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ABSTRACT 

The aim of this work was to investigate the problems 

associated with using machine-independent intermediate 

codes in the translation from a high-level language into 

machine code, with emphasis on minimising code size and 

providing good run-time diagnostic capabilities. 

The main result was a machine-independent intermediate 

code, I-code, which has been used successfully to develop 

optimising and diagnostic compilers for the IMP77 language 

on a large number of different computer systems. In 

addition, the work has been used to lay the foundations 

for a project to develop an intermediate code for portable 

SIMULA compilers. 

The major conclusions of the research were that 

carefully designed machine-independent intermediate codes 

can be used to generate viable optimising and diagnostic 

compilers, and that the commonality introduced into 

different code generators processing the code for 

different machines simplifies the tasks of creating new 

compilers and maintaining old ones. 
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1. Introduction 

Compilers for high-level languages form a significant 

part of most computer systems, and with an ever increasing 

number and variety of machine architectures on the market 

the problems of compiler development, testing, and 

maintenance consume more and more manpower and computer 

time. Moreover, as computer technology is improving and 

changing rapidly it is becoming evident that software costs 

will increasingly dominate the total cost of a system. 

Indeed, it may not be long before the lifetime of software 

regularly exceeds that of the hardware on which it was 

originally implemented, a state of affairs quite different 

from that envisaged by Halpern when he concluded that "the 

importance of the entire question of machine-independence is 

diminishing .." [Halpern, 1965]. In addition, there is a 

need to encourage the slowly-developing trend to write the 

majority of software in high-level languages. Even though 

the advantages of such an approach are many, a large number 

of users still have a love of machine-code, usually fostered 

by thoughts of "machine efficiency". Clearly, techniques 

must be developed to simplify the production of usable 

compilers which can "optimise" the match between the 

executing program and the user's requirements, be they for 

fast execution, small program size, reasonable execution 

time but with good run-time diagnostics, or whatever. 
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One popular method for reducing the complexity of a 

compiler is to partition it into two major phases: one 

language-dependent and the other machine-dependent. The 

idea is that the language-dependent phase inputs the source 

program and deals with all the syntactic niceties of the 

language, finally generating a new representation of the 

program, an intermediate code. This is then input by a 

second phase which uses it to generate machine-code for the 

target computer. In this way it should be possible to 

produce a compiler to generate code for a different machine 

by taking the existing first phase and writing a new second 

phase. This ability to move a large portion of the compiler 

from machine to machine has led to such compilers being 

referred to as "portable compilers" even though the term is 

perhaps misleading, as only part of the complete compiler 

can be moved without change. In practice many existing 

compilers generate intermediate representations of the 

program which are passed around within the compiler, for 

example the "analysis records" produced by the syntactic 

phase of compilation, but for the purposes of this work it 
is only when these representations are machine-independent 

and are made available outwith the compiler that they will 
be termed intermediate codes. 

Much of the emphasis in designing intermediate codes has 

been on enabling a compiler to be bootstrapped quickly onto 

a new machine - either by interpreting the intermediate 

code, or by using a macro generator to expand it into 
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machine-code [Brown, 19771. Once this has been done the 

intention is that the quality of the code so produced can be 

improved at leisure. While this approach has been very 

successful and relatively error-free, it has been the 

experience of several implementors that it is difficult to 

adapt the scheme to produce highly optimised code [Russell, 

19741; apparently considerations of portability and 

machine-independence have caused the problems of 

optimisation to be overlooked. The aspect of 

intermediate-code design which has received most debate 

concerns the level of the code: low-level with a fairly 

simple code-generator, or high-level with a more complex 

code-generator [Brown, 19721. 

This thesis attempts to put machine-independence and 

optimisation on an equal footing, and describes the use of 

an intermediate code which takes a novel view of the 

process. Instead of the intermediate code describing the 

computation to be performed, it describes the operation of a 

code-generator which will produce a program to perform the 

required computation. This effectively adds an extra level 

of indirection into the compilation, weakening any linkage 

between the form of the intermediate code and the object 

code required for a particular implementation. 

