linkage information.

LN 1 stack the constant 1.

LN 2 stack the constant 2.

LN 3 stack the constant 3.

LL L6 stack the address of label L6 (the entry

to the routine).

RTAP 5 enter the procedure adjusting the stack

frame pointer by 5 locations.

ENTRY 1 L6 'R'

entry point for the routine R.

SAVE 5 set the top of stack pointer to be 5

locations from the stack frame pointer.

RTRN return.

14

2.4 P-code

P-code is the intermediate code used by the PASCAL<P>

compiler [Nori, 1976; Jensen, 1976] and was designed with

the aim of porting PASCAL quickly by means of an

interpreter. In this respect it has been very successful,

especially on microprocessor-based systems. The code is

similar to OCODE but has a greater range of instructions to

handle objects of differing types.

procedure ERROR(VAL:INTEGER); begin
0: ENT 4

TOTAL := TOTAL+1;

1: LDO 138 Stack TOTAL
2: LDCI 1 Stack 1

3: ADDI Integer add
4: SRO 138 Store into TOTAL J INDEX >= 9 then begin
5: LDO 139
6: LDCI 9
7: GEQI Compare top elements
8: FJP 17 Jump if false

LIST[1O].NUM := 255
9: LAO 140 Stack base of LIST

10: LDCI 10

11: DEC 1 Subtract 1

12: IXA 2 Index*2+base
13: INC 1 Add 1

14: LDCI 255
15: STO

.QCLil e1 begin
16: UJP 28

INDEX := INDEX+1;
17: LDO 139

18: LDCI 1

19: ADDI
20: SRO 139

LIST[INDEX].NUM := VAL
21: LAO 140
22: LDO 139

23: DEC 1

24: IXA 2
25: INC 1

26: LOD 0, 4

27: STO

28: RETP Return

15

2.5 Z-code

Z-code [Bourne, 1975] is the intermediate code produced

by the ALGOL68C compiler, the main feature of which is the

ability for the user to parameterise the first phase to

modify the Z-code to suit the target machine, an idea

previously investigated in SLANG [Sibley, 1961]. A set of

eight registers is assumed by the code and others may be

specified explicitly for each transfer. The memory with

which the code works is assumed to be "a linear data store

that is addressed by consecutive integers", addresses taking

the form of base+displacement pairs. Intermingled with the

instructions are directives which control the translation of

the code into machine orders. Two of these directives are

used to divide the code into "basic blocks" or

"straight-line segments", and describe the usage of

registers on entry to and exit from the blocks, although

little use seems to be made of them at present.

16

As an example here is the Z-code generated by the PDP10

version of the compiler [Gardner, 19771:

jal X .= 2, Y 3, Z .= 2
1: F000 10 0 +2 load 2

F040 10 6 +144 store in X

F000 10 0 +3 load 3
F040 10 6 +145 store in Y

5: F000 10 0 +2 load 2
F040 10 6 +146 store in Z

oroc P = (ant A, B) wit : begin
7: S715 p'Z

T246 677 712 j A > B

9: RO

10: F020 10 5 +4 load A

11: F022 10 5 +5 subtract B
12: F113 10 0 P713 ->L713 if <_

Jhgn A

13: F020 10 5 +4 load A
else B

14: H116 0 p714 ->L714
15: L713
16: F020 10 5 +5 load B

17: L714
18: R1 10 1

19: R1 10 1

20: T247 667 712 end of P

17

2.6 Summary And conclusions

2.6.1 Error checking ,D,d reporting

The UNCOL approach of having one code for all languages

and machines may well simplify the generation of some sort

of compiler, but has the major disadvantage that the

optimisation of error checking and reporting run-time errors

cannot be left to the code generator - many errors are

language-dependent and the code generator cannot know how to

handle all of them. Instead the checks must be programmed

into the intermediate representation explicitly. As will be

shown later (5.3) this can inhibit several very powerful and

effective optimisations. Sadly, this problem can result in

the absence of all but the most trivial of run-time checks

in the compiled code.

Even when checking is provided in the intermediate code,

as in the case of P-code with its CHK instruction for range

testing, it is rare for the code to contain enough

information to permit the error to be reported in source

program terms: line numbers, procedure names, variable names

and values etc. As an example, many P-code interpreters

locate run-time errors in terms of 'P-code instruction

addresses' which are of negligible benefit to most users.

18

2.6.2 Efficiency

Commonly, little attention is paid to questions of

run-time efficiency in the generation of intermediate code.

An exception to this is Z-code which is parameterised in

order that the match between the code and the target machine

can be improved. In particular, the machine-independent

phase is intended to perform simple register optimisation,

although as the example in 2.5 shows, the insistence on

repeatedly using one register will minimise any gains from

remembering register contents. However, this is probably

just a failure on the part of the current compilers and

could be corrected at a later date. Unfortunately, the fact

that the compiler purports to optimise the intermediate code

inhibits the code generator from attempting any but the most

trivial peephole optimisations, as may be seen in the

example by considering instructions 10-12. On many machines

the subtract operation is not a good choice for value

comparison as firstly it may fail with overflow, and

secondly it will corrupt a register. A better

implementation would be to replace the subtract with a

suitable COMPARE, leaving the register untouched and

available for later use. This cannot be done by the code

generator as it cannot know that the intermediate code does

not go on to use the result of the subtraction later.

19

Similarly, if Z-code had chosen to use a COMPARE instruction

in the first place, a machine without a compare would have

to work hard to make sure all registers involved in the

necessary subtract were restored to their initial values

before the intermediate code goes on to use them.

2.6.3 As u rations

Most machine-independent codes have been designed, at

least initially, assuming a linear store with one address

increment corresponding to one basic object. In the case of

0-code this is a direct result of the language definition,

but in languages such as PASCAL it has led to a great loss

of information, as the rich information about data types

cannot be expressed. The problems associated with putting

languages onto machines with different addressing schemes

has resulted in some intermediate code generators being

updated to accept a limited form of parameterisation to

define the gross appearance of the target machine. Typical

of the limitations of these codes is P-code where although

the basic types of object can have differing sizes of

machine representation, objects with enumerated types will
always be given a 'fullword' even though the host machine

could easily support a smaller item. A typical assumption

is that the difference between objects explicitly specified

in the original source and those created by the intermediate

code generator for its own purposes is insignificant. As

will be shown in section 4.6, this is not necessarily the

case.

20

2.6.4 Interpretation

The vast majority of machine-independent intermediate

codes in current use have been designed in such a way as to

permit execution by interpretation. This immediately

imposes constraints on the form of the code, as, for

example, it will need to be possible to pre-process the code

into some consistent and managable internal form for the

benefit of the interpreter. In order to give some sort of

efficiency to the interpretation process, the intermediate

code of necessity must become like the order code of a

'real' machine. This results in code-generation being seen

as fitting the target machine to the intermediate code,

rather than fitting the intermediate code to the target

machine which is clearly the better strategy for

optimisation.

21

3 Optimisations

The task of any compiler for a high-level language is to

fit programs written in that language onto a specific

computer system so that the required computations may be

performed.

Optimisation may be described as the process by which the

fit is improved. Usually the quality of the optimisation is

measured in terms of two parameters: the size of the running

program, and, more commonly, the speed at which it executes.

While it is possible in some cases to make a program smaller

and increase its speed of execution, it is well-known that,

in general, speed and size are complementary. For example,

the following code fragments have the same effect, but the

first will probably be smaller than the second, which will
execute faster than the first:

-------------------------- -----------------------
i i A(1) = K ,

i i A(2) = K i

for J = 1,1,8 cycle i A(3) = K i

A(J) = K ; A(4) = K

repeat t A(5) = K ;

A(6) = K

A(7) = K
A(8) = K

J = 8 i

3.1 Classification gfAmtjmiggtioOj

With a subject as complex as optimisation it is difficult
to give a useful and definitive classification of the

various possibilities for improving programs. In addition,

different authors have used many different terms to describe

22

optimisations which have been attempted [Aho, 1974; Lowry,

1969; Wichmann, 1977]. However most optimisations fall into

one of the following four groups: Universal, Local, Global

and Source.

3.1.1 Universal Optimisations

These are those optimisations which are

independent of any particular program, but which

depend on the complete environment in which the

program is to be compiled or executed. They are the

policy decisions taken by the compiler writer during

the initial design of the compiler, and include such

things as the fixed use of registers (stack

pointers, code pointers, link registers etc), the

representations of language-defined objects (arrays,

records, strings etc), and the standards for

communication with external objects.

In addition, universal optimisation must take

into account such questions as:

Compilation speed or execution speed?

If the compiler is to be used in an

environment where programs are compiled

roughly as often as they are executed, such

as in a teaching environment, execution time

can be sacrificed for a decrease in

compilation time, as the latter will

commonly greatly exceed the former.

23

ii Diagnostics?

If the compiler is to produce code which

will provide extensive checking and will

give diagnostic information in the event of

program failure, allowance must be made for

the efficient checking of the program's

behaviour and the maintenance of the

recovery information used by the

diagnostics. If highly optimised code is

required these constraints may not apply.

In the current state of the art universal

optimisation is done by experience and guesswork;

attempts at producing compiler-compilers which can

approach the quality of hand-constructed compilers

have not met with great success [Brooker, 1967;

Feldman, 1966; Trout, 1967]. As will be shown later

(4.5), minor changes in the universal optimisation

can result in major changes in the form of the

generated code, and so rules made at this stage

should be as flexible as possible to permit changes

to be made in the light of experience.

From the point of view of measurement, universal

optimisation provides the base level from which

other optimisations are investigated. Roughly, the

better the universal optimisation the less effective

the other optimisations appear to be.

24

3.1.2 Local optimisations

Local optimisations may be defined as those

optimisations which are performed during a

sequential scan of the program, using only knowledge

of statements already processed. Not only are these

optimisations reasonably simple to perform but they

can have a major effect on the generated code.

Indeed Wulf et al. state that "In the final analysis

the quality of the local code has a greater impact

on both the size and speed of the final program than

any other optimisation" [Wulf, 19751.

3.1.2.1 Remembering

Remembering optimisations are those optimisations

which can be applied to single statements in the

light of information gathered during the compilation

of previous statements. These optimisations depend

on remembering the current state of the machine and

applying this knowledge to subsequent statements.

Their chief characteristic is that they are applied

during a sequential scan of the program, and as such

are reasonably cheap to implement and execute.

25

For example:

X = Y

if X = 0 start

on the PDP11 would generate:

MOV Y,X
BNE $1 remembering that the previous

line sets the condition code.

The most powerful of the remembering

optimisations is that whereby the correspondence

between values in registers and values in store is

remembered and references to the store value are

replaced by references to the register's value,

register operations usually being smaller and faster

than their store equivalents. Unfortunately there

are several cases where this leads to worse code

than the "obvious" version. For example, on the

(PE3200) the code on the right is larger and slower

than that on the left:

X =

P =

2
P<<2

LIS 3,2 LIS 3,2 pick up 2

ST 3,X ST 3,X store it in X
L 1,P L 1,P pick up P
SLLS 1,2 SLL 1,0(3) shift it by 2

ST 1,P ST 1,P store it in P

26

In addition to keeping track of the changes in

the state of the machine from the compilation of one

statement to another, remembering also includes

preserving this state or environment for later use

when a label is encountered, either by merging the

current environment with the environment saved at

the jump to the label, or simply by restoring that

latter environment when it is not possible for

control to "fall through" from the statements

immediately preceding the label.

In all forms of remembering it is vital to be

able to keep the information up-to-date,

invalidating knowledge when it becomes false, a

process which is exacerbated when it is possible for

an object to be known by two or more apparently

different descriptions as in the following code:

integer J, K

integerarray A(1:12)
integername P

P == J

J = 1; K = 1

At this point P and J refer to the same location as

do A(J) and A(K).

Except in the most simple of cases all that can be

done is to assume the worst and forget anything

potentially dangerous after writing to unknown

addresses.

27

3.1.2.2 Delaying

Delaying is the process of generating

instructions but not planting them in the code

sequence until it is absolutely necessary. This is

of advantage if it is discovered that such "pending"

instructions are not needed, or can be combined with

other instructions.

The two common cases are illustrated below:

integerfn F(integername X)

integer T
T = X

T = 0 if T < 0

X = 1

result = T
end

The obvious code for the body of this function is

(PE3220):

L 3,X address of parameter
L 0,0(3) value of parameter
ST 0,T
BGE $1 -> if T >= 0

SR 0,0
ST 0,T T = 0

$1:LIS 2,1
ST 2,0(3) X = 1

LR 1,0 load result
{return}

28

By delaying the first store into T until after

the conditional statement, and delaying the second

store into T until after the label, both

instructions can be combined, resulting in the code:

L 3,X
L 0,0(3)
BGE $1
SR 0,0

$1:ST 0,T
LIS 2,1
ST 2,0(3)
LR 1,0

{return}

This store itself can now be delayed until the

return from the function, at which point, as T is

local to the function and will be destroyed, the

instruction can be deleted altogether.

Section 3.2 gives a description of one way in which

this sort of optimisation has been achieved.

3.1.2.3 Inaccessable code removal

In several cases compilers can generate code

which will never be executed.

29

The common causes of this are either user-specified

conditions whose truth is constant and are used to

achieve some sort of "conditional compilation", or

structural statements following unconditional jumps

as below:

if X = 0 start

ERROR (1)
return

else
V = V-X

finish

Here the branch instruction usually generated at the

end of the if clause to take control past the else

clause, can never be executed.

Such inaccessable code can be eliminated to shorten

the program, but without directly effecting its

speed of execution.

3.1.2.4 Peephole optimisations

Peephole optimisation [McKeeman, 19651 is the

technique of examining small sections of generated

code to make fairly obvious, but ad hoc,

improvements. Many of the gains from the

optimisation come by simplifying code sequences

created through the juxtaposition of code areas

which were produced separately.

30

For example (PE3220):

Before After
---------------- -------------------

ST 4,X ST 4,X
L 4,X

AR 1,2
AHI 1,48 AHI 1,48(2)

---------------- -------------------

3.1.2.5 Special cases

Special-case optimisations are those which make

use of the particular structure and features of the

target machine to control the way in which certain

statements are implemented.

For example:

Obvious Optimised

(PDP11) MOV #0,X CLR X X = 0

(PDP11) ADD #1,X INC X X = X+1

(PE3220) LHI 1,NULL SR 0,0
;

S =

LHI 2,S STB O,S
BAL 15,MOVE

---------------- -----------

These optimisations are very similar to peephole

optimisations but are distinguished because they

actively control the generation of code rather than

passively alter code which has already been

produced. In particular they avoid one of the

drawbacks of peephole optimisation, namely that even

though it can reduce fairly complex instruction

sequences to a simpler form, the side-effects of

generating the long form in the first place often

31

degrade the code. In the example above of setting a

string variable to the null string, the optimised

form uses only one register, the value of which can

be remembered. In the non-optimised version three

registers are immediately altered and the knowledge

of the contents of all of the registers may need to

be forgotten unless the code generator knows how the

MOVE routine works and can forget only those

registers which it uses.

3.1.2.6 Algebraic manipulations

Algebraic optimisations are improvements brought

about by using the algebraic properties of operators

and operands, and include:

Folding, or compile-time evaluation

1+2 is replaced by 3

. Removal of null operations

A+0 is replaced by A

Using commutative properties

-B+A is replaced by A-B

32

3.1.3 Global ont'mis ions

Global optimisation may be defined as those

improvements to the code which require knowledge of

substantial parts of the program. In effect they

are performed by examining numbers of statements in

parallel, in contrast to the sequential scan

required by local optimisation.

3.1.3.1 Restructuring

Restructuring optimisations are those

optimisations which may be brought about by changing

the order in which the code is laid out in memory

without otherwise changing the nature of the code.

As will be discussed later (section 4.3), there are

many reasons why programs can be improved by

changing the order of chunks of the code. A common

reason is that many machines have conditional branch

instructions with limited range while the

unconditional branches have a much larger range.

33

Hence if {A} represents a large number of statements

and {B} represents a small number of statements, the

program:

X = 0 start
{A}

else
{B} i

i finish

could be improved by reordering as on the right

(PDP11):

original reordered
------------------ ----------------

MOV X,RO MOV X,RO
BEQ $1 BEQ $1
JMP $2 {B}

i $1: {A} JMP $2
BR $3 $1: {A} i

$2: {B} $2:
$3:

------------------ ----------------

34

3.1.3.2 Merging

3.1.3.2.1 Forward merainA

Forward merging, also somewhat confusingly

referred to as "cross jumping" [Wulf, 19751, is the

process whereby the point of convergence of two or

more code sequences is moved back over common

sub-sequences thus removing one of the

sub-sequences, as in the case below.

i if X > Y start

TEST(X, Y)
else

TEST(Y, X)
finish

obvious code (VAX) after merging
--------------------- --------------------

CMPL X,Y CMPL X,Y
BLE $1 ; BLE $1
PUSHL X ; PUSHL X

PUSHL Y PUSHL Y

CALLS 2,TEST
P1 -> i BRB $2 BRB $3

$1:PUSHL Y $1:PUSHL Y

PUSHL X PUSHL X

CALLS 2,TEST $3:CALLS 2,TEST
P2 -> $2: $2:

--------------------- --------------------

The simplest way to perform this optimisation is to

take the code sequence about the point of a label

and a reference to that label, and set two pointers:

one, P1, to the unconditional jump and the other,

P2, to the label. If the instructions immediately

preceding the pointers are identical both pointers

are moved back over that instruction.

35

The label is redefined at the new position of P2 and

the instruction passed over by P1 is deleted. The

process is repeated until either another label is

found or two different instructions are encountered.

The redefinition of the label involves creating a

completely new label, leaving the old one untouched.

This both prevents trouble with multiple references

to the label and permits the optimisation to be

attempted on those references.

As this optimisation simply causes the sharing of

execution paths there is no direct gain in execution

speed, but as the code size is reduced an indirect

improvement may be achieved if the shorter code

moves the label close enough to the reference to it
for a shorter and usually faster jump instruction to

be used.

The optimisation obviously must be performed while

labels and jumps are in a symbolic form, that is

before code addresses have been resolved. This

permits the merging of instructions which will

eventually have program-counter relative operands

and consequently be position dependent.

36

3.1.3.2.2 Backward merging

A second, but much more difficult form of merging

involves moving instructions back over the preceding

branch code which generates the two paths being

co id d . ns ere

Original (PE3200) Optimised
------------------- -------------------

L 1,X

L 2,R
L 1,X

BNE $1 BNE $1
P1 -> ; L 2,R

LIS 3,1 LIS 3,1

ST 3,A(2) ST 3,A(2)
B $2 i B $2

P2 > L $1 R 2 $1 - : , :
LIS 3,3 LIS 3,3
ST 3,B(2) ST 3,B(2)

$2: i $2:

The difficulty with this optimisation is that it

requires the branch and the associated condition

testing code to be treated as a single unit, so that

merged instructions do not split the test and the

use of the result. Also the testing instructions

must be checked to ensure that they are not able to

modify the operands of the merged instructions.

This information is easily available to the

code-generator as in IMP77 only procedure calls and

string resolution can have such side-effects. In a

way similar to the other form of merging the two

pointers, P1 and P2 are set and adjusted; P1 being

moved forward over common code carrying the branch

sequence with it (L & BNE), and P2 being advanced,

deleting the code it passes over.

37

3.1.3.3 Advancing

Advancing is the process of moving operations

back in the instruction stream so that they are

executed earlier and pave the way for improving

subsequent statements.

On many machines the statements:

X = X-1

A(X) = P

X = X-1

A(X) = Q

could be compiled to more efficient code if

rewritten:

X = X-2
A(X+1) = P

A(X) = Q

as only one calculation will need to be done to

address both A(X) and A(X+1), the constant, suitably

scaled, being added into the displacement field of

the appropriate instruction (PDP11):

SUB #2, X

MOV X,R1
ADD R1,R1
ADD A,R1

MOV P,2(R1)
MOV Q,(R1)

38

3.1.3.4 Factoring

Factoring is the generalisation of merging and

involves the removal of common sections of code.

Included under this heading is the elimination of

common sub-expressions.

At the source level this can be seen in changes such

as:

D = SIN(X^2) + COS(X^2) -----------------------------

being replaced by

real T
T = X^2
D = SIN (T) + COS (T)

At the machine level the optimisation is often

available as the result of address arithmetic in the

case of simple arrays:

A(J) = B(J)

Original (PE3200) Optimised

L 1,J L 1,J
SLLS 1,2 SLLS 1,2
AR 1,LNB AR 1,LNB
L 3,J
SLLS 3,2
AR

L
3,LNB
0,B(3) i L 0,B(1)

ST 0,A(1) i ST 0,A(1)

39

In this case as the code-generator is in complete

control the optimisation can be very simple,

although rather specific.