In essence I-code attempts to describe the results required 

in a way which does not constrain the method of achieving 

those results. 
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In particular it should be noted that the code described, 

I-code, was designed specifically for the language IMP-77, a 

systems implementation language which contains many of the 

constructions which pose problems for optimisation 

(Robertson, 1979). It in no way attempts to be a 

"universal" intermediate code. Notwithstanding, the code, 

with a small number of minor extensions to cover non-IMP 

features, has been used successfully in an ALGOL 60 compiler 

and is currently proving viable in projects for writing 

Pascal and Fortran 77 compilers. 

The intermediate code as finally designed is completely 

machine independent, except inasmuch as the source program 

it describes is machine dependent, demonstrating that the 

problems may not be as intractable as thought by Branquart 

et al. who state that "clearly complete machine independency 

is never reached" [Branquart, 1973]. 

In addition to the problems of machine independence there 

is also the question of operating system independence, as 

nowadays it is common for machines to have several systems 

available. For this reason the task of producing a compiler 

is far from finished when it can generate machine code 

[Richards, 1977). To simplify the generation of versions of 

a compiler for different operating systems, a third phase of 

compilation was added, although it soon became clear that 

the extra phase could be used for other purposes as well, as 

will be shown in section 4. 
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Throughout the text, examples are given of the code 

produced by compilers written to demonstrate the power of 

the intermediate code. The examples of the intermediate 

code are couched in terms of mnemonics for the various code 

items, although the production compilers use a compacted 

representation. The code and its representations are 

described in Appendix Al and Appendix A2. 

In the examples of code generated for various 

constructions, it should be appreciated that the exact 

instructions and machine features used will depend very much 

on the context in which the code is produced, and so only 

typical code sequences can be given. 

The machines for which code is demonstrated are indicated 

by the following abbreviations in parentheses: 

(Nova) Data General NOVA 

(PDP10) Digital Equipment Corporation PDP10 

(PDP11) Digital Equipment Corporation PDP11 

(VAX) Digital Equipment Corporation VAX 11/780 

(GEC4080) General Electric Company 4080 

(ICL2900) International Computers Limited 2900 

(4/75) International Computers Limited 4/75 

(7/16) Interdata 7/16 

(7/32) Interdata 7/32 

(PE3200) Perkin Elmer 3200 
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2 Intermediate codes 

This section gives a brief account of the more important 

intermediate codes which have been discussed and have had an 

influence on the design of I-code. 

2.1 Un o1 

UNCOL, UNiversal Computer Orientated Language, [Mock, 

1958], was an early attempt to specify a means for solving 

the M*N problem of producing compilers for M languages to 

run on N machines. It was proposed that an intermediate 

language, UNCOL, be defined which would be able to express 

the constructs from any language, and which could itself be 

translated into code for any machine, resulting in the need 

for only M+N compilers. Indeed it was even suggested that 

programs would be written directly in UNCOL rather than in 

machine code. 

These ideas were very ambitious, but were presented without 

any concrete examples of what CICOL might look like. 

Proposals were made for an UNCOL in [Steel, .1961] but the 

work was abandoned before anything like a complete 

specification had been produced. 

An UNCOL-like technique which has been used extensively, 

is to compile for a known type of machine, such as the IBM 

360, and then emulate that machine on the target machine. 

Unfortunately, to give this any chance of being efficient, 

microcode support will be necessary and this is rarely 

available to compiler writers. 
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2.2 Janus 

The first attempt at generating an UNCOL which seems to 

have been at least partially successful was JANUS [Coleman, 

1974]. The approach was effectively to enumerate all the 

mechanisms found in current programming languages and the 

techniques used to implement them. From this large list was 

defined a set of primitive data-types and operations upon 

them. These primitives were then put together to model the 

objects in the source language. Once JANUS code had been 

produced the intention was that it would either be 

interpreted or compiled into machine code by a macro 

generator. 

2.3 OCODE 

Of all the languages which claim to be portable, perhaps 

the most successful has been BCPL [Richards, 1971]. The 

BCPL compiler generates the intermediate code OCODE which 

can either be interpreted or translated into machine code 

for direct execution. As BCPL is a fairly low-level 

language with only one data type, the word, many of the 

difficulties in designing intermediate codes do not arise. 

This means that the code can be pitched at a low level and 

be "semantically weak" without compromising the efficiency 

of the compiled code to any great extent. 
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The OCODE machine works by manipulating single-word objects 

held on a stack, into which there are several pointers. 

e.g. R(1, 2, 3) 

STACK 3 adjust the top of stack to leave two 

cells free for linkage information. 