The techniques for handling common sub-expressions

have been investigated at length by several authors,

but measurements indicate that in most programs

expressions are so trivial the expense in finding

common sub-expressions is not repaid by the

resulting improvement in the generated code [Knuth,

1971].

The more general form of factoring can be seen in

the transformation of the following statements:

ff
- --------------------------------------- i f if X= 0 then C= 3 else D= 4

into:

if X = 0 start
A = 1

C=3
else

B = 2

D = 4

finish

40

3.1.3.5 Loop optimisations

3.1.3.5.1 Iteration

Iteration is the process whereby the values in

variables from previous iterations of a loop are

used to calculate the new values for the current

iteration, rather than calculating those values from

scratch each time. One of the effects of this

optimisation can be the reduction in strength of

operations, such as changing multiplications into

additions. In this context the IMP77 operators "++"

and "--" may be used to great effect. Their action

is to adjust the reference on the left by the number

of items to the right, hence if X is an integer then

X++1 is the next integer and X--2 is the integer two

integers before X.

for J = 1,1,1000 cycle

A(J) = J

repeat

Can be optimised to:

integername T

T == A(J)--1
for J = 1,1,1000 cycle

T T++1
T = J

repeat

41

3.1.3.5.2 Holding

Holding is the process of preloading values used

in a loop, into registers or other such temporaries,

using those temporaries within the loop and finally

storing the values back into the required variables

at the end of the loop, if necessary. In the

previous example the value in T, the current address

of the array element being considered, could be

loaded into a register before the start of the loop.

In this case, as T is a temporary created by another

optimisation, the final value in the register need

not be stored once the loop terminates.

The application of most other optimisations will,

at worst, have little or no effect on any particular

program, however the danger of holding is that it

assumes that the values loaded outside the loop will

be required within the loop, and this assumption

could well be invalid.

42

For example, consider the following equivalent

programs:

A B

------------------- ---------------------
TEMP = P//Q

while X > 0 cycle while X > 0 cycle
W(X) = P//Q W(X) = TEMP
X = X-1 X = X-1

repeat repeat
------------------- ---------------------

B will be faster than A if the loop is executed at

least twice. If the loop is not executed at all

(X <= 0) B will be much slower than A (by an

alarming 80 microseconds on the 7/32).

3.1.3.5.3 Removal of invariants

This is the process whereby complex

sub-expressions, which do not change their values as

the loop progresses, are evaluated outside the loop

and held in temporaries:

for J = 1, 1, 1000 cycle

A(J) = LIMIT-MARGIN
repeat '

Can be optimised to:

TEMP = LIMIT-MARGIN
for J = 1,1,1000 cycle

A(J) = TEMP

1 reDeat

It is simply a special case of Holding.

43

3.1.3.6 Expansion

Expansion is the process of rewriting compact

representations of parts of a program in a more

explicit form, usually resulting in faster execution

but at the expense of more code. The two main uses

of expansion are to reduce the overheads in loop

control by repeating (unrolling) the loop body and

hence reducing the number of iterations, and to

replace calls on procedures by the body of the

procedure, with the necessary substitution for

parameters. Extra gains can come from the

interaction of the expanded code with the enclosing

code as in the following example:

for J = 1,1,100 cycle

A(J) = 0
repeat

This can be expanded into:

for J = 2, 2, 100 cycle

A(J-1) = 0

A(J) = 0
retreat

and can generate the following code (PDP11):

CLR J
$1:ADD #2,J

MOV J,R1
ADD R1,R1
ADD LNB,R1
CLR A-2(R1)
CLR A(R1)
CMP J'#100.
BNE $1

44

3.1.4 Source optimisations

Source optimisations [Schneck, 1973] are those

optimisations which can be effected by changes in

the source program. They can be sub-divided into

three categories: machine-independent [Hecht, 1973;

Kildall, 1973], machine-dependent, and tentative.

Tentative optimisations are those which, while

unlikely to make the code worse, may improve it on

some machines. For example, most machines will

handle the comparison "X<1" better if it is

rewritten as "X<=0", where X is an integer variable.

45

3.2 Cgmbination Qf optimisations

Many of the optimisations described above result

in an improvement in the generated code not only by

their own effects but also by their interaction with

other optimisations, as one improvement often

produces the conditions needed for another. As an

example consider the compilation of the following,

rather unlikely, statements on the Data General

NOVA :

A = (B&C)<<1
A = D if A = 0

The first statement can generate the obvious code:

LDA 0,B
LDA 1,C

AND 0,1

MOVZL 1,1

STA 1,A

At this stage the value in accumulator 1 (A) can be

remembered, and the STA instruction marked as

"pending" so that it can be removed later if it is

decided that deferring the store will improve the

code.

46

With this knowledge the second statement can be

compiled to:

MOV# 1,1,SZR
JMP $1

LDA 1,D
STA 1,A

$1:

Immediately before the label $1 it is known that

once again the value of A is in accumulator 1, and

that the STA above the label is marked "pending" as

before. Following the definition of the label the

environment before the jump to that label, can be

combined with the environment just before the label,

to give the new environment following the label.

The information in this environment is that A is in

accumulator 1 and that the same store is pending

from both old environments. This allows the two

marked store instructions to be removed and one

store placed after the label (and once again marked

as being "pending"). This gives the following code:

LDA O,B
LDA 1,C
AND 0,1
MOVZL 1,1
MOV# 1,1,SZR
JMP $1

LDA 1,D
$1:STA 1,A

47

A simple jump optimisation notices that the JMP

passes over just one instruction and can therefore

be removed by inverting the skip condition on the

previous MOVe, giving:

LDA O,B
LDA 1,C

AND 0,1
MOVZL 1,1

MOV# 1 , 1 , SNR

LDA 1,D

STA 1,A

Finally, peephole optimisation combines the AND with

the MOVZL giving ANDZL, and then combines this with

the following MOV# to give the complete code

sequence as:

LDA O,B

LDA 1,C
ANDZL 0,1,SNR
LDA 1,D

STA 1,A

The most interesting thing to notice about this

particular sequence of optimisations is that with

the possible exception of the removal of the marked

STA instructions, the final code can be generated

very simply with local optimisations.

48

4 The design of the compiler

This section describes the features of the compiler which

have had an influence on the form of the intermediate code.

4.1 General structure

One of the aims of this type of compilation strategy is

to simplify the production of compilers, and a successful

technique for simplifying programs is to divide them into

several communicating modules, each largely independent of

the others but with well-defined interfaces between them.

At the highest level, a compiler can be split up into three

major parts:

1 A language processor, which deals with the

language-dependent parts such as parsing,

semantic checking, and error reporting.

2 A code generator, which takes the decomposed

form of the program as generated by 1 above,

and constructs the appropriate code sequences

to perform the required functions.

3 An object-file generator, which builds an

object-file from the code sequences produced

by 2, in the form required by the system which

is to execute the program.

Commonly, the first two parts of this scheme are combined

into one program which generates as its output an

assembly-language source file corresponding to the original

program.

49

The third part then becomes the standard system assembler.

This approach clearly simplifies the production of the

compiler, as one part, the assembler, is provided already

and can ease the problems of checking the compiler because

the code it generates is presented in a well-known form.

Despite these advantages such a scheme was rejected for the

following reasons:

1 In order that assembly language can be

generated, the compiler must have an internal

form of the instructions, which is changed

into text, processed by the assembler, and

finally converted into the machine

representation. These transformations can be

eliminated if the compiler works directly with

the machine representations.

2 In general, the system-provided assembler will

be expecting to receive a much more powerful

language than the rather stereotyped text

produced by compilers. This will certainly

degrade the performance of the assembler. A

solution to this is to produce a cut-down

version of the assembler which only recognises

those constructs generated by the compiler.

However, producing a new assembler removes one

of the reasons for choosing this route,

namely, not requiring extra work in writing

the object-file generator.

50

3 As will be seen later (section 4.7), even

after the code sequences have been produced

there remain several optimisations which can

be performed using knowledge gained during the

production of those sequences, for example,

generating short forms of jump instructions

when the distance between the jump and its

destination is small enough. While in certain

cases these optimisations can be performed by

a standard assembler it is unlikely that the

structure of the code-generator would be as

simple as if a special-purpose object-file

generator were available.

The main interface in such a system is clearly that

between the language and machine dependencies, as most

languages are largely machine-independent. It is this

interface between the language-dependent and

machine-dependent parts of the compiler which is termed the

INTERMEDIATE CODE. In the following discussion it is

assumed that the reader has a reasonable understanding of

the structure of the final form of I-code, a definition of

which may be found in Appendix.A2.

51

4.2 The intermediate code

Even while remaining independent of machine architecture,

codes can be designed at various levels of abstraction.

Roughly, the higher the level of the intermediate-code the

closer it is to to the source language, and the lower the

level the closer it is to some (possibly hypothetical)

processor's instruction set.

The choice as to the level of the intermediate-code

eventually comes down to a question of where decisions are

to be taken.

If a low-level code is chosen, more decisions will have to

be made in the language-dependent phase (making it more

complicated) but leaving less choices available to the

code-generator (making it simpler, but removing chances for

improving the code in the light of particular machine

features). If a high-level code is chosen, decisions are

left to the code-generator resulting in a simpler language

processor but a more complicated code-generator which is

better able to adapt to a particular processor.

The design of the intermediate code can also be

influenced by its intended role in the complete compiling

system. If the code is to be used in the compilation of

just one language on many machines, there may be an

advantage in increasing the complexity of the code if it

results in simpler code generators at the expense of a more

complicated, but unique, first phase.

52

Conversely, if the code is to be generated by several

different language processors, a simple intermediate code

which is easy to produce may well be more attractive.

As I-code was intended for optimisation, a high-level

code was chosen. In addition, as it was hoped that the code

could eventually be used in different language processors,

it was decided to keep the structure of I-code as simple as

possible.

The complete compilation process may be thought of as a

sequence of transformations working from the source program

to the final object program via a number of intermediate

representations. As the transformations are applied, the

representations become less dependent on the source language

and more dependent on the target machine. In order to

simplify the code-generator as much as possible the

intermediate code must lie as far from the source language

as is possible without straying from the objectives set out

below.

4.2.1 Objectives

One of the dangers in designing an intermediate code is

that of building into it old techniques and standard

expansions of source constructions, which while they may be

tried and tested cannot in any way be said to be "the only

solutions" or even "the best solutions".

53

One of the intentions behind the design of I-code was to

permit the use of varied implementation strategies. In the

same way that the only practical definition of a "good"

programming language is that it fits the style of the

particular programmer using it, so the measure of the power

of an intermediate code must include the ease with which it

can adapt to an existing style of code-generator writing.

Inevitably, practical constraints prevent total generality:

the most general form of a program is a canonical form of

itself, but this is little help in compiling it.

It follows that the intermediate code, while remaining true

to the original program and distant from "real" machines,

must provide enough simplification to make the task of

code-generation as easy as possible without inhibiting

optimisation.

From the start it was appreciated that an intermediate

code suitable for use in optimising compilers would

necessarily require more processing than a code such as

0-code which was aimed at a quick implementation. The

original hope was that although each machine-dependent code

generator would not be small, typically about 3000-4000 IMP

statements, large portions of one could be taken as a basis

for a new implementation. This has proved to be the case,

and provision of an existing code-generator as a template

greatly simplifies the task of creating a new one

(section 6.4.1).

54

4.2.1.1 ScoDe

The first and most fundamental objective in the design of

I-code was that it should support the compilation of one

specific language, IMP-77, on many different machines.

Considerations of using the code to implement other

languages were secondary to this main aim, but were used to

bias the design when a choice had to be made from several

otherwise equally suitable possibilities. In retrospect, a

few areas of the code could have been made more general

without significant overheads in the code generators, mainly

in the area of data descriptor definitions, but a detailed

discussion of one intermediate code supporting several

languages is beyond the scope of this work.

In direct contrast to many intermediate codes, I-code was

not designed with the intention of making it convenient to

interpret; the prime aim was to permit compilation into

efficient machine-code. Nevertheless it is possible to

"compile" I-code into threaded code [Bell, 1973] or a form

suitable for interpretation, either by generating a

conventional interpretive code or by leaving the code in

more-or-less its current form but with labels resolved and

descriptors expanded into a more convenient representation.

55

4.2.1.2 Information Dreservation

As the translation of the source program into

intermediate-code is to be machine-independent it will not

be possible to know before code generation what details of

the program will be of interest to the code-generator. It
follows that any loss of information caused by the

translation is likely to reduce the scope for optimisation.

In addition, not only must the information present in the

source be available at the intermediate-code level, but also

it must be presented in a form in which it can be recognised

easily and used.

56

For example, the following two program fragments are

semantically identical:

A B
--

P = 0
cycle

TEST for P = 1, 1, 10 P = P+1
TEST

repeat until P = 10

However, in "B" the information that the fragment contains a

simple for construction, while not completely lost, has been

scattered through the code, and this dilution of information

will increase the complexity of any code-generator wishing

to handle for loops specially.

To leave open all avenues for optimisation it is

necessary therefore, that all of the semantic information in

the source program is preserved in a compact form in the

I-code. One sure way of achieving this property is to

design the code in such a way as to allow the regeneration

of the source program, or at least a canonical form of it
which is not significantly different from the original. In

this context insignificant differences are the removal of

comments and the standardisation of variant forms of

statements, such as:

NEWLINE if COUNT = 0

and: if COUNT = 0 then NEWLINE

57

4.2.1.3 Target machine independence

Most existing intermediate codes are built around a model

of a machine which will perform the required computation,

and it is this machine which must be mapped onto the actual

target computer. In order to simplify this mapping, certain

assumptions are made, resulting in the machine being defined

in terms of fixed-sized data objects, a fixed way of

addressing them, and a fixed set of operations on them,

usually involving some kind of stack. When compiling for

machines which are similar to this intermediate code machine

there is little problem in obtaining a reasonable match, but

when there are major differences it becomes impossible to

convert the code into an efficient machine representation.

For these reasons it was decided to make I-code

independent of actual machine representations: objects would

be described once in high-level terms and then all uses

would refer to that definition. This immediately removes

any assumptions about the sizes of data objects and the ways

in which they are addressed, other than those assumptions

built in to the source language. One of the main

difficulties with existing codes has been their insistence

on the store containing a linear array of equally-sized

objects, the difference between one object and the next

being one address unit. When mapping such a structure onto

real machines with (say) byte addressed stores, problems

arise with arithmetic involving addresses as the codes

frequently pun on addresses and integer values.

58

Several later versions of such codes have attempted to solve

these problems by parameterising the intermediate-code

generator so that the characteristics of the target machine

may be used to modify the code which is produced. However,

they still have built in to them assumptions about how the

objects can be addressed.

There are so many constraints which can be imposed on the

code to be generated, such as operating system requirements

and conventions for communicating with the run-time

environment, that a parameterised first phase could not be

expected to generate code which was well-suited to every

installation. The authors of JANUS [Coleman, 19741 write

that they believe that the approach of using a parameterised

intermediate code "... is a dead end, and that the

adaptability must come in the translation from the

intermediate language to machine code".

4.2.1.4 Simplification

For the complexity of the machine-dependent phases of

compilation to be kept as low as possible, the

machine-independent phase must do as much work as possible

while keeping within the constraints imposed by the previous

objectives. One way of simplifying the intermediate code is

for certain high-level constructions to be expanded into

lower-level constructions, but only when there is just one

expansion possible under the rules of the language, and that

expansion does not scatter information which may be of later

use.

59

The most obvious case of such expansion is in dealing with

complex conditional clauses such as:

--- if (A=B an C#D) or (E<F and G>H) then X else Y

IMP-77 specifies that the condition will only be evaluated

as far as is necessary to determine the inevitable truth or

falsity of the condition, and so, bearing in mind the

modifications to be discussed in section 4.6.1, the

statement can be represented more simply as:

if A # B then ->L l if C # D then ->L2
L1: if E >= F then ->L3 if G <= H then ->L3
L2: X

->L4
L3: Y
L4:

This expansion is tricky and notoriously error prone, and

therefore is best done once and for all in the common phase.

Similarly it is possible to expand all simple control

structures into their equivalent labels and jumps, providing

that the structural information is not lost thereby.

4.2.1.5 Decision binding

In any program there will be various options open to a

code generator and at some stage in the compilation

decisions must be made as to the particular code sequences

to be generated. Inevitably these decisions will influence

the code which is produced subsequently. On the PDP11, for

example, there are two obvious ways of assigning the value

60

in X to the variable Y: either MOVe the value in directly,

or move the value into a register first and then assign the

register. If the latter way is chosen the value of X will

be available in the register for subsequent use, although

the former way is better if the value is not required in the

near future. In order to make use of information which may

well be presented later, it is necessary to be able to defer

taking irrevocable decisions until the last possible moment.

The structure of I-code permits this delaying in the binding

of decisions as it only specifies what needs to be done in

abstract terms (using descriptors of arbitrary structure and

complexity), and does not give instructions as to how

particular results are to be achieved.

4.2.1.6 Ease of use

Of prime importance in the design of the code is the ease

with which it may be used to generate good object code.

Obviously a high-level code will by its nature be more

difficult to handle than a low-level code, but this need not

be serious if the code is consistent and results in a

convenient expression of the original source. In particular

the code should be designed to permit extensive checking to

be performed during the compilation process to catch errors

in both the intermediate code and the machine-code generator

before those errors are passed on to the users. Low-level

codes are at a serious disadvantage in this respect as they

have lost much of the redundancy present in the source.

61

4.3 Code layout and addressing

4.3.1 Nested procedure definitions

A common feature of programming languages is the ability

to nest the definition of a procedure within another

procedure. In addition, several languages imply the

definition of procedures within single statements, as in the

case of Mme parameters in ALGOL-60, where the parameter

which is actually passed can be a reference to a "thunk", a

procedure to evaluate the parameter.

With such nesting, provision must be made for preventing the

flow of execution from "falling through" into the procedure

from the preceding statements, and this is usually

accomplished by planting at the start of the procedure a

jump to the statement following the end. While this is

simple to implement it does introduce extra instructions

which are not strictly necessary. With user-defined

procedures the overhead can be minimised when a number of

procedures is defined, as one jump instruction can be used

to skip them all. Unfortunately thunks will be generated

throughout the code in a more-or-less random way, giving

little opportunity to coalesce the jumps.

Even if the extra execution time caused by these jumps is

insignificant (the jumps round thunks defined in loops get

executed repeatedly), the code which they are skipping

stretches the code in which they are nested.

62

On machines with fixed-size jump instructions which can

cover the whole machine, such as the DEC PDP10, the

stretching causes no problems, but if the addressing is

limited, or if several different sizes of jump instruction

are provided, the presence of the nested procedure can

result in more code being produced later in the generation

of large jumps.

4.3.2 Paged machines

On paged machines the overall performance of a program

does not depend solely on the efficiency of the code

produced by the compiler but includes a factor depending on

the locality of references made by the executing program.

Traditionally this locality has been improved by monitoring

the execution of the program and then re-ordering parts of

it in the light of the measurements. Unfortunately not all
operating systems provide the user with convenient tools to

enable the measurement to be done, leaving only ad hoc

methods or intuition for guidance. Without careful control

it is all too easy to move one procedure to improve

references to it and thereby cause another piece of code to

cross page boundaries and counteract any gains in paging

performance. Even if the user can obtain the necessary

information, a slight change in the program can invalidate

the changes.

63

Notwithstanding these problems, it is evident that by

careful structuring of a program significant gains in paging

behaviour can be obtained and so this option should not be

pre-empted by the intermediate-code (as does Z-CODE which

automatically reorders the definitions of procedures).

The possibility of automatic improvement of paging

behaviour was investigated by Pavelin who showed that the

paging characteristics of a program can be improved by an

automatic reordering of the code [Pavelin, 1970].

Pavelin's thesis describes the breaking-up of a program into

"chunks", defined by branches and the destinations of

branches. At each chunk boundary, extra instructions are

planted to cause the updating of a "similarity array" which

records the dynamic characteristics of the program. After

several runs the similarity arrays are merged and the result

is used to specify a reordering of the chunks which should

improve the paging performance. In test cases the

working-set size of the code was reduced by as much as 40%.

The thesis also went on to say that the various compilation

problems associated with this can be alleviated by

operating on an intermediate code which is machine

independent with symbolic code addresses".

64

4.3.3 Eve is

IMP provides a mechanism for signalling the occurrence of

synchronous "events" during the execution of a program.

These events are either generated automatically as the

result of a program error, or are signalled explicitly by

the program. The signalling of the event causes control to

be passed back through the dynamic chain of currently active

blocks until one is found which has specified a trap for the

particular event which has occurred. Execution then

continues from a point in that block determined by the trap.

In order for this to be implemented it is necessary that the

signal routine be able to "unwind" the stack and recover the

environment of the block containing the trap.

If the entry and exit sequences of all blocks are identical,

as, for example, in the standard procedure entry mechanism

specified for the DEC VAX 11/780, the unwinding is fairly

trivial. More commonly, however, the recovery is dependent

on factors such as the textual level of the procedure and

whether it has been optimised or not. In such cases the

unwinding can be very expensive or even impossible unless

extra information is provided.

65

For example, on the INTERDATA 7/16 a procedure at the

outermost textual level uses register 15 to access its local

stack frame, giving the exit sequence:

LM 7, 4(15)

BFCR 0, 8

but a procedure nested within this

thus:

would use register 14

LM 7, 4(14)
BFCR 0, 8

It follows that the signal routine must be told which

base regiser to use at each stage of the recovery. This can

be done either by planting code in the entry and exit

sequences of each procedure, or by keeping a static table

associating procedure start and finish addresses with the

appropriate base register.

The first method is poor as it imposes a run-time overhead

on all procedures, whether they trap events or not. The

second method is better but can be complicated if procedures

are nested as the start-finish addresses alone no longer

uniquely define the procedure. One solution is to cause all

procedures which use the same exit sequence to be loaded

into distinct areas, and to associate the recovery

information for the signal routine with each area. This

reduces the static overhead to a few words per area, rather

than a few words per procedure.

66

4.4 Data addres si

One of the most important problems which faces the

compiler is the addressing of the various data objects used

by the program.

As an example of the difficulties which can arise, consider

the IMP declarations:

integer X
integer array V(0:999)
integer Y

On a machine such as the INTERDATA 7/16 which uses

base+displacement addressing with a 16-bit displacement, the

whole of the available storage, (64K bytes), can be

addressed with a single instruction. In this case the most

efficient implementation of the array is as a row of one

thousand integers (halfwords) addressed directly via a local

name base (LNB):

LNB {Local Name Base}

a a+2 a+4 a+2000 a+2002

v .---.------.------. .--------.---.
- i X i V(O) i V(1) i - - - - - V(999) i Y i - -

.---.------.------. .--------.---.

This implementation has several points in its favour:

i As the size of the array is known at compile-time,

no special code is required to create it at

run-time; the necessary storage can be claimed on

entry to the block along with that for simple

variables, return addresses etc.

67

ii Array references with constant subscripts need no

address calculations at run-time. For example

using V as declared above, the element V(2) is

immediately addressable as the halfword with

displacement "a+2 + 2*2" from LNB.

iii In certain more general cases when the subscript is

a variable, access can be simplified by remembering

previous calculations. For example, the address of

the array element V(X) is

addr(V(0)) + X*size of each element

In the example above this becomes:

LNB+a+2 + X*size of each element

which can be rearranged to:

a+2 + (X*size of each element+LNB)

Hence the following code could be produced (7/16):

V(X) = 0

LH 1,X(LNB) pick up X
AHR 1,1

;
*2 (2 bytes per integer)

AHR 1,LNB add in LNB
SHR 0,0 get zero
STH O,a+2(1) store in V(X)

Noting that the value now in register 1

(X*size+LNB) only depends on the size of each

element, X, and the local name base, it is clear

that register 1 can be used to address the X'th

element of any integer array of one dimension and

constant bounds declared at the current level.

68

Hence if the array W(1:12) were declared

immediately after Y in the example above, while

register 1 is not changed W(X) can be addressed as

a+2002(1).

On the other hand, a machine with limited store cover,

such as the Data General NOVA which only has an eight-bit

displacement, will almost certainly force the array to be

implemented as an immediately addressable pointer which is

initialised at run-time to the address of storage claimed

explicitly.

LNB

v i

-i X i V i Y i---
.---.---.---.

.------.----- .--------.
+->; V(0) ; V(1) ; - - - - ; V(999) - - -

.------.------. .--------.

69

With this organisation the address of V(X) will be:

V + X*size of each element ----------------------------

and there is little that can be done by rearranging the

expression to improve on the "obvious" code (7/16):

V(X) = 0

LH 1,X pick up X

AHR 1,1 double it
AH 1,V add in addr(v(0))
SHR 0,0
STH 0,0(1)

Not only is this second code sequence longer than the first

by two bytes, but it will execute more slowly as the second

addition involves a store reference whereas the equivalent

instruction in the first sequence uses a register.

In both cases, however, some simplification can be done if

the subscript is an expression of the form:

X plus or minus CONSTANT

in which case the constant can be removed from the subscript

expression evaluation and added into the final displacement.

For example (7/16):

V(X-7) = 0

LH 1,X
AHR 1,1
AHR 1,LNB
SHR 0,0
STH O,a+2+(-7)*2(1)

pick up X
double it
add in LNB
get zero

70

Unfortunately even this optimisation may not be

available. For example, the ICL 2900 series performs array

accesses through a DESCRIPTOR REGISTER, and the extra

displacement cannot be added into the instruction. Also

some machines, such as the IBM 360, only permit positive

displacements in instructions.

The examples above pose the following problem: If the

intermediate-code is to know nothing of the target machine

it cannot know the best way to declare the array, nor the

best way to access it. Therefore the code must always

produce the same sequences for array declarations and array

accesses. It follows that these sequences must remain quite

close to the original source and not include any explicit

address calculations.

As another example, the DEC PDP11 range has a hardware

stack which grows with decreasing store addresses. Because

of this it could be convenient to allocate storage for

variables in that order, from large addresses to small

addresses. However, in several cases it may be necessary to

force objects to be created in order of increasing

addresses, such as when program structures are to be mapped

onto hardware-defined structures in memory, resulting in an

implementation which requires to be able to create similar

objects in different ways depending on the context.

71

Finally, some machines provide instructions in which the

displacement of the operand is scaled before use, depending

on the size of that operand. The GEC 4080 is such a

machine, with instructions such as:

LDB 1 load byte <1>

LD 1 load halfword, bytes <2> & <3>

LDW 1 load fullword, bytes <4>,<5>,<6> & <7>

When producing code for such machines it is convenient to

allocate all the local objects of the same size in

particular areas, and then arrange the areas in increasing

order of the size of the objects they contain. This permits

better use of the available displacement field in the

instructions.

72

The solution to these problems which was chosen in I-code

was to define a DESCRIPTOR for each object to be

manipulated. On input to the code-generator descriptors are

converted from their machine-independent form to a new form

appropriate to the target machine. As all subsequent

reference to the object will be through descriptors the code

produced will automatically reflect the decisions made at

the time the descriptors were created.

As will be discussed in section 4.5, it may be possible

to remove the overhead in setting up addressability for

local variables and parameters if the parameters can be held

in registers and the local variables are never referenced.

After examining many procedures which do use local variables

it is clear that a large number of them do not need the

complete overhead in setting up a local frame base as they

could use the workspace pointer (stack pointer) instead.

The criterion is that the position of the locals relative to

the workspace pointer must be known at compile time. This

reduces to the procedure not having any objects with

computed sizes (arrays with computed bounds, for example)

and no calls on procedures which access those locals as

their global variables.

73

Consider the compilation of the following procedure on the

PDP11:

--
routine MARK(record(cellfm)name CHAIN)

integer N
N = 0

while not CHAIN == NULL cycle
N = N+1
CHAIN_INDEX = N

CHAIN == CHAIN LINK
re Ae at

end

The code normally produced for this routine would be:

MOV LNB,-(SP)
i remember old LNB

MOV DS,-(SP) remember DS

MOV RO,(DS)+ save the parameter
MOV DS,LNB

i set up local addressing
ADD #20,DS i reserve local space
CLR 10 (LNB) i N = 0

$1: MOV -2(LNB),R1 test CHAIN
BEQ $2 branch if NULL
INC 10(LNB) N = N+1

MOV 10(LNB),2(R1) CHAIN INDEX = N

MOV (R1),-2(LNB) CHAIN == CHAIN LINK
BR $1 repeat

$2: MOV (SP)+,DS restore DS
MOV (SP)+,LNB restore LNB
RTS PC return

74

However, by using workspace pointer (DS) relative addressing

this reduces to:

1:

MOV
TST

CLR

MOV

RO,(DS)+
(DS)+

-2(DS)
-4(DS),R1

BEQ $2
INC
MOV

-2(DS)
-2(DS),2(R1)

MOV

BR

(R1),-4(DS)

$1
$2: SUB #4 , DS

RTS PC

This optimisation can

reserve local space

N = 0

; test CHAIN

N = N+1
CHAIN __INDEX = N

CHAIN == CHAIN LINK

restore DS
return

be performed quite simply by the

third phase of compilation.

In the interface between the second and third phases, the

code sequences generated by the second phase are made up of

items of the form:

<type> <VALUE>

where <type> describes where <VALUE> is to be put, for

example in the code area or in the private data area. To

achieve the workspace-pointer-relative addressing, extra

types are introduced which specify that the associated value

is the displacement of a local variable from LNB. Other

codes are needed to be able to modify the operation part of

the instruction which uses the displacements but these will

be ignored here as they cause no difficulty and would just

obscure the discussion. In addition, an extra <modify DS>

item is output whenever DS is explicitly altered (as when

parameters are stacked using MOV ??,(DS)+.

75

By default the third phase will treat these extra types as

being exactly equivalent to <code area> types, and will

generate the first sequence of code. However, if when the

end of the procedure is processed, the second phase

discovers that no dynamic objects or dangerous procedure

calls were generated, it marks the end of the procedure

accordingly (in the same way as described in section 4.7.2).

This mark instructs the third phase to relocate all VALUEs

with the appropriate type so as to make them relative to DS.

The <modify DS> types are used to keep the third phase's

idea of the current position of DS in step with reality.

76

4.5 Procedure e ricn exit

IMP is heavily based on the use of procedures, indeed the

only method of communicating with the controlling

environment is by means of procedure calls. Also the

techniques of structured programming result in the extensive

use of procedures. Clearly when writing a compiler for such

languages much thought must be given to making procedure

entry and exit (and the associated passing of parameters) as

efficient as possible.

4.5.1 User-defined procedures

The usual technique for procedure entry and exit is to

have standard preludes and postludes which cover all the

different types of procedure. For example the EMAS IMP code

sequences [Stephens, 19741 are (ICL4/75):

STM
BAL

4,14,16(WSP)
15, PROC

save the current environment
enter the procedure

PROC ST
LR
LA

15,60(WSP)
LNB,WSP
WSP,***(WSP)

save the return address
set up local stack frame
claim local space

BALR 10,0
i
set up code addressability

LM 4,15,16(LNB) restore calling environment
BCR 15,15 return

77

While this has proved to be convenient to generate and

efficient to execute it has one major problem, part of the

housekeeping of the procedure entry is performed at the call

itself. This seems undesirable for two reasons:

i Procedures are generally called more often than

they are defined. If part of the housekeeping of

procedure entry is done at the call that code will

be duplicated at each call, thus increasing the

size of the program. Putting that code within the

procedure reduces the size overhead.

ii If the knowledge of what housekeeping needs to be

done for procedure entry is needed outside the

procedure it becomes impossible to alter the entry

and exit sequences to suit the actual procedure.

In particular, on certain machines it is possible

to remove the entry and exit sequences altogether

when the procedures are simple enough.

78

If the 4/75 compiler moved the environment-saving STM

instruction into the body of the procedure, the storing of

the return address would be performed automatically:

BAL 15,PROC

PROC STM 4,15,16(WSP)
LR 8,WSP

This not only saves four bytes per call, very important on a

machine with a very severely limited immediate addressing

range, but also reduces the overhead in entering the

procedure by one instruction.

A further modification would be to pass one or more of the

parameters in the registers, leaving the way open for

remembering that fact inside the procedure.

79

Hence a call could be reduced from:

L 1,X
ST 1,64(WSP)
L 2,Y
ST 2,68(WSP)
BAL 15,PROC PROC(X, Y)

PROC STM 4,15,16(WSP)

to:

L O,X
L 1,Y
BAL 15,PROC

PROC STM 4,1,16(WSP)

The ability to determine exactly how parameters are to be

passed can be of crucial importance in the efficiency of the

procedure mechanism.

80

When compiling for the PDP11 the obvious calling sequence

for a procedure with two integer value parameters would be:

MOV X,-(SP)
MOV Y,-(SP)
JSR PC,PROC

Unfortunately this produces problems inside the procedure as

the return address, stacked by JSR, is too far down the

stack to permit the use of the RTS instruction to return,

for this would leave on the stack the space used by the

parameters. Neither can the stack be adjusted before the

return, which would then be made indirectly through a

location beyond the stack pointer, as space there must be

considered volatile, being used by interrupt handling.

Extra instructions are needed either at the call or inside

the procedure to adjust the stack; the JSR instruction may

well not be "a beauty" as claimed by some implementors

[Bron, 1976]. A MARK instruction has been introduced in an

attempt to overcome this problem, but it is far from helpful

as it imposes an arbitrary register convention and puts all
of the overhead on the call rather than on the procedure

itself.

81

On the other hand, if all of the parameters can be passed in

registers, the JSR will put the return address on a clear

stack, permitting the use of RTS for the return. As in

practice most procedures have few parameters, usually only

one or two, this can give a large saving.

As an example of the power of being able to alter entry and

exit sequences, consider a recursive implementation of the

IMP routine SPACES:

routine SPACES(integer N)

return if N <= 0

SPACES(N-1)
SPACE

end

On the PDP10 the straightforward coding for this would be:

MOVE 0, X pick up X
MOVEM 0, 3(SP) assign the parameter
PUSHJ SP, SPACES call SPACES

SPACES: MOVEM LNB,1(SP) save old frame base
MOVE LNB,SP pick up new frame base
ADDI SP,3 reserve stack space
SKIPLE 1,2(LNB) load, test & skip if X<=0
JRST LAB1 jump to LAB1
MOVE SP,LNB restore stack pointer
MOVE LNB,1(SP) restore old frame base
POPJ SP return

LAB1: SOJ 1, 0 X-1 -> ACC1

MOVEM 1,3(SP) assign parameter
PUSHJ SP,SPACES call SPACES
PUSHJ SP,SPACE call SPACE
MOVE SP,LNB restore stack pointer
MOVE LNB,1(SP) restore old frame base
POPJ SP ; return

82

By applying the optimisations of passing the parameter in an

accumulator (called ARG) and remembering that the parameter

is in this accumulator on entry to the procedure, the code

reduces to:

MOVE ARG,X i

PUSHJ SP, SPACES

SPACES: MOVEM
MOVEM

LNB,

ARG,

1(SP)

2(SP)
ADDI
JUMPG
MOVE

MOVE
POPJ

SP,
ARG,

SP,

LNB,
SP

3

LAB1
LNB
1(SP)

LAB1: SOJ ARG, 0

PUSHJ
PUSHJ
MOVE
MOVE
POPJ

SP,SPACES
SP,SPACE
SP, LNB
LNB, 1(SP)
SP

pick up X
call SPACES

assign the parameter

->LAB1 if ARG > 0

parameter = ARG-1

83

On inspection it is clear that the local stack frame

(pointed at by LNB) is never used within the procedure

except by the entry and exit sequences. Hence by reducing

those sequences to the absolute minimum, the code becomes:

MOVE ARG, X

PUSHJ SP, SPACES

SPACES: JUMPG ARG, LAB1
POPJ SP

LAB1: SOJ ARG, 0
PUSHJ SP, SPACES
PUSHJ SP, SPACE
POPJ SP

Finally, an opportunistic optimisation may be performed

[Knuth, 1974; Spier, 1976] by noticing that the final two

instructions may be combined so that the procedure SPACE

uses the return address pushed onto the stack for the return

from SPACES. This results in the tightest form of the code:

MOVE ARG, X
PUSHJ SP, SPACES

SPACES: JUMPG ARG, LAB1
POPJ SP

LAB1: SOJ ARG, 0
PUSHJ SP, SPACES
JRST SPACE

84

The final steps in this optimisation can only be performed

once the body of the procedure has been compiled. In order

that the correct (in this case non-existent) entry sequence

can be used, an extra pass over the object code is

necessary. This pass can be combined with the process of

adjusting labels and jumps which is carried out in the third

phase of compilation described in section 4.7. The code

generator can mark the position where an extra sequence is

required and at the end of the procedure can inform the

third phase of any salient features found in the body. The

third phase can then decide on the best entry and exit

sequences to use.

This ability to tailor the "housekeeping" parts of

procedures can be used in many circumstances to limit the

inclusion of code which is needed to handle rare

constructions to those procedures which use the feature.

As an example of this consider the ICL 2900 series.

The machines of the series are designed around a hardware

stack, which resides in one, and only one, segment of the

user's virtual memory, and thus limits this data space to

255K bytes. In order to be able to handle programs using

very large arrays, space must be available off-stack in

another segment or set of consecutive segments. The

maintenance of this extra data space will require

instructions to be executed on entry to and on exit from

procedures which claim space from it, but not from those

which only use space from the stack.

85

These extra instructions can be added to the procedure in a

simple manner by the third phase as it now controls the form

of the procedure when all the necessary information is

available.

For these optimisations to be performed the intermediate

code must not lay down rules for procedure entry and exit,

rather it should simply mark the points at which suitable

code is required.

An additional consideration in the design of the I-code

for procedure entry and exit is the requirement of some

machines for a "pre-call" to be made the prepare a hardware

stack for parameters prior to their evaluation and

assignment.

86

For example (ICL2900):

PROC(1, 2, 3)

PRCL 4 pre-call
LSS 1 load 1

SLSS 2 stack it and load 2

SLSS 3 stack it and load 3

ST TOS store it on Top Of Stack
RALN 8 raise the Local Name Base

to point to the new frame
CALL PROC enter the procedure

Following these considerations the form of procedure call

chosen for I-code was:

PROC P stack procedure descriptor

(stack param} repeated for each parameter
ASSPAR /
ENTER enter the procedure

ASSPAR causes the value described on the top of the stack to

be assigned to the next parameter, identified by the

procedure descriptor second on the stack, using either

ASSVAL or ASSREF as appropriate.

In order to pass some of the parameters in registers all

that need be done is for the initial processing of the

descriptors for those parameters to define them as the

appropriate registers. PROC can then "claim" those

registers, the parameter assignment will load them, and

finally ENTER can release them for subsequent re-use on

return from the procedure.

87

4.5.2 External procedures

Most useful languages provide means for compiling files

of procedures (and less commonly, data objects) which can be

accessed from other modules. Also, systems usually provide

extensive libraries of procedures which users of high-level

languages will want to access. In general an external

procedure is identified by a vector of quantities including

at least the entry address and a description of the

environment in which the procedure is to execute. Depending

on the type of operating system in question, the number of

quantities in this vector will change. When the system

requires a "store image" which has all the addresses fixed

before execution, only the entry address is required, as the

code of the procedure can be relocated in order to define

its environment. As this method demotes code-sharing to a

limited facility (making programs shareable is often a

privileged operation), several systems have selected a more

flexible scheme whereby executing programs have a writeable

"linkage area" into which are placed the entry vectors for

procedures. The code of these procedures may now be made

read-only and shared with only the linkage areas being

unique to each user. These vectors are filled in with the

references to the externals either prior to program

execution, or dynamically when the procedure is first

called. Finally, it must be noted that the compiler writer

will have little or no control over the standards required

by external procedures unless they have been generated with

the same compiler.

88

In particular the parameter passing mechanisms may be

different from those used in the intermediate code.

In order to cope with these and other considerations any

intermediate code which permits access to external

procedures must be sufficiently flexible to allow the

variations to be handled efficiently.

4.5.3 Permanent procedures

Most languages define a set of procedures which will be

available on any implementation without explicit action by

the user (such as the IMP procedures ITOS, REM, READSYMBOL,

and READ). Such procedures are termed "permanent

procedures". It is common for intermediate codes to provide

specific code items to invoke permanent procedures, but this

has the problem that the code-generator must know about all

such procedures, and the language-dependent phase must be

changed and the intermediate-code extended if an

implementation wishes to make efficient use of procedures

which can be compiled in-line on particular machines. For

example many machines provide an instruction for moving

blocks of store around and it could be advantageous to have

a procedure which invoked this instruction directly.

Before investigating ways of improving the implementation

of permanent procedures it is useful to examine in some

detail the properties of the procedures mentioned above,

which were chosen because they typify the main problems in

this area.

89

ITOS is a fairly complicated string function which

returns as its result the decimal character-string

representation of the integer value passed to it as a

parameter. Because of its complexity this procedure is

almost always best implemented as an external procedure

which is linked into the program along with any other

external entities required.

REM is an integer function which returns the remainder of

dividing the first integer parameter by the second, and on

many machines can be efficiently compiled in-line, as most

integer divide instructions provide both the quotient and

the remainder. However, when compiling for machines such as

the DATA GENERAL NOVA or the DEC PDP11 when they do not have

the optional divide instructions, division has to be

performed by a complicated subroutine, suggesting that REM

itself should be an external procedure like ITOS.

READSYMBOL falls somewhere between the two, mainly

because it is defined to have a general name parameter, that

is, the parameter may be a reference to any type of entity:

integer, real, byteinteger, etc. To implement READSYMBOL as

an external procedure it would have to be passed the general

name parameter (comprising both the address of the actual

parameter and information about its type and precision), and

would have to interpret that parameter in order to be able

to store the character, suitably converted, in the

appropriate way.