LN 1 stack the constant 1. 

LN 2 stack the constant 2. 

LN 3 stack the constant 3. 

LL L6 stack the address of label L6 (the entry 

to the routine). 

RTAP 5 enter the procedure adjusting the stack 

frame pointer by 5 locations. 

ENTRY 1 L6 'R' 

entry point for the routine R. 

SAVE 5 set the top of stack pointer to be 5 

locations from the stack frame pointer. 

RTRN return. 
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2.4 P-code 

P-code is the intermediate code used by the PASCAL<P> 

compiler [Nori, 1976; Jensen, 1976] and was designed with 

the aim of porting PASCAL quickly by means of an 

interpreter. In this respect it has been very successful, 

especially on microprocessor-based systems. The code is 

similar to OCODE but has a greater range of instructions to 

handle objects of differing types. 

procedure ERROR(VAL:INTEGER); begin 
0: ENT 4 

TOTAL := TOTAL+1; 

1: LDO 138 Stack TOTAL 
2: LDCI 1 Stack 1 

3: ADDI Integer add 
4: SRO 138 Store into TOTAL J INDEX >= 9 then begin 
5: LDO 139 
6: LDCI 9 
7: GEQI Compare top elements 
8: FJP 17 Jump if false 

LIST[1O].NUM := 255 
9: LAO 140 Stack base of LIST 

10: LDCI 10 

11: DEC 1 Subtract 1 

12: IXA 2 Index*2+base 
13: INC 1 Add 1 

14: LDCI 255 
15: STO 

.QCLil e1 begin 
16: UJP 28 

INDEX := INDEX+1; 
17: LDO 139 

18: LDCI 1 

19: ADDI 
20: SRO 139 

LIST[INDEX].NUM := VAL 
21: LAO 140 
22: LDO 139 

23: DEC 1 

24: IXA 2 
25: INC 1 

26: LOD 0, 4 

27: STO 

28: RETP Return 
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2.5 Z-code 

Z-code [Bourne, 1975] is the intermediate code produced 

by the ALGOL68C compiler, the main feature of which is the 

ability for the user to parameterise the first phase to 

modify the Z-code to suit the target machine, an idea 

previously investigated in SLANG [Sibley, 1961]. A set of 

eight registers is assumed by the code and others may be 

specified explicitly for each transfer. The memory with 

which the code works is assumed to be "a linear data store 

that is addressed by consecutive integers", addresses taking 

the form of base+displacement pairs. Intermingled with the 

instructions are directives which control the translation of 

the code into machine orders. Two of these directives are 

used to divide the code into "basic blocks" or 

"straight-line segments", and describe the usage of 

registers on entry to and exit from the blocks, although 

little use seems to be made of them at present. 
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As an example here is the Z-code generated by the PDP10 

version of the compiler [Gardner, 19771: 

jal X .= 2, Y 3, Z .= 2 
1: F000 10 0 +2 load 2 

F040 10 6 +144 store in X 

F000 10 0 +3 load 3 
F040 10 6 +145 store in Y 

5: F000 10 0 +2 load 2 
F040 10 6 +146 store in Z 

oroc P = (ant A, B) wit : begin 
7: S715 p'Z 

T246 677 712 j A > B 

9: RO 

10: F020 10 5 +4 load A 

11: F022 10 5 +5 subtract B 
12: F113 10 0 P713 ->L713 if <_ 

Jhgn A 

13: F020 10 5 +4 load A 
else B 

14: H116 0 p714 ->L714 
15: L713 
16: F020 10 5 +5 load B 

17: L714 
18: R1 10 1 

19: R1 10 1 

20: T247 667 712 end of P 
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2.6 Summary And conclusions 

2.6.1 Error checking ,D,d reporting 

The UNCOL approach of having one code for all languages 

and machines may well simplify the generation of some sort 

of compiler, but has the major disadvantage that the 

optimisation of error checking and reporting run-time errors 

cannot be left to the code generator - many errors are 

language-dependent and the code generator cannot know how to 

handle all of them. Instead the checks must be programmed 

into the intermediate representation explicitly. As will be 

shown later (5.3) this can inhibit several very powerful and 

effective optimisations. Sadly, this problem can result in 

the absence of all but the most trivial of run-time checks 

in the compiled code. 

Even when checking is provided in the intermediate code, 

as in the case of P-code with its CHK instruction for range 

testing, it is rare for the code to contain enough 

information to permit the error to be reported in source 

program terms: line numbers, procedure names, variable names 

and values etc. As an example, many P-code interpreters 

locate run-time errors in terms of 'P-code instruction 

addresses' which are of negligible benefit to most users. 
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2.6.2 Efficiency 

Commonly, little attention is paid to questions of 

run-time efficiency in the generation of intermediate code. 

An exception to this is Z-code which is parameterised in 

order that the match between the code and the target machine 

can be improved. In particular, the machine-independent 

phase is intended to perform simple register optimisation, 

although as the example in 2.5 shows, the insistence on 

repeatedly using one register will minimise any gains from 

remembering register contents. However, this is probably 

just a failure on the part of the current compilers and 

could be corrected at a later date. Unfortunately, the fact 

that the compiler purports to optimise the intermediate code 

inhibits the code generator from attempting any but the most 

trivial peephole optimisations, as may be seen in the 

example by considering instructions 10-12. On many machines 

the subtract operation is not a good choice for value 

comparison as firstly it may fail with overflow, and 

secondly it will corrupt a register. A better 

implementation would be to replace the subtract with a 

suitable COMPARE, leaving the register untouched and 

available for later use. This cannot be done by the code 

generator as it cannot know that the intermediate code does 

not go on to use the result of the subtraction later. 
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Similarly, if Z-code had chosen to use a COMPARE instruction 

in the first place, a machine without a compare would have 

to work hard to make sure all registers involved in the 

necessary subtract were restored to their initial values 

before the intermediate code goes on to use them. 

2.6.3 As u rations 

Most machine-independent codes have been designed, at 

least initially, assuming a linear store with one address 

increment corresponding to one basic object. In the case of 

0-code this is a direct result of the language definition, 

but in languages such as PASCAL it has led to a great loss 

of information, as the rich information about data types 

cannot be expressed. The problems associated with putting 

languages onto machines with different addressing schemes 

has resulted in some intermediate code generators being 

updated to accept a limited form of parameterisation to 

define the gross appearance of the target machine. Typical 

of the limitations of these codes is P-code where although 

the basic types of object can have differing sizes of 

machine representation, objects with enumerated types will 
always be given a 'fullword' even though the host machine 

could easily support a smaller item. A typical assumption 

is that the difference between objects explicitly specified 

in the original source and those created by the intermediate 

code generator for its own purposes is insignificant. As 

will be shown in section 4.6, this is not necessarily the 

case. 
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2.6.4 Interpretation 

The vast majority of machine-independent intermediate 

codes in current use have been designed in such a way as to 

permit execution by interpretation. This immediately 

imposes constraints on the form of the code, as, for 

example, it will need to be possible to pre-process the code 

into some consistent and managable internal form for the 

benefit of the interpreter. In order to give some sort of 

efficiency to the interpretation process, the intermediate 

code of necessity must become like the order code of a 

'real' machine. This results in code-generation being seen 

as fitting the target machine to the intermediate code, 

rather than fitting the intermediate code to the target 

machine which is clearly the better strategy for 

optimisation. 
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3 Optimisations 

The task of any compiler for a high-level language is to 

fit programs written in that language onto a specific 

computer system so that the required computations may be 

performed. 

Optimisation may be described as the process by which the 

fit is improved. Usually the quality of the optimisation is 

measured in terms of two parameters: the size of the running 

program, and, more commonly, the speed at which it executes. 

While it is possible in some cases to make a program smaller 

and increase its speed of execution, it is well-known that, 

in general, speed and size are complementary. For example, 

the following code fragments have the same effect, but the 

first will probably be smaller than the second, which will 
execute faster than the first: 

-------------------------- ----------------------- 
i i A(1) = K , 

i i A(2) = K i 

for J = 1,1,8 cycle i A(3) = K i 

A(J) = K ; A(4) = K 

repeat t A(5) = K ; 

A(6) = K 

A(7) = K 
A(8) = K 

J = 8 i 

3.1 Classification gfAmtjmiggtioOj 

With a subject as complex as optimisation it is difficult 
to give a useful and definitive classification of the 

various possibilities for improving programs. In addition, 

different authors have used many different terms to describe 
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optimisations which have been attempted [Aho, 1974; Lowry, 

1969; Wichmann, 1977]. However most optimisations fall into 

one of the following four groups: Universal, Local, Global 

and Source. 