90

A much more efficient implementation is to convert the

statement:

READSYMBOL(S)

into the equivalent form:

S = F$READSYMBOL

where F$READSYMBOL is a function which returns as its result

the character value that READSYMBOL would have placed into

its parameter. Once this is done, conversions and the

choice of store operation can be left to the usual

assignment part of the compiler. A further complication can

arise if, as in the case of the INTERDATA 7/16 operating

system, ISYS [Dewar, 1975], several permanent procedures map

directly onto system-provided facilities: the function

F$READSYMBOL can be replaced by the supervisor call

"SVC 8,0", SELECT INPUT by "SVC 6" etc.

The difficulty caused by READ is mainly one of space. As

read can input an integer value, a real value, or a string

value depending on the type of its (general name type)

argument, it is going to be fairly large, especially if the

hardware on which it runs does not provide floating-point

instructions, forcing those functions to be performed by

subroutine. It follows that on small systems it may be

convenient to replace calls on READ by calls on smaller

procedures, chosen at compile-time by examining the type of

the parameter given to READ, which input solely integer,

real, or string values.

91

Finally it should be noted that the substitutions and

modifications discussed above may only be generated as

replacements for direct calls on the procedure; if the

procedure is passed as a parameter to another procedure no

alterations are possible and a "pure" version must be

available. As passing a procedure as a parameter is totally

distinct from calling the procedure this case does not

prevent the improvements being carried out where possible.

It should now be clear that the efficient implementation

of permanent procedures will differ greatly from the

implementation of user-defined procedures, and the

implementation of permanent procedures on different

machines. Hence the intermediate-code must make no

assumptions about either which permanent procedures are

available or how they are to be implemented.

As a side-effect of removing any built-in properties from

permanent procedures it becomes possible for a simple

code-generator to ignore any possibility of producing

special code and compile them all as externals.

These transformations of procedures can only be applied

when the procedures are invoked (called) directly. In the

case of procedures passed as parameters all calls will of

necessity be the same and hence either it will not be

possible to pass some permanent procedures as parameters, an

unfortunate limitation imposed by several languages, or

there must be a "pure" form of the procedures available.

92

This latter can be done very simply using I-code. The

primitive procedure descriptors are defined exactly as if

the procedures were truly external, but with an extra marker

showing them to be "permanent". The only time that this

marker is used is in the procedure-call generating section

of the compiler. If the procedure is being passed as a

parameter this section of the compiler is not entered and so

the procedure will be passed as an external. All that is

now necessary is for there to be an external manifestation

available when the program executes. This method has the

added advantage that there is no compile-time overhead,

especially important considering that passing procedures as

parameters is one of the least-used features of IMP77.

4.5.4 Primitive Procedures

It is rare for machines to provide simple instructions

which can deal directly with all of the requirements-of

high-level languages and so several constructions will have

to be handled by subroutines. The code generator may then

refer to these "primitive procedures" as though they were

machine instructions.

93

The cases in which such procedures are required commonly

include exponentiation, string manipulation, and array

declaration and access.

Given these procedures, the code-generator has a choice

between calling them as closed subroutines or expanding them

in-line. The former produces dense code but will execute

more slowly than the latter (and possibly suffer from not

knowing what is corrupted by the routine and therefore

having to forget everything it knows). On the other hand

while the expansion of primitive procedures in-line will
improve the execution speed of the program, it becomes

necessary for the code-generator to be able to create the

appropriate code sequences and thereby become more bulky.

Once again the choice must be left to the code-generator as

the benefits of a particular decision will depend on both

the target machine and the use to which the compiler is to

be put. If the compiler is to be used for large

mathematical problems it is likely that the gains made by

putting exponentiation in-line will outweigh the

disadvantage of the extra code size, whereas in

operating-system work, as exponentiation is probably never

needed, the extra complexity of the code generator to expand

the routine would not be desirable.

Given that some of the primitive procedures will be

referenced often (checked array access, for example) it is

important that entry to them is made as efficient as

possible and in this area the ability to reorder code can be

used to great effect.

94

In the original Interdata 7/32 IMP77 compiler the

primitive routines were gathered together at the end of the

user's code, as it was only then that it was known which

procedures were required.

<- CODE BASE (register 14)
USER
CODE

PRIM
PROCS

With this scheme programs of 16Kbytes or less can reference

the primitive procedures with 32-bit instructions

(program-counter relative addressing). Unfortunately once

the program grew beyond this limit the larger and slower

48-bit form of the instructions had to be used in order to

achieve addressability. In the IMP77 code generator there

were 352 such large instructions.

95

In the new compiler the object code is reordered to place

the primitive procedures at the head of the user's code

where they can be addressed relative to CODE BASE.

<- CODE BASE (register 14)
PRIM

PROCS

The immediate disadvantage of this is that it will push the

user's procedures further away from CODE BASE and hence

increase the chances of a user procedure reference requiring

a long (48-bit) instruction. However in practice this is

not a problem as the total size of the primitive procedures

is usually quite small, typically less than 800 bytes on the

7/32. The IMP77 code generator mentioned above now needs no

long references at all, saving 724 bytes of code, out of

about 40Kbytes. The compression of the code so achieved can

be enhanced slightly by bringing the destinations of more

jumps into the short-jump range, giving an extra saving of

20 bytes the case above. In addition, now that a register

(CODE BASE) is pointing to the first primitive procedure,

the list of procedures required can be reordered to place

the most frequently referenced one first and thereby reduce

references to it to 16-bit instructions

(BALK LINK,CODEBASE).

96

When compiling with checks on, by far the most commonly

referenced primitive procedure is the routine which checks

for the use of an unassigned variable (over 2000 references

to it in the code generator), and this trivial optimisation

results in a saving of more than 4000 bytes.

97

4.6 Language-specified an compiler-generated o ec

During compilation, various objects will be manipulated

in order to generate code. Some of these objects have a

direct representation in the source program and are referred

to as "language-specified" objects, whereas others are

created by the compilation process itself and are referred

to as "compiler-generated" objects. The fact that the

compiler-generated objects will be (or can be constrained to

be) used in a stereotyped and well-behaved fashion can be

used to great advantage to give simple means for optimising

parts of the program.

4.6.1 Internal labels

Using most intermediate codes the following program parts

would translate into effectively identical sequences:

--
->LAB if X = 0 ; if X # 0 start
Y = 3 Y = 3

LAB: ; finish
--

At first glance this is as it should be, for the two

program fragments are semantically identical and could

therefore be implemented by the same object code, for

example on the PERKIN-ELMER 3200:

L 1,X pick up X and set the condition code
BZ $1 branch equal (to zero)
LIS 0,3 pick up 3

ST O,Y store it in Y

$1: define label $1

98

However, if it is known that the label $1 will only ever be

used once, the code-generator may remember that the current

value of the variable X will still be in register 1

following the label, and thus remove the need for it to be

loaded again if it is required before register 1 gets

altered. In the case of user-defined labels no statement

can be made about the number of uses of each label without a

complete analysis of the parts of the program where the

label is in scope.

This suggests that I-code should maintain a clear

distinction between user-defined and compiler-generated

labels. Also, by making the rule that compiler-generated

labels may only be used once, the internal representations

of labels may be reused by the code-generator, removing the

necessity for large tables of label definitions in this

phase of compilation.

This now leaves the question of how to represent

conditional jumps in the intermediate code. The first

observation is that user-specified jumps need never be

conditional, as they can always be surrounded by appropriate

compiler-generated conditional jumps. This can be used to

restrict the processing of conditions and tests to the

compiler-generated jumps. The second observation is that in

IMP77 conditionals are always associated with the comparison

of two values or the testing of an implied boolean variable

(predicates and string resolution).

There are currently three main ways in which processors

handle this:

99

"compare" instructions are used to set flags or

condition-codes which represent the relationship

between two values (one of which is frequently an

implied value of zero). These condition-codes are

later used to control the execution of conditional

branch instructions. This method is used in the

PDP11: COMP, BNE etc.

2 Instructions are provided which compare two values

as above but instead of setting condition-codes

they skip one or more subsequent instructions

depending on a specified relationship. By skipping

unconditional branches in this way conditional

branch sequences may be generated. This method is

used in the PDP10: SKIPE etc.

3 Instructions are provided which compare two values

and branch to a specified label if a given

relationship holds. This method is used in the

PDP10: JUMPNE etc.

P-code uses compare instructions to set the boolean value

TRUE or FALSE on the stack and then uses this value either

as an operand in an expression or to condition a branch (a

variant of technique 1 above).

Z-code tests the value in a register against zero and

branches accordingly (technique 3 above).

100

These three techniques have fairly obvious possible

representations in I-code:

if X = Y start

1) PUSH X

PUSH Y

COMP {set condition code}

BNE 1 {branch not equal}

2) PUSH X

PUSH Y

SKIPE {compare and skip if equal}

GOTO 1

3) PUSH X

PUSH Y

JUMP # 1 {compare and branch if not equal}

All three of these representations have been tried in

different versions of I-code.

Technique 2) was rejected as it proved cumbersome to

implement effectively, especially on machines which did not

use skips; either the code-generator had to "look ahead" to

be able to locate the destination of the skip (which is

dependent on the instruction being skipped) or to check

before each instruction whether on not a skip had been

processed earlier and its destination had not yet been

resolved.

101

Technique 1) was perfect for machines with condition-codes

but required look-ahead over subsequent jumps on machines

which used skips.

Both 1) and 2) had the additional problem that to generate

conditional branches, two separate I-code instructions had

to be given. In the case of 1) condition-codes are usually

altered by many instructions not directly involved in

comparison and hence the compare and its associated branch

must be made adjacent. With 2) there is the possibility of

generating meaningless constructions such as skipping a

line-number definition instruction. These difficulties add

complexity to the definition of the intermediate code and

require extra checks in the code generator.

Thus the third form was chosen as the most convenient,

even though all three forms can be suitably defined to be

totally equivalent. In particular the third technique

provides all the relevant information to the code-generator

in one instruction, and has proved to be simple and

effective as a basis for generating code for both

condition-code and skip sequences.

102

Using these ideas the following is the expansion of the

statements given at the start of section 4.6.1.

PUSH X
i PUSH X

PUSHI 0 ; PUSHI 0

COMP # 1 1 COMP 1

JUMP
LOCATE

LAB
1

PUSH Y ; PUSH Y
PUSHI 3

1
PUSHI 3

ASSVAL
1

ASSVAL
LABEL LAB 1 LOCATE 1

4.6.2 Temporary objects

During the compilation of high-level languages it often

becomes necessary to create temporary objects which are not

present in the source program. The most common need for

temporaries is in the evaluation of expressions. Regardless

of the number of accumulators or registers available it is

always possible to construct an expression which will

require one more. To obtain this register, a register

currently in use must be selected and the value currently in

it must be saved in a temporary location. One apparent

exception to this is a machine in which expressions are

evaluated using a stack (e.g. ICL 2900) but in this case

the operands are always in temporaries.

103

Temporary variables may also be required to implement

certain high-level constructions, such as the IMP for

statement:

for V = A, B, C cycle

which is defined so that the initial values of B and C, and

the initial address of the control variable, V, are to be

used to control the loop regardless of any assignments to V,

B and C. While it is possible for a machine-independent

optimiser to discover whether these variables are modified

in the loop or not, in the simple case where little
optimisation is required the code generator must use

temporaries.

In the case of expression evaluation, however, the machine

independent phase cannot know how many temporaries will be

required. Even giving the first phase knowledge of the

number of registers available is not adequate for several

reasons. Firstly, the use of registers is commonly tied to

the operations being performed, as in the case of integer

multiplication on several machines which requires a pair of

registers. For a machine-independent first phase to be able

to cope with this sort of limitation would require great

flexibility of parameterisation.

104

Secondly, the first phase would have to be given details of

the problems encountered in statements such as:

LEFT = REM(A,5) + REM(B,7)

On a PDP11 equipped with the EIS option, a divide

instruction is available which provides both the quotient

and the remainder. Hence the statement could be compiled

into:

MOV A,R1
SXT RO propagate the sign of A
DIV RO,#5 remainder to R1
MOV B,R3
SXT R2
DIV R2,#7 remainder to R3
ADD R2,RO
MOV RO,LEFT

In this case no temporary store locations are required.

However, if the EIS option is not present, no DIV

instruction is available and so a subroutine must be used

instead. The code becomes:

MOV A,R1
MOV #5,R2
JSR PC,DIV result back in R1
MOV R1,T1 preserve remainder
MOV B,R1
MOV #7,R2
JSR PC,DIV result in R1
ADD T1,R1
MOV R1,LEFT -----------------

As the subroutine REM uses R1 (for one of its arguments and

to return its result) the result of the first call on REM

must be saved in a temporary, T1.

105

Of course, the function REM could be written so as to

preserve the value in, say, R2 and this could be used

instead of T1, but this would increase the cost of REM when

it is likely that the value in R2 will not be of use as most

expressions are trivial [Knuth, 1971].

Unless the machine-independent phase is given intimate

knowledge of the target machine (something of a

contradiction) it cannot know how many temporaries to use

nor when to use them.

The solution adopted by most intermediate codes is to base

the code around a stack, thus providing an unlimited number

of temporaries which are handled automatically. While this

in itself does not hinder the compilation for a machine

without a hardware stack, as the code-generator can always

simulate the stack internally, its presence invariably

results in other parts of the code using it, for example to

pass parameters to procedures where the receiving procedure

contains built-in knowledge of the layout of the stack.

As a stack does not require the explicit mention of

temporaries it has been adopted by I-code, but purely as a

descriptive mechanism. Because I-code does not specify the

computation but the compilation process needed to produce a

program which will perform the computation, this internal

stack need have no existence when the final program

executes.

106

The implementors of SIMPL-T describe an intermediate code

with some properties similar to I-code, but based on

"quadruples" of operators and operands rather than an

internal stack [Basili, 1975]. The stack approach was

rejected by them because "quads allow more flexibility in

the design of the code generator since, for example, no

stack is required". The exact meaning of this is not clear

but it suggests the misconception that a stack-based

intermediate code forces a stack-based object code

representation. Regardless of the exact structure of the

code generator or the input it takes, some form of internal

stack is invariably required for operations such as

protecting intermediate values in registers which are needed

for other purposes, and it seems reasonable to make this

stack more explicit if so doing will simplify the

intermediate code and its processing.

107

.7 Object file generation

Once a program has been compiled into sequences of

machine code instructions, there still remains the task of

producing an object file in a form suitable for processing

by the operating system (if any) under which the program is

to be executed. This task was separated from the main part

of code generation (the second phase) and has become the

third phase of compilation for the following reasons:

i The particular format required in the final object

file will vary on any particular machine depending

on the operating system in use. As this is to a

large extent independent of the code sequences

needed to implement the program, it was thought

sensible to keep the processes separate.

ii Even following the generation of the code by the

second phase there remain many opportunities for

further optimisation, both global and structural,

which require information only available once the

complete program has been compiled. Rather than

build global analysis into the second phase these

optimisations were left to a third phase.

108

The third phase takes as its input two data streams

generated by the second phase. These streams are:

i The object stream, a sequence of items of the form:

<type> <value>* defining the code sequences

required in the object file.

ii the directive stream, a sequence of items defining

the logical structure of the object stream, that is

a specification of label definitions and label

references, and details of various code groupings

(blocks, procedures etc.).

The third phase starts by taking in the directive stream and

constructing a linkage map describing the whole program.

This linkage map is processed and then used to control the

generation of the final object file from the object stream.

The operations performed using the map are:

4.7.1 Reordering

As discussed previously in section 4.3, there are several

gains to be made by having the ability to output

instructions in an order different from that in which they

were implied by the linear structure of the source program.

This reordering is performed on the linkage map in a manner

controlled by items in the directive stream.

109

In the most simple case of exbedding procedures (section

14.3.1) this only entails allocating code addresses to the

items in the map each time an "end-of-block" control item is

input, resulting in the procedures being laid out in "gfl "

order.

To facilitate evaluating references to the reordered areas,

all references in the object stream are made relative to the

start of the appropriate area.

As this process does not cause the physical moving of the

various areas there is an implicit assumption that either

the subsequent processing of the object stream can do the

reordering (for example by writing its output to specific

sections of a direct-access file), or that the object file

format can instruct the loader or linker to do the

shuffling.

With the linkage map available it becomes possible to

make a preliminary pass over the object stream performing

structural modifications which require knowledge of the

generated code and which alter its size and general

appearance. These modifications may be made by passing the

object stream through a buffer which is scanned and modified

under the control of the linkage table. In this way merging

common code sequences and reordering the arms of conditional

sequences may be achieved quite simply.

110

4.7.2 Jumps and Branches

Following the construction of the linkage map structural

optimisations may be performed on jumps. The three

optimisations which are currently applied are:

i Use of the smallest instruction

A common feature of machines is that they

provide a variety of sizes of jump instruction,

depending on the reason for the jump (conditional

or unconditional) and the distance to be jumped.

e.g. PDP11

BEQ (2 byte instruction) conditional jump up to

256 bytes in either direction.

JMP (4 byte instruction) unconditional jump to

anywhere.

Perkin-Elmer 3200

BFFS
BFBS (2 byte instructions) conditional jump

forward (F) or backward (B) up to 32 bytes

away.

BFC (4 byte instruction) conditional jump to

within 16Kbytes of the current instruction.

BFC (6 byte variant) conditional jump to anywhere.

111

In typical programs the frequency of occurrance

of such jumps is:

PDP11 PE3200

2 byte 88% 28%
4 byte i 8% 71%
6 byte i

2% <1%

It has been suggested [Brown, 1977] that the

problem of deciding which form of jump to use can

be eased on certain machines by specifying a

"distance" parameter with the intermediate code,

e.g. "GOTO LAB,80" informing the code generator

that the label LAB is 80 instructions ahead.

It is difficult to think of any case in which this

could be of any use as it requires the code

generator to be able to predict the amount of

target machine-code which will be generated for

each intermediate code instruction.

The solution adopted by the IMP compilers has

been for the code generator to assume that all

jumps are the minimum size, and to let the third

phase stretch them where necessary.

The Perkin-Elmer CAL assembler [Interdata, 1974]

makes the opposite assumption, namely that jumps

are long until proven short. This was rejected as

the size of one jump is often dependent on another,

so that one of them will be short if and only if

both of them are short.

112

By assuming them long either they will never be

found to be short, or the process will have to

examine all the jumps repeatedly trying each jump

in turn to see if it can be "squeezed". Commonly

enabling the "SQUEZ" option in the CAL assembler

can double or treble the time to assemble programs.

With the assumption that all jumps start short and

then grow, all truly short jumps will be found with

no possibility of infinite loops, as the process

must terminate, in the worse case when all the

jumps have been made long.

Several methods for achieving this optimisation

have been described [Szymanski, 1978; Williams,

19781.

The technique used by the third phase of the IMP77

compilers for stretching jumps is as follows.

Once the linkage map has been constructed and

addresses provisionally allocated, all labels and

references to them are grouped according to the

block in which they occurred. This is to take

advantage of the fact that most references will be

local. A procedure STRETCH is now defined which

repeatedly attempts to lengthen each reference

within a particular group.

113

If a reference is found which must be stretched,

the entry in the linkage map is updated and all

subsequent entries are suitably modified to take

account of the increased size of the code. The

process is repeated until no alterations have been

made.

STRETCH is first called once for each group of

references in the program. This "local stretch"

commonly resolves up to 80% of the references. A

final call on STRETCH is then made with all the

references lumped together as one group in order to

resolve references between blocks, and any local

references which, although processed by the local

stretch, have become invalidated by changes made by

the "global stretch".

The use of a local and a global stretch has a

considerable effect on the performance of the

compiler: If the calls on "local stretch" are taken

out, "global stretch" has to do all the work in

ignorance of the block-structure of the labels.

This involves repeated searching of the complete

label and reference lists in order that changes in

the position of these items may be recorded. On

the Interdata 7/32 this increases the stretching

time for 1968 branches from 2.3 seconds out of a

total compilation time of 146 seconds, up to 35

seconds!

114

The time taken to perform the stretching using both

local and global stretch is on average just over 1%

of the total compilation time excluding the time

for input and output.

Wulf et al. describe an optimisation on the PDP11

which attempts to shorten otherwise long

conditional jumps by making them jump to suitable

jumps to the same destination, as this is smaller

and faster than the six byte instructions which

would be generated by default [Wulf, 1975]. This

was tried but eventually removed from the PDP11

compiler as finding suitable jumps was a tedious

task and of the average 2% of jumps which were

long, in compiling many programs only one case was

found where the optimisation could be applied.

That case was in a program specially constructed to

test the optimisation.

At the same time that jumps and labels are being

processed, certain operations which depend on the

flow of control may be inserted into the code.

The GEC 4080 provides a good example of this

problem which can be handled elegantly by the third

phase. The machine provides arithmetic

instructions which take either fixed point or

floating point operands depending on the state of a

processor status bit. This bit must be altered by

the instructions SIM (Set Integer Mode) and SFM

115

(Set Floating Mode). During code generation when a

label is encountered the state of the status bit

will not in general be known, and so a suitable

mode switching instruction will need to be planted;

frequently this instruction will be redundant.

Given the presence of the third phase, the second

phase merely needs to mark jumps with the current

state of the bit, and to mark labels with the

required state (and the previous state of the bit

if control can "fall through" past the label).

During the process of expanding jumps, these mark

bits can be checked. If all references to a label

have the same mode, no action needs to be taken,

but if the bits differ the appropriate instruction

must be added. As an extra improvement if only one

jump to a label is from the wrong mode, the mode

switching instruction can be planted before that

jump rather than after its destination label, so

shortening the execution paths when no change is

required.

ii Conflating .lumps to iumos.

Nested conditional structures in high-level

languages often generate jumps which take control

directly to another jump. If the second jump can

be shown always to be taken whenever the first is,

the first can be redefined as jumping directly to

the destination of the second.

116

e.g. -----------------------------------
-while N > 0 cycle

N = N-1
if N > 5 then TEST1 else TEST2

,neap

In this program following the call on TEST1 the

else causes a jump to be taken to the repeat. This

statement is simply a jump back to the previous

cycle.

Hence the following code can be generated (PE3200):

$1: L 1,N

BLE $3
STS 1,1

ST 1,N
CHI 1,5

BLE $2
BAL 15,TEST1

B $1
$3: BAL 15,TEST2

B $1

The danger with this optimisation is that an

otherwise short jump can be expanded to a long jump

as the following program demonstrates:

if X = 1 start
-if Y = 1 stark

{A}
else

{B}
finish

else
{C}

finish

117

The else following the sequence {A} causes a jump

to the next a se which jumps past the finish. In

that form, the first jump only has to skip {B} and

is likely to be a short jump. If it is made to

jump directly to the second finish it has to cover

{B} and {C}, so reducing the chances of its being

short.

Equally, the position can be reversed, resulting in

the optimised jump being short when the original

was long. If this problem is considered serious

the third phase can check the sort of jump which

would be generated and act accordingly.

iii Removal of imps round jumps.

Statements such as:

->LABEL if X = Y

are common, either in the explicit form as given

above or in some higher-level representation such

as:

exit if X = Y

118

The simple code sequence generated for this would

be similar to (PE3200):

L 1,X pick up X
C 1,Y

i
compare with Y

BNE $1 branch not equal
B LABEL jump to LABEL

$1:

by combining the two branches the code can be

reduced to:

L 1,X
C 1,Y
BE LABEL

While it is possible for the code generator to do

this immediately, it was decided to leave the

optimisation to the third phase for four reasons:

1 The third phase can perform this optimisation

simply, almost as a side-effect of

constructing the linkage map.

2 The are several cases where the optimisation

can be extended in ways which would be awkward

for the second phase to deal with. In

particular, it would have either to look ahead

or to be able to modify code sequences already

generated. With a third phase, however, the

optimisation reduces to a straightforward

inspection of the linkage map.

119

For example:

exit if X = Y

repeat

in which case the optimisation may be applied

twice to reduce the code to two instructions.

3 Leaving the optimisation to a later phase

simplifies the second phase which is the most

complicated part of the compiler.

4 On several machines if the destination of the

jump is too far away the original "jump round

a jump" may be the only form available (e.g.

PDP11). The distance to be jumped will only

be known exactly when all labels have been

processed.

4.7.5 In-line constants

When compiling for machines such as the Data General NOVA

which have a limited direct addressing range and no

full-length immediate operands, it is useful if constants

can be planted in the code sequence and addressed as

program-counter-relative operands. The simplest technique

for doing this is for the code generator to maintain a list

of required constants and to dump them in-line at a suitable

opportunity before the limit of addressability has been

exceeded.

120

Such constants will need to be protected from being executed

and so will need to have a jump round them or will have to

be planted in a "hole" in the code, that is between an

unconditional jump and the next label. As holes occur

frequently in high-level languages (for example following

every else or repeat) and do not require extra code to be

planted round the constants, they must be the preferred

position for the constants. In order to minimise the number

of constants planted it is necessary to delay the dumping of

them until the last possible moment, making them as near the

forward limit of the addressability of the first outstanding

reference. This increases the chance of a subsequent

reference to the constant being able to address the previous

location.

This poses problems if the second phase is to handle the

constants as it cannot know which is the optimum position

for the constants in advance of producing the code

(especially if the code is to be reordered).

A convenient solution is to utilise the linkage table in the

third phase and include in it references to constants and

the locations of holes and "forced" holes, that is places

where an extra jump is required.

Following the initial resolution of jumps (4.7.2) the list
of constants can be examined and holes allocated. The

labels are processed again to take account of the extra code

and any alignment limitations. During the processing of the

object stream the constants are infiltrated into the object

file.

121

4.8 Summary

The major decisions about the design of the compiler

were:

a) All information present in the source program

should be easily visible in the intermediate code.

b) The intermediate code should be as

machine-independent as the source language.

c) The code generator should be split into two

distinct phases joined by a stream of code

fragments and a linkage map defining the

connections between them.

d) The intermediate code should handle objects in

terms of language-dependent descriptors which are

converted into appropriate machine-dependent

descriptors by the second phase.

e) The intermediate code should distinguish clearly

between objects explicitly specified in the source

program and those implied by the translation.

f) All decisions about code and data addressing must

be left to the code-generator.

122

5 Review .Q.t the overall structure

5.1 Division .1 function

The division of the machine-dependent phase into two

parts was motivated by three main considerations:

i to localise the changes necessary to produce

different object-file formats,

ii to permit the reordering of sections of the code,

iii to enable the production of short jumps whenever

possible.

In addition it turns out that on all of the machines for

which this technique has currently been applied points (ii)
and (iii) can be handled by almost identical pieces of code,

making this phase of compilation machine-independent to a

large extent and therefore easing the task of creating new

compilers.

Against this must be set the overheads incurred by

separating the compilation into two parts which have to

communicate. The interface between phases two and three

comprises the object file and the directive file, and the

third phase needs to process the whole of the directive file

before starting to look at the object file.

123

The ways in which these 'files' will be implemented, and

consequently the cost of the communication, will in general

vary from system to system. If large virtual memories are

available the data may be held in memory as mapped files or

arrays, and accessed much more efficiently than on simpler

systems using the conventional approach of 'true' files with

their more cumbersome transfer operations.

5.2 Testing and development

Although the initial reason for choosing a multi-phase

approach to compiling was that of simplifying the generation

of new compilers, an extra advantage arose in that the task

of checking the compilers so produced, and diagnosing faults

in them was very much simplified. This was because of two

features of the technique.

Firstly, the programs corresponding to the phases were of

managable size, varying from about one thousand statements

up to four thousand statements.

Secondly, the phases communicated with each other using

well-defined interfaces which could be monitored to narrow

down errors to a particular phase and even to specific parts

of that phase.

In addition, as the structure of the intermediate code

inevitably suggests the general techniques to apply in code

generation, many of the complete compilers on different

machines had great similarities; usually only the lowest

levels of code production and machine-specific optimisation

were appreciably different.

124

This gave rise to three convenient properties with regard to

testing and development:

An error in one compiler will frequently give

notice of similar faults in others. Clearly, any

faults in the common first phase will be present in

all the compilers and only one correction will be

required.

ii An improvement in the performance of one compiler,

or the code it generates, can suggest similar

improvements in others.

iii The third effect on reflection seems obvious yet

was noted with some surprise. The systems on which

most of the investigation was done, are run with

very different operating systems and used by

different types of user. These two factors

together caused a great spread in the demands

placed upon the compiler, resulting in more parts

of the compiler being thoroughly tested than would

happen when running on one particular system, where

users tend to be more stereotyped. Questions of

"proper practice" aside, it is a fact of life that

all software gets a better testing in the field

than at the hands of its creator.

125

5.3 Diagnostics

As mentioned previously, optimisation is not just a

process of improving the storage requirements and speed of a

program but also involves fitting a program into the overall

framework of the run-time environment. In many applications

the provision of extensive run-time checks and post-mortem

traces can be of great importance. The ability to generate

such diagnostic code has certain implications for the

features in the intermediate code.

5.3.1 Line numbers

When producing information about the state of a

computation, whether it be an error report following a

run-time fault or an execution trace [Satterthwaite, 1972],

the data must be presented in a form which is meaningful to

the user in terms of the source program. The

commonly-provided dump of the machine state, registers, code

addresses etc., is a complete failure in this respect, as

the correspondence between this and the program state

depends on the workings of the compiler and other factors of

which the user should not need to be aware.

The simplest way of specifying the point of interest in a

program is to give its line number. There are two common

techniques for providing line number information at

run-time, the choice of which depends on the uses to which

the compiler is to be put.

126

The first is to plant instructions which dynamically update

a variable with the current line number whenever it changes.

This has the significant advantages that it is extremely

cheap to implement and the line number is always immediately

available. Its obvious disadvantages are that it increases

the execution time for the program, and more significantly,

it increases the size of the program, typically by about 6K

bytes on the Interdata 7/32 for a 1000 line program,

approximately a 50% increase.

The second technique is to build a table giving the

correspondence between line numbers and the addresses of the

associated code sequences. While this imposes a greater

burden on the compiler and takes more time to extract the

line number, it has the advantage that it does not increase

the code size of the program, nor does it alter its

execution speed. Indeed it may even be possible to keep the

table out of main memory until it is required.

127

The choice of technique will have implications on the

compiled code. If the line number table approach is used

error procedures must have available the address of the

point of the error. The effects of this can be seen in the

following example of the sort of code generated for

unassigned variable checking on the 7/32 using both methods:

1 17 Y X =

LHI 0,17 update line no
ST 0,LINE
L 1,Y L 1,Y
C 1,UV ; C 1,UV i check value
BE ERROR i i give the error

ST 1,X
BAL
ST

8,TU
1,X

i test for error

TU:BNER 8 return if OK

B ERROR; give the error
------------- -------------

As the generated code depends on the method in use it cannot

be specified in the intermediate code and so the latter must

simply indicate the points in the program at which the line

number changes.

128

5.3.2 Diagnostic tables

In the event of program failure, or when explicitly

requested by the user, a trace of the current state of a

program, including the values in active variables and the

execution history, can be of immense value. For such a

trace to be provided the intermediate code must contain the

identifiers used in the source program for all the

variables, and a source-dependent description of those

variables. This latter is needed so that the machine

representations may be interpreted in the correct way when

giving the values in variables. In I-code all this

information is presented in the definitions of descriptors

and may be used or discarded at will.

5.3.3 Run time necks

Most languages define circumstances under which a program

is to be considered in error and its execution terminated.

These errors include creating a value too large to be

represented (overflow), division by zero, use of an array

index which is outwith the declared bounds, and so on.

There is a natural division of these errors into those which

are detected automatically by the machine and those which

must be detected by explicit checks in the program.

Commonly, machines catch division by zero automatically but

do not provide such a feature for checking array subscripts.

The "hardware-detected" errors may be furthur divided into

129

those which on detection cause the normal flow of control to

be interrupted, and those which simply make the knowledge of

the occurrance of the error available to the program, for

example by setting a condition-code bit. For the purposes

of this discussion the second form of hardware-detected

error may be considered an error which is not detected

automatically, as it still requires explicit instructions to

test for the error and to transfer control accordingly.

Clearly, the more errors that fall into the automatic

category the better, as they do not cause the user's program

to grow with sequences of instructions which, in a correct

program, will always be testing for conditions which never

arise.

These differences complicate the design of intermediate

codes as the classification differs from machine to machine:

with the VAX all forms of overflow can be made to generate

automatic interrupts, but the PDP11 only sets a

condition-code bit on some overflows.

There are two basic ways of handling this in the

intermediate code: firstly the code can contain explicit

requests for the checks to be performed, and secondly the

code can be designed in such a way as to give the

code-generator enough information to be able to decide where

checks are necessary.

Two specific examples can indicate which of these ways

should be adopted.

130

Testing for arithmetic overflow is currently handled by

machines in three main ways:

1. An interrupt is generated whenever overflow occurs.

This is by far the best method as it requires no

overheads in the checked code.

2. A bit is set on overflow and is only cleared when

it is tested. This requires explicit checks in the

code but several tests may be conflated into a

single test at an appropriate point, for example

before the final result is stored.

3 A bit is set on overflow, but is cleared by the

next arithmetic operation. This again requires

explicit checking code but the tests must be

inserted after every operation.

For the intermediate code to indicate where overflow

testing is to be performed it would have to choose the

worst case from the three above, namely case 3. This

would result in a test being requested after every

arithmetic instruction, which test may just as well be

included into the definition of the instructions

themselves.

131

The other area of low-level testing is in implied type

conversions such as storing from a 32-bit integer into a

16-bit integer. The VAX provides an instruction which

combines the test for truncation with the store (CVTLW).

The 7/32 has an instruction (CVHR) which can test the

value before assignment, and the 4/75 can most

efficiently test following the assignment (CH).

If the request for the check is a separate intermediate

code item, the 7/32 case is simple but the other

machines will require much more work to be able to

generate the efficient check. The problem can be

simplified by introducing new assignment instructions

which also perform the test, but this adds many new

instructions to the code as one instruction will be

required for every valid combination of types and every

sort of assignment.

The high-level checks such as array bound checking are

usually so complicated that the most efficient

implementations depend greatly on the particular

hardware, so much so that it would be foolish to attempt

to express them in the intermediate code. The simplest

solution is to ensure that the intermediate code

provides enough information to let the code generator

decide where and what checks are necessary.

132

The inclusion of checks against the use of unassigned

variables provides a good example of the power of

leaving the checking to the code-generator. In a

simple-minded approach the code-generator tests every

suitable value loaded from store. A minor improvement

to this is to mark the descriptor for every local

variable in a block when it is first assigned,

inhibiting the marking after the first jump.

Subsequently, marked objects need not be checked.

A much better improvement may be obtained by making a

trivial extension to the register remembering mechanism.

If an object is 'known' it must have been used

previously, and hence it will have been checked if

necessary. Even after the register which held the value

of the object has been altered, and hence the

association between the register and the object lost, if

the compiler remembers that the value as known it can

suppress any unassigned checks on future references.

At this point a useful property of IMP77 may be used to

great effect: once a variable has been assigned it

cannot become unassigned. This is not true in many

languages, as for example, in ALGOL60 the control

variable of a for loop is undefined (unassigned) at the

end of the loop. This means that in IMP77 the 'was

known' property of variables may be preserved across

procedure calls, even though all the register content

information must be forgotten.

133

This technique when applied on the 7/32 compiler results

in a reduction of 33% in the code required for checking.

While it is possible for the unassigned checks to be

placed in the intermediate code and for the first phase

to remove redundant checks, this supression would

require a duplication of the remembering logic which

must, in any case, reside in the machine-dependent

phase.

134

6 Observations

6.1 Suitability I-code for Optimisation

When considering the use of I-code for global

optimisation there are two techniques available:

Firstly, the optimisations can be performed using the

I-code and going straight into object code, possibly via a

third phase. In this case the only real constraint on

I-code is that it be powerful enough to be able to carry all

the information available in the source and to present it in

a compact form.

Secondly, the optimisations can be seen as an extra phase

introduced between the first phase (the I-code generator)

and what is normally the second phase (the code generator).

The optimiser takes in I-code and produces as its output a

new I-code stream which can be fed into the code generator.

In this case not only must the I-code carry all the source

information but it must be able to describe the generation

of an optimised program. Clearly the code must be able to

reflect the structure of the target machine in some way and

hence must be able to lose its machine independence.

135

The second technique is the more interesting as not only

does it permit the optional inclusion of the global

optimising without affecting the structure of the other

phases, but it removes the optimisations from the low-level

details of code production and provides a means for

separating the machine-independent and machine-dependent

optimisations. In particular in the same way as much of the

code generator can be built from a standard "kit" with a few

special machine-specific parts, so the global optimiser can

utilise code from other optimisers.

The way in which the optimiser can influence the

operation of the code generator is by making use of the fact

that the intermediate code does not describe a computation

but a compilation process. This compilation is driven by

the descriptors which are normally translated by the code

generator from the machine-independent form in the I-code

into the appropriate machine-dependent representation,

reflecting the target machine architecture: registers,

stacks, memory etc. By short-circuiting this translation a

global optimiser can force the use of specific machine

features.

136

For example consider the following fragment of an integer

function:

integer X
X = A(J)

X = 0 if X < 0
result = X

The standard I-code produced for this fragment would have

the form:

DEF 12 "X" INTEGER
SIMPLE
NONE

PUSH

DEFAULT NONE

12 X

PUSH 6 A

PUSH 7 - J

ACCESS
ASSVAL
PUSH 12 X

PUSHI 0

COMP >= 1

PUSH 12 ; - X
PUSHI 0

ASSVAL
LOC 1

PUSH 12 X

RESULT

On the PDP11 the code generated for this could be:

MOV J, R2 i

ADD R2,R2 Scale the index
ADD A,R2 Add in ADDR(A(0))
MOV (R2),X 1

X = A(J)
BGE $1 ->$1 if X >= 0
CLR X i X = 0

$1: MOV X,R1
;
assign result register

{return}

Here the obvious optimisation is to note that the local

variable, X, is eventually to be used as the result of the

function and so needs to end in register 1.

137

By changing the definition of X in the I-code into:

DEF x X INTEGER SIMPLE DEFAULT NONE SPECIAL R1

and making no other changes, the code generator will produce

code of the form:

MOV J,R2
ADD R2,R2

ADD A,R2
MOV (R2),R1

BGE $1

CLR R1

$1: {return}

As this process necessitates the I-code becoming more and

more intimately involved with the structure of the target

machine, in that it starts referring directly to registers

and the like, it is necessary that a new control item be

added so that the code generator may be prevented from

pre-empting resources which the optimiser is manipulating.

The new item is RELEASE and it is used in conjunction with

the definition of machine-dependent descriptors. When such

a descriptor is introduced (using DEF) the associated target

machine component is considered to have been claimed and may

only be used in response to explicit direction from the

I-code. On receipt of the corresponding RELEASE the

component is once again made available for implicit use by

the code generator (for temporaries etc.). This mechanism

is an exact parallel to the way in which memory locations

are claimed by the definition of descriptors and released by

the END of the enclosing block.

138

The main assumption about this style of optimisation is

that the code generator has the ability to generate any

required instruction, provided that the pertinent

information is available at the required time.

As an example, the VAX 11/780 provides addressing modes in

which the value in a register may be scaled and added into

the effective operand address before the operand is used,

hence the following code:

integerarray A(1:9)

A(J) = 0

MOVL J,R5
;

pick up J

CLRL 12(R3)[R5] 1 A(J) = 0

The operand address generated by the CLRL instruction is:

12+R3 + R5*4

as there are 4 bytes (address units) to a longword.

This instruction can be generated naturally during the

non-optimised evaluation of array subscripts, and so the

optimiser can assume that the index mode of operand will be

used whenever a register operand is specified as an array

index.

The procedure has the added advantage that in the worst case

when the code generator will not produce the instructions

that the optimiser hoped, as long as the optimised I-code

still describes the required compilation, the code generator

will simply produce a more long-winded, but equally valid

version of the program.

139

In other words, as long as some choice is available and some

temporary objects are left at the disposal of the code

generator, the optimiser cannot force it into a state where

working code cannot be produced. In the example above even

if the code generator does not produce index mode operands,

it can still generate sequences of the form:

MULLS R5,#)I,R1 R5*)I -> R1
ADDL2 R3,R1 R3+R1 -> R1
CLRL 12(R1) 0 -> (12(R1))

140

6.2 Performance

The figures in appendix A3 are the results of measuring

the effect of various optimisations on the Interdata 7/32

and the DEC PDP11/45.

One problem in choosing programs to be measured is that

heavy use of particular language features will increase the

overall effect of certain optimisations.

As a trivial example of this consider the following

"program":

begin
integerarray A(1:1000)
A(1) = 0

endofprogram

With all array optimisations enabled, on the 7/32 this

generates 30 bytes of code, whereas without the optimisation

it results in 170 bytes of code, largely due to the

procedure for declaring the array.

Clearly a reduction of 82% is not to be expected on more

typical programs.

Similarly the absence of features will bias the results.

In particular the smaller programs will not demonstrate the

power of the optimisations which only take effect when

various size limits have been exceeded: the most obvious

such limits being addressing restrictions caused by the size

of address fields in instructions.

141

The major difficulty in producing results which are of

any real value is that the effects of the optimisations

depend on the individual style in which the programs under

consideration were written. Inevitably users get a "feel"

for the sort of statement for which the compiler generates

good code and they often modify their style of programming

accordingly. If at some state in its development a compiler

produces poor code for a particular construction, users will

tend to avoid that construction, even long after the

compiler has been improved and can compile it effectively.

This well-known phenomenon [Whitfield, 19731 argues strongly

that users should never see the object code generated by the

compilers they are using.

The effects of many optimisations are difficult if not

impossible to measure with any degree of accuracy as they

interact with other optimisations to a great deal. The most

obvious interaction is that between the size of jump

instruction required and most of the other optimisations.

The size of jump is determined by the amount of code

generated between the jump and the label it references. If

any other optimisation is inhibited this volume of code is

likely to increase, decreasing the chances of being able to

use the shorter forms of the jump.

142

Some optimisations depend almost totally on others; it is

unlikely that the optimisation of reducing or removing the

entry and exit code sequences associated with procedures

(section 4.5.1) would have much effect if the parameters

were not passed in registers and references to them in the

procedures were replaced by references to those registers.

In particular, it must be noted that it is always possible

to generate programs which will benefit greatly from those

optimisations which do not appear to be of much use from the

figures given. However, the test programs used to derive

the figures are typical of the programs processed by the

compiler, and it is hoped that they give a more realistic

and balanced view of the improvements which may be achieved

in 'real' cases.

Under some circumstances it may be advantageous to apply

all optimisations, even though some may appear to give

little benefit, since this 'squeezing the pips' frequently

removes one or two instructions from critical loops in a

program.

Yet again this shows the difficulty in quantifying the

usefullness of optimisations as they are so dependent on the

particular circumstances.

143

One area of measurement has been deliberately omitted

from the figures, namely the effect on execution time of the

optimisations. This was for several reasons:

1. On the systems used it was impossible to get

reliable timing measurements with any accuracy

greater than about plus or minus 5%.

2. For the reasons given previously, many programs

could benefit greatly from fortuitous optimisations

which removed just one crucial instruction,

optimisations which could not be expected in every

program.

3. Programs which executed for long enough to improve

the accuracy of the measurements, invariably lost

this accuracy through spending much time in the

system-provided procedures, mainly for input and

output. This point in particular suggests that as

the overhead is beyond the control of the general

user, the savings in code space may be much more

important. Even with ever-growing store sizes,

virtual memory systems will continue to treat

smaller programs better than larger ones.

144

4. Some of the optimisations, particularly passing

parameters in registers, prevent the compiled

program from running, unless the controlling

environment is modified in a parallel way. This

would invalidate the timings as the environment is

not usually under the control of the compiler.

From the crude measures which were obtained there is a

suggestion that the decrease in execution time roughly

parallels the decrease in code size.

6.3 Cost (af optimisation

The cost of an optimisation is, in general, very

difficult to measure, as may be seen by considering the

three relevant areas: compile time, space requirement, and

logical complexity.

6.3.1 mile time

In order to generate good code, the compiler must spend

time looking for the cases which are amenable to

improvement. If no optimisation is performed this time is

not used and so the compilation should take less time.

However, the non-optimised version commonly requires the

production of more code than the optimised version,

frequently over fifty percent more when comparing fully

diagnostic code with fully optimised code. On all the

compilers written so far, the time saved by not having to

generate these extra instructions, more than outweighs the

time spent in deciding not to generate them.

145

6.3.2 Space requirement

Several optimisations increase the requirement for

workspace, notably all the remembering optimisations. On

most machines available at the present, the number of things

which may be remembered is fairly small: sixteen registers

and one condition-code is probably the maximum. Even if

this number is increased by remembering several facts about

each *thing, the total amount of space needed will be small

when compared with the space needed to hold the information

about user-defined objects, information which is required

whether optimisation is being performed or not. On large

machines the extra memory required will be cheap; on small

machines the need for the optimisation will have to be

balanced against the size of the largest program which must

be compiled.

6.3.3 Logical complexity

The cost of providing an optimisation includes a

non-recurrent component, which is the difficulty of

performing the optimisation at all because of the logical

complexity of discovering the necessary circumstances. In a

system which is aimed at portability this cost can often be

shared over a number of implementations; the techniques used

in one being applicable to others, perhaps after minor

modifications.

146

6.4 Comments ont g results

6.4.1 Register remembering

Of all the optimisations tested, a simple

remembering of values in registers provided by far

the greatest improvement in code size.

One problem in

deciding what to remember,

following code sequence:

implementing this optimisation is

x = Y

L 1,Y
ST 1,X

as shown by the

Following this sequence register 1 will contain

both the value in X and the value in Y; should the

compiler remember X or Y or both?

The measurements show that the gain in remembering

both (2 uses) as opposed to just one (1 use) are

quite small. The algorithm used to determine what

to remember in the '1 use' case was simply to

remember a new piece of information only if nothing

else was known about the register in question.

This gives the best results in cases such as:

A = 0; B = 0; C = 0

where the value '0' will be remembered, but will

perform badly with the more contorted case:

A = 0; B = A; C = B

as again only the value '0' will be remembered.

Unless very tight code is required, the cost in

147

maintaining multiple sets of information about each

register and searching for particular values will

probably rule out such extended remembering

optimisations.

Perhaps a surprising result is that the PDP11 on

average gains about as much from this optimisation

as the 7/32.

This is the result of two interacting effects.

Firstly, the 7/32 dedicates up to five registers to

address local variables in the last five levels of

procedure nesting, and locks three for other fixed

purposes, leaving about ten for intermediate

calculations. The PDP11, however, uses a display

in store to access intermediate levels, and has to

load the address of a particular level each time it

is required. In addition the PDP11 implementation

fixes the use of four registers, leaving only four

for intermediate calculations.

Secondly, the 7/32 needs to use at least one

register to move values around while the PDP11

often requires none.

These two effects give a fairly large number of

transient values in the registers of the 7/32, and

a smaller number of more frequently used values

(addresses) in the registers of the PDP11. On

average it appears that the number of times

necessary values are found is roughly equal in the

two cases.

148

6.4.2 Remembering environments

An environment is the complete knowledge

maintained by the compiler at any time. By

remembering and merging environments while

compiling IF-THEN-ELSE constructions, the effects

of the implied labels and jumps on the remembering

optimisations can be minimised.

The measurements show that the gains achieved by

remembering more and more environments fall off

very quickly; two environments seem to be about the

best. However, the overhead in providing more than

one environment is simply compiler table space, and

so a compiler which can handle one environment can

easily handle more to get a very small but cheap

gain.

One clear result is the difference between the

effects on the two machines (sometimes an order of

magnitude). This is almost entirely due to the

difference in the number of available registers.

149

6.4.3 Array allocation and use

From monitoring service versions of the

compilers is it clear that in IMP77 the vast

majority of arrays have constant bounds.

Allocating these arrays on the local stack frame at

compile time is a simple operation and can save a

fair amount of code, much of which would only be

executed once, as most arrays are declared in the

outermost block.

Remembering array address calculations can reduce

the code by about five percent, but it commonly has

little effect and is quite tedious and expensive to

achieve. The small increase in code size for a few

cases is a side-effect of the register allocation

mechanism. Registers are chosen by giving priority

to those about which the least is known, and then

by selecting the least recently used such register.

Hence, which register will be used depends on the

compilation of previous statements. When a value

is required in a specific register, for example

during parameter transmission, occasionally it will

already be in that register purely by chance. A

minor change in the generated code, such as not

requiring a new register for an array access, can

result in the value not being in the correct

register later on.

150

This instability seems to be undesirable, but

alternative strategies, such as biasing the

allocation towards or away from particular

registers, on average results in worse code.

6.4.4 Common 2Derands

On the 7/32 the only instruction which can be

used to simplify statements of the form: X = X op Y

is the AM (add to memory) instruction. It is

therefore somewhat surprising that its use

frequently saves over two percent of the code.

The two possible expansions of a suitable addition

statement are:

------------ -----------

L 1,Y i L 1,X

AM 1,X i A 1,Y
ST 1,X

------------ -----------

The first saves four bytes and leaves the increment

in the register. Even if the incremented value is

required immediately afterwards, the extra load

instruction will only increase the code size to

that of the alternative sequence.

As the PDP11 has many instructions which can be

used in this way it is hardly surprising that it

benefits much more.

151

6.4.5 Parameters in registers

This optimisation gives another significant

saving in code at little cost to the compiler,

simply by moving the store instructions for

parameter assignment from the many calls to the

unique procedure definitions. The effect is more

pronounced on the 7/32 as all assignments require

two instructions, a load and a store, whereas the

PDP11 can usually make do with one MOV instruction.

In the latter case the saving comes from the

ability to reduce the size of the procedure entry

and exit sequences if all of the parameters can be

passed in registers.

6.4.6 Condition-code remembering

On machines with condition codes many

instructions set the result of a comparison with

zero as a side-effect. Knowledge of this can be

used to inhibit explicit code to compare values

with zero. However, the small benefit so gained

suggests that it is not worth doing, even though it

is a very cheap test.

152

6.4.7 Merging

The large difference between the effect of

forward merging on the 7/32 and the PDP11 is mainly

due to the addressing modes available on the

machines.

On the PDP11 statements of the form "A=B" can be

compiled into a single instruction "MOV B,A",

ignoring any extra instructions which may be needed

to make A and B addressable. However, on the 7/32

all values must be moved via the registers,

resulting in two instructions for the same

statement:

L 1,B
ST 1,A

Hence the following code:

if X=0 then Y=1 else Y=12

7/32 PDP11
------------------- -------------------

L 1,X TST X

BNE $1 BNE $1
LIS 2,1

ST 2,Y MOV #1'Y
B $2 BR $2

$1:LIS 2,12 $1:

ST 2,Y MOV #12.,Y
$2: $2:

With the 7/32 code, merging can reduce the sequence

by one instruction, a "STore", while with the PDP11

no such improvement is possible.

153

As the techniques for merging and delaying are

quite expensive, but not complicated, and have a

major influence on the design of the

code-generator, the small gains achieved are

probably not worth the trouble, unless the last

drop of efficiency is required at all costs.

154

6.5 Criticisms an benefits Qf the technique

6.5.1 Complexity

The main argument against the use of high-level

intermediate codes is that they move the complexity of code

generation from the common machine-independent phase into

the machine-dependent phase, forcing work to be repeated

each time a new compiler is required.

While this is undoubtedly true, the overheads are not as

great as they may at first appear.

The extra complexity of the code generators may be split

into two parts: an organisational part which builds and

maintains the structures used during the compilation, and

processes the intermediate code, using it to drive the

second part, an operational part which uses the structures

to generate code as instructed by the organisational part.

The changes in the organisational part when moving to a new

machine are small enough to permit the use of large sections

of code from old compilers. Even when considering the

operational part, much will be similar from machine to

machine, in particular the communication between the second

and third phases and the bulk of that latter phase can be

taken without change. From examining the compilers produced

using I-code it appears that about 60% of the source of the

machine dependent parts is common, 20% can be considered as

being selected from a standard "kit" of parts, and the final

20% unique to the host machine.

155

6.5.2 1Q overhead

One of the disadvantages of dividing a compiler into

several distinct phases is that it results in an additional

cost in communicating between consecutive phases. As

discussed in section 5.1 this cost depends on the operating

system running the compiler. Even in the worst case where

communication is achieved using conventional files the

overhead may not be too serious.

The time spent doing input and output on the Interdata 7/32

compiler is about 27% of the total compilation time, and for

the PDP11 is about 22%, breaking down as follows:

--

Source ----> P1 1----> P2 1 P3 i----> Object
----->

7/32: 7% 7% 10% 3%

i (4%) (4%) (5%) (3%)

PDP11: 9.4% 11% 0.6% 0.5%
--

The figures in parentheses give the percentage of time taken

when the input and output requests are made directly to the

file manager rather than via the standard subsystem

procedures, thus reducing the internal I/O overhead to about

10% of the total compilation time.

156

6.5.3 Lack of Gains

It has been argued that the increases brought about by

adopting a high-level code as opposed to a low level one are

not worth the increased effort involved in processing it.

Depending on the uses to which the compiler is to be put,

small increases in code efficiency can outweigh a reasonable

increase in the cost of producing the compiler and using it.

A 5% improvement in the execution speed of the compiler

itself is not insignificant when the number of times it is

used and the cost of each use are considered. However, it

cannot be denied that a careful redesign of critical parts

of a program can have a greater effect on its performance

than any amount of automatic optimisation. Notwithstanding,

it seems reasonable that programmers should be able to

concentrate on the large-scale efficiencies of program

design and have the detailed improvements left to the

compiler.

Also it should be noted that measurements indicate that the

compilers execute faster when performing certain

optimisations than when not performing them, for example

passing parameters in registers.

If low-level codes are needed for some reason, the

complexity saved from the machine independent phase can be

moved into a new phase which converts the high-level code

into a low-level one. This provides the low-level code for

those who want it while preserving the high-level interface

for use when good code is required.

157

One important gain in using such intermediate codes is

that they can ease the difficulties associated with

maintaining a number of compilers for different machines,

when those compilers are self-compiling.

For several reasons it may not be desirable to permit sites

to have the source of the machine-independent phase:

commonly to give freedom of choice for the form of the

language in which that phase is written and to prevent local

"improvements" which rapidly lead to non-standard language

definitions. In such cases the intermediate-code generator

can be maintained at one site and updated versions can be

distributed in the intermediate code form without fear of

compromising the quality of the object code generated from

it. Such a technique is currently being used in the

production of portable SIMULA compilers [Krogdahl, 1980].

6.5.4 Flexibility

At some stage in producing a compiler, the needs of the

end user must be considered. The flexibility afforded by

the high-level nature of the intermediate code allows the

compiler to be adapted to fit its environment. If the

compiler is to be used for teaching, the quality of the code

it produces can be sacrificed for compilation speed and

high-quality diagnostics, particularly as compilation time

may well be an order of magnitude greater than the execution

time, indeed many of the programs will fail to compile and

never reach execution.

158

If the application is for compiling programs that will be

compiled once and then executed many times, more effort can

be expended in producing fast code, although this is not to

say that diagnostics and fast code must be kept separate as

the longer a program runs without failing the more trouble

will be caused when it fails without convenient diagnostics.

6.6 Comments Instruction sets and compilation

Following the production of IMP compilers for several

different processors, various features of instruction sets

have become evident which influence the generation of code.

i The instruction set should be complete, that is,

where an instruction is available for one data type

it should be available for all data types for which

it is well-defined. Similarly, instruction formats

used by one operation should be available for all

similar operations. The best example of such an

instruction set is that provided by the DEC PDP10.

Unfortunately the majority of machines are not so

helpful. As an example of the sorts of thing which

go wrong, consider the Perkin-Elmer 3200 series.

These machines provide three integer data types:

fullword (32 bits, signed), halfword (16 bits,

signed), and byte (8 bits, unsigned). There are

"add fullword" (A) and "add halfword" (AH)

instructions but no "add byte" instruction.

159

There are "add immediate short" and "subtract

immediate short" instructions but multiply, divide,

and, or etc. do not have short immediate operands.

ii The instructions should be consistent, that is,

logically similar instructions should behave in

similar fashions.

Again, on the Perkin-Elmer 3200:

Load fullword (L) and load halfword (LH) set the

condition code but load byte (LB) does not.

Most register-store instructions can be replaced by

a load of the appropriate type followed by a

register-register instruction: e.g.

-------------- --------------
CH 1,X i LH O,X

CR 1,0

-------------- --------------

both result in the same setting of the condition
code, but

CLB 1,B
i

LB O,B
CLR 1,0

could result in different settings of the condition

code as CLR compares two unsigned 32 bit quantities

whereas CLB compares a zero-extended byte from

store with the zero-extended least significant byte

of register 1. For consistency, either compare

halfword (CH) should use the sign-extended less

significant half of the register, or better, CLB

should not tamper with the value in the register.

160

iii Complex instructions should be avoided. There are

two reasons for this. Firstly, it is easier for a

compiler to break down statements into simple

operations than it is to build them up into complex

ones [Stockton-Gaines, 19651. Secondly, if the

complex instructions do not perform the exact

function required by the language, more

instructions will be needed to "prepare" for the

complex instruction and to "undo" its unwanted

effects. As an example, the DEC VAX11/780 is full
of complex instructions which seem to be

well-suited to high-level languages at first
glance, but on closer inspection they are not so

useful. A CASE instruction is provided which

indexes into a table of displacements and adds the

selected value to the program counter. This would

seem ideal for compiling SWITCH Jumps.

Unfortunately, as the table of displacements

follows the CASE instruction it would be very

expensive to use it each time a jump occurred using

a particular switch. Instead all references to the

switch must jump to a common CASE instruction.

Even this does not help, as in the event of an

attempted jump to a non-existent switch label, the

diagnostics or the event mechanism will see the

error as having occurred at the wrong place in the

program.

161

Although this problem can be "programmed around" it

turns out that it is faster to implement switches

using sequences of simpler instructions.

iv Machine designers should investigate carefully the

full consequences of building-in special fixed uses

of machine features. One of the best examples of a

clear oversight which causes grief to compiler

writers is found in the DATA GENERAL NOVA

multiplication instruction. This instruction

multiplies the value in register 1 by register 2

and places the double-length result in registers 0

and 1. As only registers 2 and 3 may be used for

addressing, and as register 3 is always used for

subroutine linkage, it follows that register 2 must

be used for addressing the local stack frame, but

this is exactly the register which must be

corrupted in order to use the multiply instruction!

Although specific machines have been used in the

examples, similar problems abound in all machines. Indeed

it is clear that machines are most commonly designed for

programmers writing in assembler or FORTRAN, and furthermore

writing their programs in a particular style.

162

While it is clear that the problems could be called "mere

details" and that they are not difficult to surmount, it

remains that they complicate otherwise simple

code-generation algorithms, making compilers larger, slower,

and correspondingly more difficult to write, debug, and

maintain.

In conclusion it appears that the machine most suited to

supporting high-level languages should have a small but

complete set of very simple instructions, their simplicity

permitting rapid execution and great flexibility.

163

7 Conclusions

7.1 Viability of the technique

The techniques described above have been used to create

several IMP77 compilers which are in regular use on a number

of systems. In terms of total memory space required for a

compilation, about 80K bytes on the 7/32, they compare

favourably with other compilers. The major weakness seems

to be execution time which can vary from twice as long as

other compilers in the worst case, to half as long in the

best case. As most of the effort in writing the compilers

was spent in investigating the techniques involved and not

in minimising compile time, and as the compilers which ran

much faster were either totally, or partially written in

machine code (the IMP77 compilers are all written

exclusively in IMP77), it seems that the technique can be

used to produce acceptable service compilers.

7.2 Ease of portability

Although using I-code does not permit compilers to be

written in as short a time as with P-code and OCODE, the

large amount of code which is common to all of the compilers

written so far means that, given a working code generator as

a template, a new optimising compiler can be written in the

space of a few months, with the final result producing code

of high quality.

164

7.3 Nature of optimisations

During the course of the investigation it became clear

that one of the difficulties of optimisation is that gains

are achieved by applying a large number of ad hoc rules,

especially where peephole optimisations are concerned.

As instruction sets become more complicated and rich, there

is a corresponding increase in the variety of ways of

implementing high-level language features. This increases

the possibilities of optimisation and subsequently the

complexity of compilers. By using high-level intermediate

codes, such as I-code, it should be possible to concentrate

on machine-independent optimisations knowing that the

resulting intermediate code can be used to generate

efficient code for current machines. Eventually, when

better instruction sets are available, hopefully with only

one way of doing things and no opportunities for non-trivial

optimisation, the same intermediate code can be used to

drive code generators which are much simpler and more

directly portable.

165

Appendix Al

The IMP Intermediate Code

A Brief mmar

The IMP intermediate code may be considered a sequence of

instructions to a stack-oriented machine which generates

programs for specific computers. It is important to note

that the intermediate code describes the compilation process

necessary to generate an executable form of a program; it

does not directly describe the computation defined by the

program.

The machine which accepts the intermediate code has two

main components:

1 A Descriptor area. This is used to hold

descriptors containing machine-dependent

definitions of the objects the program is to

manipulate. This area is maintained in a

block-structured fashion, that is new descriptors

are added to the area during the definition of a

block and are removed from the area at the end of

the block.

2 A Stack. The stack holds copies of descriptors

taken from the descriptor area or created

specially.

166

Items on the stack are modified by intermediate

code control items to reflect operations

specified in the source program. Such

modifications may or may not result in code being

generated. From the point of view of this

definition stack elements are considered to have

at least three components:

i Type

ii Value

iii Access rule

The "Access rule" defines how the "Type" and

"Value" attributes are to interpreted in order to

locate the described object.

For example, the access rule for a constant could

be "Value contains the constant" while for a

variable it could be "Value contains the address

of the variable". Clearly, the access rules are

target-machine dependent. Descriptors may be

combined to give fairly complex access rules, as

in the case of applying "PLUS" to the stack when

the top two descriptors are for the variable X

and the constant 1, resulting in one descriptor

with the access rule "take the value in X and add

1 to it". The complexity of these access rules

may be restricted by a code-generator. In the

example above code could be generated to evaluate

X+1 resulting in an access rule "the value is in

register 111, say.

167

The importance of the code not describing the actual

computation which the source program specified but the

compilation process required, is seen when attempting to use

the code for statements of the form:

A := if B=C then D else E;

This could not be encoded as:

PUSH A

PUSH B

PUSH C

JUMP # L 1

PUSH D

BR L2
LOC L1
PUSH E

LOC L2
ASSVAL

The reason is that the items on the stack at the time of the

ASSVAL would be (from top to bottom) [E], [D], [A], because

no items were given which would remove them from the stack.

hence the ASSVAL would assign the value of E to D and then

leave A dangling on the stack.

Unless otherwise stated, all constants in the

intermediate code are represented in octal.

168

Descriptors

DEF TAG TEXT TYPE FORM SIZE SPEC PREFIX

This item causes a new descriptor to be generated

and placed in the descriptor area. On creation,

the various fields of the DEF are used to

construct the machine-dependent representation

required for the object.

TAG

TEXT

TYPE

FORM

is an identification which will

be used subsequently to refer to

the descriptor.

is the source-language identifier

given to the object (a null

string if no identifier was

specified).

is the type of the object:

GENERAL, INTEGER, REAL, STRING,

RECORD, LABEL, SWITCH, FORMAT.

is one of: SIMPLE, NAME, ROUTINE,

FN, MAP, PRED, ARRAY, NARRAY,

ARRAYN, NARRAYN.

SIZE is either the TAG of the

appropriate record format

descriptor for records, the

maximum length of a string

variable, or the precision of

numerical variables: DEFAULT,

BYTE, SHORT, LONG.

169

SPEC has the value SPEC or NONE

depending on whether or not the

item is a specification.

PREFIX is one of: NONE, OWN, CONST,

EXTERNAL, SYSTEM, DYNAMIC, PRIM,

PERM or SPECIAL. If SPECIAL is

given there will follow an

implementation-dependent

specification of the properties

of the object (such as that it is

to be a register, for example).

170

Parametera and- Formats

The parameters for procedures and the elements of record

formats are defined by a list immediately following the

procedures or format descriptor definition:

START

FINISH

ALTBEG

ALT

Start of definition list

End of definition list

Start of alternative sequence

Alternative separator

ALTEND End of alternative sequence.

Blocks

BEGIN Start of BEGIN block

END End of BEGIN block or procedure

171

PUSH <tag> Push a copy of the descriptor <tag> onto

the stack.

PROC <tag> This is the same as PUSH except that the

descriptor being stacked represents a

procedure which is about to be called

(using ENTER).

PUSHI <n> Push a descriptor for the integer constant

<n> onto the stack.

PUSHR <r> Push a descriptor for the real

(floating-point) constant <r> onto the

stack.

PUSHS <s> Push a descriptor for the string constant

<s> onto the stack.

SELECT <tag> TOS will be a descriptor for a record.

Replace this descriptor with one describing

the sub-element <tag> of this record.

172

Assignment

ASSVAL Assign the value described by TOS to the

variable described by SOS. Both TOS and

SOS are popped from the stack.

ASSREF Assign a reference to (the address of) the

variable described by TOS to the pointer

variable described by SOS. Both TOS and

SOS are popped from the stack.

JAM This is the same as ASSVAL except that the

value being assigned will be truncated if

necessary.

ASSPAR Assign the actual parameter described by

TOS to the formal parameter described by

SOS. This is equivalent to either ASSVAL

(for value parameters) or ASSREF (for

reference parameters).

RESULT TOS describes the result of the enclosing

function. Following the processing of the

result code must be generated to return

from the function.

173

MAP Similar to RESULT except that TOS describes

the result of a MAP. Again a return must

be generated.

DEFAULT <n>

INIT <n> Create N data items corresponding to the

last descriptor defined, and given them all

an initial (constant) value. The constant

is popped from the stack in the case of

INIT but DEFAULT causes the

machine-dependent default value to be used

(normally the UNASSIGNED pattern).

174

Binary operators

ADD

SUB

MUL

QUOT

DIVIDE

IEXP

REXP

AND

OR

XOR

LSH

RSH

CONC

ADDA

SUBA

Addition

Subtraction

Multiplication

Integer division

Real division

Integer exponentiation

Real exponentiation

Logical AND

Logical inclusive OR

Logical exclusive OR

Logical left shift
Logical right shift

String concatenate

++

The given operation is performed on TOS and SOS , both of

which are removed from the stack, and the result

(SOS op TOS) is pushed onto the stack.

e.g. A = B-C

PUSH A

PUSH B

PUSH C

SUB

ASSVAL

175

Unary Operators

NEG Negate (unary minus)

NOT Logical NOT (complement)

MOD Modulus (absolute value)

The given operation is performed on TOS.

176

Arrays

DIM <d> <n> The stack will contain <d> pairs of

descriptors corresponding to the lower and

upper bounds for an array. This

information is used to construct <n> arrays

and any necessary accessing information for

use through the last <n> descriptors to

have been defined. All of these

descriptors will be for similar arrays.

INDEX SOS will be the descriptor for a

multi-dimensional array and TOS will be the

next non-terminal subscript. The stack is

popped.

ACCESS SOS will be the descriptor of an array and

TOS will be the final/only subscript. Both

descriptors are replaced by a descriptor

for the appropriate element of the array.

E.g. given arrays A(1:5) and B(1:4, 2:6),

and integers J,K:

A(J) = 0 K = B(J, K)

PUSH A PUSH K

PUSH J PUSH B

ACCESS PUSH J
PUSHC 0 INDEX
ASSVAL PUSH K

ACCESS

ASSIGN

177

Internal labels

Internal labels are those labels in the

intermediate code which have been created

by the process of translating from the

source program, and so do not appear

explicitly in the source program. The main

property of these labels is that they will

only be referred to once. This fact can be

used to re-use these labels, as, for

example, a forward reference to a

currently-defined label must cause its

redefinition.

LOCATE <1> define internal label <1>

GOTO <1> forward jump to internal label <1>

REPEAT <1> backward jump to internal label <1>

178

Conditional branches

These branches are always forward.

JUMPIF <cond> <label>

JUMPIFD <cond> <label>

JUMPIFA <cond> <label>

Where: <cond> ::= =, 4#,

>, >=,
TRUE, FALSE

The two items on the top of the stack are compared and a

jump is taken to <label> is the condition specified by

<cond> is true. In the case of <cond> being TRUE or FALSE

only one item is taken from the stack, and this represents a

boolean value to be tested.

User Labels

LABEL <d> locate label descriptor <d>

JUMP <d> Jump to the label described by <d>

CALL <d> Call the procedure described by <d>

179

Sundry Items

ON <e> <1> Start of event trap for events <e>.

Internal label <1> defines the end of the

event block.

EVENT <e> Signal event <e>

STOP stop

MONITOR monitor

RESOLVE <m> Perform a string resolution

FOR Start of a j loop

SLABEL <sd> Define switch label

SJUMP <sd> Select and jump to switch label

LINE <1> Set the current line number to <1>

180

Appendix A2

The IMP77 Intermediate code

Internal representation

In production compilers the mnemonics used in the text
are output in an abbreviated form, each mnemonic being
translated into a single ASCII printing character.

OR G ALIAS c MCODE
" JUMPIFD H BEGIN d DIM
BNE I unused e EVENT
$ DEF J JUMP f FOR
% XOR K FALSE g unused
& AND L LABEL h ALTBEG

PUSHS M MAP i INDEX
(unused N PUSHI j JAM

unused 0 LINE k RELEASE
MUL P PLANT 1 LANG

+ ADD Q DIVIDE m MONITOR
SUB R RETURN n SELECT
CONCAT S ASSVAL o ON

/ QUOT T TRUE p ASSPAR
LOCATE U NEGATE q ALTEND
END V RESULT r RESOLVE

< unused w SJUMP s STOP
unused X IEXP t unused

> unused Y DEFAULT u ADDA

? JUMPIF Z ASSREF v MOD
@ PUSH [LSH w SUBA
A INIT \ NOT x REXP

B REPEAT] RSH y DIAG
C JUMPIFA PROC z CONTROL
D PUSHR SLABEL { START

E CALL a ACCESS ALT
F GOTO b BOUNDS } FINISH

181

Appendix A3

Results from the INTERDATA 7/32 and PDP11

In these results the various test programs are referred
to by the following codes:

PDP11 7/32 Program

P11.1
P11.2
P11.3
P11.4
P11.5
P11.6
P11.7
P11.8
P11.9
P11.10
P11.11
P11.12

732.1 TAKEON The compiler's grammar processor
732.2 EDWIN A graphics package
732.3 LAYOUT A text formatting program
732.4 ECCE A text editor
732.5 PILOT A CAI interpreter
732.6 TIMETAB A schools' timetable generator
732.7 DRAFT A draughts program
732.8 SQUARE A least-squares fitting program
732.9 GPM A macro processor
732.10 OS32MT An operating system emulator
732.11 HAL A high-level assembler
732.12 DIRECT A file and directory handler

182

Remembering values in registers

Code
Size

Total
Reduction

Incremental
Reduction

P732.1 0 uses 9504
1 use 8194 13.8% 13.8%
2 uses 8192 13.8% 0.0%

P732.2 0 uses 6500
1 use 6126 5.8% 5.8%
2 uses 6126 5.8% 0.0%

P732.3 0 uses 10960
1 use 9968 9.0% 9.0%
2 uses 9956 9.2% 0.2%

P732.4 0 uses 5288
1 use 4970 6.0% 6.0%
2 uses 4958 6.2% 0.2%

P732.5 0 uses 5468
1 use 4990 8.7% 8.7%
2 uses 4986 8.8% 0.1%

P732.6 0 uses 3424
1 use 3208 6.3% 6.3%
2 uses 3208 6.3% 0.0%

P732.7 0 uses 10736
1 use 9880 8.0% 8.0%
2 uses 9874 8.0% 0.0%

P732.8 0 uses 824
1 use 770 6.6% 6.6%
2 uses 770 6.6% 0.0%

P732.9 0 uses 6448
1 use 6148 4.6% 4.6%
2 uses 6148 4.6% 0.0%

P732.10 0 uses 22968
1 use 20656 10.1% 10.1%
2 uses 20650 10.1% 0.0%

P732.11 0 uses 13996
1 use 12470 10.9% 10.9%
2 uses 12442 11.1% 0.2%

P732.12 0 uses 32600
1 use 28532 12.5% 12.5%
2 uses 28392 12.9% 0.4%

183

Code
Size

Total
Reduction

Incremental
Reduction

--- ---------
P11.1 0 uses 9060 -

1 use 7712 14.9% 14.9%
2 uses 7660 15.4% 0.5%

P11.2 0 uses 6276 - -

1 use 6000 4.4% 4.4%
2 uses 6000 4.4% 0.0%

P11.3 0 uses 9992 - -
1 use 9480 5.1% 5.1%
2 uses 9444 5.5% 0.4%

P11.4 0 uses 5052 - -

1 use 4772 5.4% 5.4%
2 uses 4768 5.6% 0.2%

P11.5 0 uses 5096 - -

1 use 4460 12.5% 12.5%
2 uses 4452 12.6% 0.1%

P11.6 0 uses 3692 - -
1 use 3064 17.0% 17.0%
2 uses 3064 17.0% 0.0%

P11.7 0 uses 7976 - -

1 use 7060 11.5% 11.5%
2 uses 7032 11.8% 0.3%

P11.8 0 uses 668 - -
1 use 652 2.4% 2.4%
2 uses 624 6.6% 4.2%

P11.9 0 uses 4888 - -
1 use 4492 8.1% 8.1%
2 uses 4484 8.3% 0.2%

P11.10 0 uses 20318 - -

1 use 19120 5.9% 5.9%
2 uses 19120 5.9% 0.0%

P11.11 0 uses 12938 - -

1 use 12162 6.0% 6.0%
2 uses 12148 6.1% 0.1%

P11.12 0 uses 12068 - -
1 use 10594 12.2% 12.2%

2 uses 10584 12.3% 0.0%

184

Remembering sets registers (environments)

Code
Size

Total
Reduction

Incremental
Reduction

---- --------- ---------
P732.1 0 environments 8556 - -

1 environment 8316 2.8% 2.8%
2 environments 8238 3.7% 0.9%
3 environments 8232 3.8% 0.1%
4 environments 8222 3.9% 0.1%
5 environments 8218 4.0% 0.1%
6 environments 8192 4.2% 0.2%

P732.2 0 environments 6202 - -

1 environment 6128 1.2% 1.2%
2 environments 6130 1.2% 0.0%
3 environments 6126 1.2% 0.0%
4 environments 6126 1.2% 0.0%

5 environments 6126 1.2% 0.0%
6 environments 6126 1.2% 0.0%

P732.3 0 environments 10174 - -

1 environment 10062 1.1% 1.1%
2 environments 9968 2.0% 0.9%
3 environments 9966 2.0% 0.0%
4 environments 9964 2.1% 0.1%
5 environments 9956 2.1% 0.1%
6 environments 9956 2.1% 0.1%

P732.4 0 environments 5068 - -

1 environment 4978 1.8% 1.8%
2 environments 4958 2.2% 0.4%
3 environments 4958 2.2% 0.0%
4 environments 4958 2.2% 0.0%
5 environments 4958 2.2% 0.0%
6 environments 4958 2.2% 0.0%

P732.6 0 environments 3262 - -

1 environment 3250 0.4% 0.4%
2 environments 3216 1.4% 1.0%
3 environments 3208 1.7% 0.3%
4 environments 3208 1.7% 0.0%
5 environments 3208 1.7% 0.0%
6 environments 3208 1.7% 0.0%

P732.7 0 environments 10062 - -

1 environment 9970 0.9% 0.9%
2 environments 9894 1.7% 0.8%

3 environments 9880 1.8% 0.1%
4 environments 9874 1.9% 0.1%
5 environments 9874 1.9% 0.0%
6 environments 9874 1.9% 0.0%

185

P732.8 0 environments 806
1 environment 782 3.0% 3.0%
2 environments 782 3.0% 0.0%
3 environments 770 4.5% 1.5%
4 environments 770 4.5% 0.0%
5 environments 770 4.5% 0.0%
6 environments 770 4.5% 0.0%

P732.9 0 environments 6244

1 environment 6202 0.7% 0.7%
2 environments 6156 1.4% 0.7%
3 environments 6158 1.4% 0.0%
4 environments 6148 1.5% 0.1%
5 environments 6148 1.5% 0.0%
6 environments 6148 1.5% 0.0%

P732.10 0 environments 21214
1 environment 20928 1.3% 1.3%
2 environments 20748 2.2% 0.9%
3 environments 20678 2.5% 0.3%
4 environments 20678 2.5% 0.0%
5 environments 20668 2.6% 0.1%
6 environments 20650 2.6% 0.0%

P732.11 0 environments 12772
1 environment 12592 1.4% 1.4%
2 environments 12486 2.2% 0.8%
3 environments 12472 2.3% 0.1%
4 environments 12460 2.4% 0.1%
5 environments 12452 2.5% 0.1%
6 environments 12442 2.6% 0.1%

P732.12 0 environments 11522
1 environment 11418 0.9% 0.9%
2 environments 11342 1.6% 0.7%
3 environments 11314 1.8% 0.2%
4 environments 11314 1.8% 0.0%
5 environments 11296 2.0% 0.2%
6 environments 11296 2.0% 0.0%

P11.1 0 environments 7686 - -

1 environment 7670 0.2% 0.2%
2 environments 7660 0.3% 0.1%

3 environments 7660 0.3% 0.0%
4 environments 7660 0.3% 0.0%
5 environments 7660 0.3% 0.0%
6 environments 7660 0.3% 0.0%

P11.2 0 environments 6012 - -

1 environment 6000 0.2% 0.2%

2 environments 6000 0.2% 0.0%
3 environments 6000 0.2% 0.0%
4 environments 6000 0.2% 0.0%

5 environments 6000 0.2% 0.0%
6 environments 6000 0.2% 0.0%

186

P11.3 0 environments 9472
1 environment 9440 0.3% 0.3%
2 environments 9444 0.3% -0.0%
3 environments 9444 0.3% 0.0%
4 environments 9444 0.3% 0.0%
5 environments 9444 0.3% 0.0%
6 environments 9444 0.3% 0.0%

P11.4 0 environments 4784 0.2% 0.2%
1 environment 4776 0.2% 0.0%
2 environments 4776 0.2% 0.0%
3 environments 4776 0.2% 0.0%
4 environments 4776 0.2% 0.0%
5 environments 4772 0.2% 0.0%
6 environments 4768 0.3% 0.1%

P11.5 0 environments 4512
1 environment 4464 1.1% 1.1%
2 environments 4456 1.2% 0.1%
3 environments 4452 1.3% 0.1%
4 environments 4452 1.3% 0.0%
5 environments 4452 1.3% 0.0%
6 environments 4452 1.3% 0.0%

P11.6 0 environments 3076 - -

1 environment 3070 0.2% 0.2%
2 environments 3064 0.4% 0.2%
3 environments 3064 0.4% 0.0%
4 environments 3064 0.4% 0.0%
5 environments 3064 0.4% 0.0%
6 environments 3064 0.4% 0.0%

P11.7 0 environments 7104 - -

1 environment 7048 0.8% 0.8%
2 environments 7048 0.8% 0.0%

3 environments 7048 0.8% 0.0%
4 environments 7048 0.8% 0.0%
5 environments 7048 0.8% 0.0%
6 environments 7032 1.0% 0.2%

P11.8 0 environments 640 - -

1 environment 624 2.5% 2.5%
2 environments 624 2.5% 0.0%

3 environments 624 2.5% 0.0%
4 environments 624 2.5% 0.0%

5 environments 624 2.5% 0.0%

6 environments 624 2.5% 0.0%
P11.9 0 environments 4492 - -

1 environment 4484 0.2% 0.2%

2 environments 4484 0.2% 0.0%

3 environments 4484 0.2% 0.0%

4 environments 4484 0.2% 0.0%

5 environments 4484 0.2% 0.0%

6 environments 4484 0.2% 0.0%

187

P11.10 0 environments 19332 - -

1 environment 19196 0.7% 0.7%
2 environments 19158 0.9% 0.2%
3 environments 19138 1.0% 0.1%
4 environments 19138 1.0% 0.0%
5 environments 19120 1.1% 0.1%
6 environments 19120 1.1% 0.0%

P11.11 0 environments 12280 - -

1 environment 12200 0.6% 0.6%
2 environments 12168 0.9% 0.3%
3 environments 12160 1.0% 0.1%
4 environments 12156 1.0% 0.0%
5 environments 12148 1.1% 0.1%
6 environments 12148 1.1% 0.0%

P11.12 0 environments 10690 - -

1 environment 10616 0.7% 0.7%
2 environments 10604 0.8% 0.1%
3 environments 10604 0.8% 0.0%
4 environments 10594 0.9% 0.1%
5 environments 10584 1.0% 0.1%
6 environments 10584 1.0% 0.0%

188

Simple allocation of arrays and remembering subscripts

Allocation
Neither Simple (gain)

Remembering
Subscripts (gain)

P732.1 8596 8476 (1.4%) 8312 (3.3%)
P732.2 6126 6126 (0.0%) 6126 (0.0%)
P732.3 10450 10114 (3.2%) 10426 (0.2%)
P732.4 5056 4958 (1.9%) 5056 (0.0%)
P732.5 5306 5054 (4.7%) 5308 -(0.0%)
P732.6 3384 3254 (3.8%) 3386 -(0.0%)
P732.7 10346 10112 (2.3%) 10344 (0.0%)
P732.8 806 806 (0.0%) 770 (4.5%)
P732.9 6138 6138 (0.0%) 6148 -(0.2%)
P732.10 20806 20684 (0.6%) 20776 (0.1%)
P732.11 12442 12442 (0.0%) 12442 (0.0%)
P732.12 11976 11946 (0.2%) 11326 (5.4%)

Both optimisations Total gain

------------------ P732.1 8192

P732.2 6126 0.0%
P732.3 9956 4.7%
P732.4 4958 1.9%
P732.5 4986 6.0%

P732.6 3208 5.2%
P732.7 9874 4.6%

P732.8 770 4.5%
P732.9 6148 -0.2%
P732.10 20650 0.7%

P732.11 12442 0.0%

P732.12 11296 5.8%

189

Allocation Remembering
Neither Simple (gain) Subscripts (gain) ------ ----------

P 1 1 . 1 8572 8188 (4.5%) 7704 00.1%)
P11.2 6000 6000 (0.0%) 6000 (0.0%)
P11.3 9764 9556 (2.1%) 9644 (1.2%)
P11.4 4848 4776 (1.5%) 4848 (0.0%)
P11.5 4656 4568 (1.9%) 4452 (4.4%)
P11.6 3356 3202 (4.6%) 3218 (4.1%)
P11.7 7844 7728 (1.4%) 7204 (8.2%)
P11.8 644 624 (3.1%) 644 (0.0%)
P11.9 4796 4796 (0.0%) 4484 (6.5%)
P11.10 19236 19140 (0.5%) 19216 (0. 1%)
P11 . 11 12148 12148 (0.0%) 12148 (0.0%)
P11.12 11094 11060 (0.3%) 10616 (4.3%)

Both optimisations Total gain
------------------ ----------

P11.1 7660 10.6%
P11.2 6000 0.0%
P11.3 9444 3.3%
P11.4 4768 1.6%
P11.5 4452 4.4%
P11.6 3064 8.7%
P11.7 7032 10.4%
P11.8 624 3.1%
P11.9 4484 6.5%
P11.10 19120 0.6%
P11.11 12148 0.0%
P11.12 10584 4.6%

190

Simplifying: X = X I

Code
Without

Code
With
---- Gain

P732. 1 8292 8192 1.2%
P732.2 6156 6126 0.5%
P732.3 10068 9956 1.1%
P732.4 5088 4958 2.6%
P732. 5 5180 4986 3.7%
P732. 6 3368 3208 4.8%
P732. 7 11438 11296 1.2%
P732.8 772 770 0.2%
P732. 9 6214 6148 1.1%
P732. 10 21086 20650 2.1%
P732.11 12590 12442 1.2%
P732. 12 11438 11296 1.2%

P11.1 8284 7660 7.5%
P11.2 6220 6000 3.5%
P11.3 10040 9444 5.9%
P11.4 5136 4768 7.2%
P11.5 4800 4452 7.2%
P11.6 3342 3064 8.3%
P11.7 7596 7032 7.4%
P11.8 668 624 6.6%
P11.9 4724 4484 5.1%
P11.10 20634 19128 7.3%
P11.11 12892 12148 5.8%
P11.12 11492 10584 7.9%

191

Passing some parameters in registers

Code
Size

Total
Reduction

Incremental
Reduction ---- ---------

P732.1 0 registers 8862
1 register 8360 5.7% 5.7%
2 registers 8192 7.6% 1.9%

P732.2 0 registers 7196
1 register 6544 9.1% 9.1%
2 registers 6126 14.9% 5.8%

P732.3 0 registers 10586
1 register 9976 5.8% 5.8%
2 registers 9956 6.0% 0.2%

P732.4 0 registers 5126
1 register 4958 3.3% 3.3%
2 registers 4958 3.3% 0.0%

P732.5 0 registers 5198
1 register 5022 3.4% 3.5%
2 registers 4986 4.1% 0.7%

P732.6 0 registers 3402
1 register 3222 5.3% 5.3%
2 registers 3208 5.7% 0.4%

P732.7 0 registers 10400 -

1 register 10048 3.4% 3.4%
2 registers 9874 5.0% 1.6%

P732.8 0 registers 840 -
1 register 810 3.6% 3.6%
2 registers 770 8.3% 4.7%

P732.9 0 registers 6404 - -

1 register 6172 3.6% 3.6%
2 registers 6148 4.0% 0.4%

P732.10 0 registers 21650 - -
1 register 20826 3.8% 3.8%
2 registers 20650 4.6% 0.8%

P732.11 0 registers 13476 - -
1 register 12442 7.7% 7.7%
2 registers 12442 7.7% 0.0%

P732.12 0 registers 11916 - -

1 register 11452 3.9% 3.9%
2 registers 11296 5.2% 1.3%

192

Code
Size

Total
Reduction

Incremental
Reduction

-- P11.1 0 registers 7796 .

1 register 7756 0.5% 0.5%
2 registers 7660 1.7% 1.2%

P11.2 0 registers 6192 -
1 register 6072 1.9% 1.9%
2 registers 6000 3. 1% 1.2%

P11.3 0 registers 9564 -
1 register 9448 1.2% 1.2%
2 registers 9444 1.2% 0.0%

P11.4 0 registers 4776 -

1 register 4768 0.2% 0.2%
2 registers 4768 0.2% 0.0%

P11.5 0 registers 4508 -
1 register 4452 1.2% 1.2%
2 registers 4452 1.2% 0.0%

P11.6 0 registers 3098 -
1 register 3064 1.1% 1.1%
2 registers 3064 1.1% 0.0%

P11.7 0 registers 7124 -
1 register 7096 0.4% 0.4%
2 registers 7032 1.3% 0.9%

P11.8 0 registers 624 -
1 register 624 0.0% 0.0%
2 registers 624 0.0% 0.0%

P11.9 0 registers 4520 -
1 register 4488 0.7% 0.7%

2 registers 4484 0.8% 0.1%
P11.10 0 registers 19302

1 register 19166 0.7% 0.7%

2 registers 19128 0.9% 0.2%
P11.11 0 registers 12364 -

1 register 12152 1.7% 1.7%

2 registers 12148 1.7% 0.0%
P11.12 0 registers 10734 -

1 register 10648 0.8% 0.8%

2 registers 10584 1.4% 0.6%

193

Remembering condition-codes

Unknown Remembered Gain

- P732.1 8820 8192 0.3%
P732.2 6134 6126 0.1%
P732.3 9976 9956 0.2%
P732.4 4968 4958 0.2%
P732.5 4988 4986 0.0%
P732.6 3212 3208 0.1%
P732.7 9880 9874 0.1%
P732.8 770 770 0.0%
P732.9 6150 6148 0.0%
P732.10 20684 20650 0.2%
P732.11 12474 12442 0.2%
P732.12 11318 11296 0.2%

P11.1 7732 7660 0.9%
P11.2 6012 6000 0.3%
P11.3 9516 9444 0.8%
P11.4 4792 4768 0.5%
P11.5 4452 4452 0.0%
P11.6 3076 3064 0.4%
P11.7 7064 7032 0.4%
P11.8 624 624 0.0%
P11.9 4496 4484 0.3%
P11.10 19204 19128 0.4%
P11.11 12192 12148 0.4%
P11.12 10626 10584 0.4%

194

S6L

(%0'0) t8SOL (%0'0) h8SOL (%0'0) h8SOL h8SOL ?L*LLd
(%?'0) h?L?L ($L'0) 9EL?L ($L'0) 98L?L 8hl?L LL'LLd
(%0'0) 8?L6L (%0'0) 8?L6L (%0'0) 8?L6L 9?L6L OL LL d
(%0'0) h8hh (%0'0) h8hh (%0'0) h8hh h8hh 6'LLd
($8'L) 9L9 (%9'0) 0?9 (%9'0) 0?9 h?9 9 L Ld
(%h'O) hOOL (%0'0) ?8OL (%h'O) hOOL ?EOL L'LLd
($L'0) 090E (WO) 090E (%0'0) h908 h908 9'LLd
($L'0) 8hhh (%0'0) ?Shh (%L*O) 8hhh ?Shh S'LLd
(%0'0) 89Lh (%0'0) 89Lh (%0'0) 89Lh 89Lh h'LLd
(%L'0) h8h6 (%l'0) h8h6 (%0'0) hhh6 hhh6 E LL d
(%?'0) 8865 (%?'0) 9965 (%0'0) 0009 0009 ?'LLd
(%0'0) 099L (%0'0) 099L (%0'0) 099L 099L L LL d

(%h'0) 95?LL (%?'0) ?L?LL (%l'0) 08?LL 96?LL ?l'?8Ld
(%L'L) 908?L (%9'0) ?h8?L (%8'0) 90h?L ?hh?L LL ?8Ld
(%8'0) 06h0? (%h'0) 8550? (%8'0) 995O? 0590? Ol'?8Ld
(%h'0) 0?L9 (%8'0) ?EL9 (%?'0) 9EL9 9hL9 6'?8Ld
(%h'S) 9?L (%?'h) 88L (%S'O) h9L OLL 8'?8Ld
(%9'L) ?L96 (%h'0) h886 (%?'L) ?SL6 tL96 L'?8Ld
(%L'?) ??L8 (We) ?) OtLE (%h'0) h6L8 80?8 9'?8Ld
(%h'0) 996h

'

(%l'0) ?96h (%8'0) OL6h 986h S'?8Ld
(%8 0) ?h6h (%8'0) ?h6h (%?'0) OS6h 8S6h h'?8Ld

(%6'0) h986 (%8'0) ?L86 (%?'0) 8h66 9566 8'?8Ld
(%8'l) hh09 (%?'L) tS09 ($8'0) OLL9 9?L9 ?'?8Ld
(%L'0) 9818 (%h'0) 0918 (%?'0) ?LL8 ?6L9 l'?8Ld

------------- --------
BjaQ a2 a 8ui8jaQ asaaw iaygtaH

paumiod

,T Timuug

AU optimisations

None All Gain

P732. 1 11300 8136 28.0%
P732.2 7520 6044 19.6%
P732. 3 12286 9864 19.7%
P732.4 5782 4942 14.5%
P732.5 6204 4966 19.9%
P732. 6 4004 3122 22.0%
P732.7 11750 9812 16.5%
P732. 8 988 728 26.3%
P732.9 6848 6120 10.6%
P732. 10 24722 20490 17.1%
P732. 11 14618 12306 15.8%
P732. 12 14064 11256 20.0%

P11.1 9664 7660 20.7%
P11.2 6588 5988 9.1%
P11.3 11092 9434 14.9%
P11.4 5540 4768 13.9%
P11.5 5572 4448 20.2%
P11.6 3666 3060 16.5%
P11.7 8632 7004 18.7%
P11.8 752 616 18.1%
P11.9 5256 4484 14.7%
P11.10 23940 19128 20.1%
P11.11 14328 12124 15.4%
P11.12 12816 10584 17.8%

196

M time in input/gutRmt
(as percentages of compile time)

Phase 1 Phase 2 Phase 3

---------- ---
Total % Total % Total %

CPU I/O CPU I/O CPU I/O

All optimisations:

P732.1: 53% 8% 32% 6% 14% 5%

P732.2: 53% 8% 35% 8% 12% 5%

P732.3: 51% 7% 34% 7% 15% 5%
P732.4: 54% 8% 32% 6% 14% 5%

P732.5: 49% 12% 36% 5% 14% 5%

P732.6: 50% 7% 37% 7% 12% 6%

P732.7: 48% 7% 39% 7% 13% 7%

P732.8: 54% 7% 36% 7% 10% 5%

P732.9: 50% 8% 36% 8% 14% 6%

P732.10: 54% 6% 28% 5% 17% 4%

P732.11: 52% 7% 32% 6% 16% 5%

P732.12: 52% 8% 32% 8% 17% 7%

No optimisation:

P732.1 50% 7% 30% 7% 19% 8%

P732.2 55% 8% 31% 9% 14% 8%

P732.3 54% 8% 28% 8% 18% 6%

P732.4 57% 8% 26% 7% 16% 6%

P732.5 52% 8% 30% 8% 17% 7%

P732.6 53% 8% 32% 9% 15% 8%

P732.7 49% 7% 31% 8% 19% 8%

P732.8 56% 7% 32% 9% 12% 6%

P732.9 55% 9% 29% 8% 16% 7%

P732.10 55% 6% 23% 6% 21% 5%

P732.11 55% 8% 26% 6% 20% 6%

P732.12 54% 8% 27% 8% 19% 8%

197

Overall CPU in in ut/output

Internal I/O = communication between phases.
External I/O = source input & object file output.

Internal I/O External I/O

No Opts. All Opts. No Opts. All Opts.

-------- --------- -------- ---------
P732.1 16% 13% 7% 7%
P732.2 16% 16% 8% 7%

P732.3 15% 13% 7% 6%
P732.4 14% 13% 7% 7%
P732.5 16% 12% 7% 6%
P732.6 17% 14% 8% 7%

P732.7 17% 15% 6% 6%
P732.8 18% 16% 5% 4%

P732.9 16% 15% 8% 7%
P732.10 13% 11% 6% 6%
P732.11 12% 11% 6% 6%
P732.12 16% 15% 8% 7%

198

References

Aho, A.V. & Ullman, J.P. (1972)

"Optimisation of straight line programs".

SIAM J. March 1972.

Allen, F.E. & Cocke, J.A. (1971)

"A catalogue of optimising techniques".

Design and optimisation of compilers

Prentice-Hall, R. Rustin (ed). 1971.

Basili, V.R. & Turner, A.J. (1975)

"A transportable extendable compiler".

Software - Practice and Experience,

Vol 5, 1975.

Bell, G. (1973)

"Threaded Code".

CACM Vol 16, No 6, 1973.

Berry, R.E. (1978)

"Experience with the PASCAL P-compiler".

Software - Practice and Experience

Vol 8, No 5, 1978.

199

Berthaud, M. & Griffiths, M. (1973)

"Incremental compilation and conversational

interpretation".

Annual review in automatic programming,

Vol 7, Part 2, 1973.

Bourne, S.R., Birrell, A.D. & Walker, I.W. (1975)

"Z code, an intermediate object code for

ALGOL68".

The Computer Laboratory, Cambridge, 1975.

Branquart, P., Cardinael, I. & Lewi, J. (1973)

"Optimised translation process, application to

ALGOL68".

Int. Comp. Symp. 1973.

Bron, C. & De Vries, W. (1976)

"A PASCAL compiler for PDP11 minicomputers".

Software - Practice and Experience

Vol 6, 1976.

200

Brooker, R.A. et al.

"Experience with the compiler-compiler".

Comp. J. Vol 9, 1967.

Brown, P. (1972)

"Levels of language for portable software".

CACM. 15, 1972.

Brown, P. (1977)

"Macro processors".

Software Portability (ed. P. Brown).

Cambridge University Press, 1977.

Buckle, J.K. (1978)

"The ICL 2900 Series".

Macmillan Press Ltd., 1978.

Cocke, J. (1970)

"Global common subexpression elimination".

ACM SIGPLAN notices, Vol 5, No 7. 1970.

201

Cocke, J. & Schwartz, J.T. (1970)

"Programming languages and their compilers".

Courant Institute of Mathematical Sciences,

New York University, 1970.

Coleman, S.S., Poole, P.C. & Waite, W.M. (1974)

"The Mobile programming system, JANUS".

Software - Practice and Experience.

Vol 4, 1974.

Dewar, H. (1975)

"The ISYS system".

Internal memo, Department of Computer

Science, University of Edinburgh, 1975.

Feldman, J.A. (1966)

"A formal semantics for computer languages

and its application in a compiler-compiler".

CACM 9, 1966.

Feldman, J.A. & Gries, D. (1968)

"Translator writing systems".

CACM 11, 1968.

202

Gardner, P. (1977)

"An ALGOL68C bootstrap".

Memo CSM-20, University of Essex, 1977.

Gilmore, B.A.C. (1980)

"DEIMOS User's Manual".

Edinburgh Regional Computing Centre.

Grosse-Lindemann, C.O. & Nageli, H.H. (1976)

"Postlude to a PASCAL compiler bootstrap on

the DEC system 10".

Software - Practice and Experience,

Vol 6, 1976.

Haddon, B.K. & Waite, W.M. (1978)

"Experience with the Universal Intermediate

language JANUS".

Software - Practice and Experience

Vol 8, No 5, 1978.

Halpern, M.I. (1965)

"Machine Independence: its technology and

economics".

CACM Vol 8 No 12, 1965.

203

Hawkins, E.N. & Huxtable, D.H.R. (1963)

"A multi-pass translation scheme for Algol

60".

Annual review in automatic programming, No 3,

1963.

Hecht, M.S. & Ullman, J.D. (1975)

"A simple algorithm for global data flow

analysis problems".

SIAM J. Vol 4, 1975.

Huxtable, D.H.R. (1964)

"On writing an optimising translator for Algol

60".

Introduction to System Programming,

P. Wegner (ed.),

Academic Press, 1964.

Interdata (1974)

"Common Assembler Language (CAL) User's

Manual".

Interdata publication number 29-375R04. 1974.

204

Jensen, K. & Wirth, N. (1976)

"PASCAL User Manual and Report".

Springer-Verlag, 1976.

Kildall, G.A. (1973)

"A unified approach to global program

optimisation".

CACM Principles of programming languages,

1973.

Klint, P. (1979)

"Line numbers made cheap".

CACM Vol 22, No. 10. 1979.

Knuth, D.E. (1962)

"History of writing compilers".

Proc. ACM 17, 1962.

Knuth, D.E. (1971)

"An empirical study of FORTRAN programs".

Software - Practice and Experience,

Vol 1, 1971.

205

Knuth, D.E. (1974)

"Structured programming with GOTO statements".

ACM Computing Surveys 6, No 4, 1974.

Krogdahl, S., Myhre, 0., Robertson, P.S., & Syrrist, G.

(1980)

The SCALA project: S-PORT.

Norwegian Computing Centre working paper.

Lecarme, 0. & Peyrolle-Thomas, M. (1978)

"Self-compiling compilers: An appraisal of

their implementation and portability".

Software - Practice and Experience

Vol 8, No 2, 1978.

Lowry, E.S. & Medlock, C.W. (1969)

"Object code optimisation".

CACM Vol 12, 1969.

McKeeman, W.M. (1965)

"Peephole Optimisation".

CACM Vol 8, 1965.

206

Mock, 0., Olsztyn, J. et al (1958)

"The problem of programming communication with

changing machines".

CACM Vol 1, No 8, 1958.

Nelson, P.A. (1979)

"A comparison of PASCAL intermediate

languages".

ACM SIGPLAN Notices, Vol 14, No 8, 1979.

Nori, K.V., Ammann, U. et al (1974 & 1976)

"The PASCAL <P>-compiler: Implementation

notes".

Eidgenossische Technische Hochschule, Zurich,

1976.

Pavelin, C.J. (1970)

"The improvement of program behaviour in paged

computer systems".

Ph.D. Thesis, University of Edinburgh, 1970.

207

Poole, P. (1974)

"Portable and adaptable compilers".

Advanced course on compiler construction,

Springer-Verlag 1974.

Richards, M. (1971)

"The portability of the BCPL compiler".

Software - Practice and Experience,

Vol 1, 1971.

Richards, M. (1977)

"Portable Compilers".

Software Portability (ed. P. Brown),

Cambridge University Press, 1977.

Robertson, P.S. (1977)

"The IMP-77 Language".

Internal Report CSR-19-77, Department of

Computer Science, University of Edinburgh,

1977.

208

Russell, W. (1974)

"A translator for PASCAL P-code".

Final year project report, Department of

Computer Science, University of Edinburgh,

1974.

Satterthwaite, E. (1972)

"Debugging tools for high-level languages".

Software - Practice and Experience,

Vol 2, 1972.

Schneck, P.B. & Angel, E. (1973)

"A FORTRAN to FORTRAN optimising compiler".

Computer Journal Vol 16, 1973.

Sibley, R.A. (1961)

"The SLANG System".

CACM Vol 4, 1961.

Spier, M.J. (1976)

"Software Malpractice - A distasteful

experience".

Software - Practice and Experience,

Vol 6, 1976.

209

Steel, T.B. (1961)

"A first version of UNCOL".

Proc. AFIPS WJCC 19, 1961.

Stephens, P.D. (1974)

"The IMP language and compiler".

Computer Journal Vol 17, 1974.

Stockton-Gaines, R. (1965)

"On the translation of machine language

programs".

CACM Vol 8, No 12, 1965.

Szymanski, T.G.

"Assembling code for machines with

span-dependent instructions".

CACM 21, 1978.

Tanenbaum, A.S. (1976)

"Structured Computer Organisation".

Prentice/Hall International, 1976.

210

Thompson, K. & Ritchie, D.M. (1974)

"The UNIX timesharing system".

CACM Vol 17, No 7, 1974.

Trout, R.G. (1967)

"A compiler-compiler system".

Proc. ACM, 1967.

Waite, W.M. (1970)

"The Mobile Programming System: STAGE 2".

CACM, vol 13, 1970.

Welsh, J. & Quinn, C. (1972)

"A PASCAL compiler for the ICL 1900 series".

Software - Practice and Experience,

Vol 2, 1972.

Whitfield, H. & Wight, A.S. (1973)

"EMAS - The Edinburgh Multi-Access System".

Computer Journal Vol 16, 1973.

211

Wichmann, B.A. (1977)

"Optimisation".

Software Portability (ed. P. Brown),

Cambridge University Press, 1977.

Wichmann, B.A. (1977)

"How to call procedures, or second thoughts

on Ackermann's function".

Software - Practice and Experience

Vol 7, No 3, 1977.

Williams, M.H.

"Long/short address optimisation in

assemblers".

Software - Practice and Experience,

Vol 9 No 3, 1978

Wulf, W., Johnsson, R.K., Weinstock, C.B., Hobbs, S.O.

& Geschke, C.M. (1975)

"The design of an optimising compiler".

Elsevier Computer Science Library, 1975.

212

	PhD coversheet April 2012
	EDI-INF-PHD-81-007.pdf