3.1.1 Universal Optimisations 

These are those optimisations which are 

independent of any particular program, but which 

depend on the complete environment in which the 

program is to be compiled or executed. They are the 

policy decisions taken by the compiler writer during 

the initial design of the compiler, and include such 

things as the fixed use of registers (stack 

pointers, code pointers, link registers etc), the 

representations of language-defined objects (arrays, 

records, strings etc), and the standards for 

communication with external objects. 

In addition, universal optimisation must take 

into account such questions as: 

Compilation speed or execution speed? 

If the compiler is to be used in an 

environment where programs are compiled 

roughly as often as they are executed, such 

as in a teaching environment, execution time 

can be sacrificed for a decrease in 

compilation time, as the latter will 

commonly greatly exceed the former. 
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ii Diagnostics? 

If the compiler is to produce code which 

will provide extensive checking and will 

give diagnostic information in the event of 

program failure, allowance must be made for 

the efficient checking of the program's 

behaviour and the maintenance of the 

recovery information used by the 

diagnostics. If highly optimised code is 

required these constraints may not apply. 

In the current state of the art universal 

optimisation is done by experience and guesswork; 

attempts at producing compiler-compilers which can 

approach the quality of hand-constructed compilers 

have not met with great success [Brooker, 1967; 

Feldman, 1966; Trout, 1967]. As will be shown later 

(4.5), minor changes in the universal optimisation 

can result in major changes in the form of the 

generated code, and so rules made at this stage 

should be as flexible as possible to permit changes 

to be made in the light of experience. 

From the point of view of measurement, universal 

optimisation provides the base level from which 

other optimisations are investigated. Roughly, the 

better the universal optimisation the less effective 

the other optimisations appear to be. 
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3.1.2 Local optimisations 

Local optimisations may be defined as those 

optimisations which are performed during a 

sequential scan of the program, using only knowledge 

of statements already processed. Not only are these 

optimisations reasonably simple to perform but they 

can have a major effect on the generated code. 

Indeed Wulf et al. state that "In the final analysis 

the quality of the local code has a greater impact 

on both the size and speed of the final program than 

any other optimisation" [Wulf, 19751. 

3.1.2.1 Remembering 

Remembering optimisations are those optimisations 

which can be applied to single statements in the 

light of information gathered during the compilation 

of previous statements. These optimisations depend 

on remembering the current state of the machine and 

applying this knowledge to subsequent statements. 

Their chief characteristic is that they are applied 

during a sequential scan of the program, and as such 

are reasonably cheap to implement and execute. 
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For example: 

X = Y 

if X = 0 start 
----------------- 

on the PDP11 would generate: 

MOV Y,X 
BNE $1 remembering that the previous 

line sets the condition code. 
------------ 

The most powerful of the remembering 

optimisations is that whereby the correspondence 

between values in registers and values in store is 

remembered and references to the store value are 

replaced by references to the register's value, 

register operations usually being smaller and faster 

than their store equivalents. Unfortunately there 

are several cases where this leads to worse code 

than the "obvious" version. For example, on the 

(PE3200) the code on the right is larger and slower 

than that on the left: 

X = 

P = 

2 
P<<2 

LIS 3,2 LIS 3,2 pick up 2 

ST 3,X ST 3,X store it in X 
L 1,P L 1,P pick up P 
SLLS 1,2 SLL 1,0(3) shift it by 2 

ST 1,P ST 1,P store it in P 
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In addition to keeping track of the changes in 

the state of the machine from the compilation of one 

statement to another, remembering also includes 

preserving this state or environment for later use 

when a label is encountered, either by merging the 

current environment with the environment saved at 

the jump to the label, or simply by restoring that 

latter environment when it is not possible for 

control to "fall through" from the statements 

immediately preceding the label. 

In all forms of remembering it is vital to be 

able to keep the information up-to-date, 

invalidating knowledge when it becomes false, a 

process which is exacerbated when it is possible for 

an object to be known by two or more apparently 

different descriptions as in the following code: 

--------------------------- 
integer J, K 

integerarray A(1:12) 
integername P 

P == J 

J = 1; K = 1 

--------------------------- 

At this point P and J refer to the same location as 

do A(J) and A(K). 

Except in the most simple of cases all that can be 

done is to assume the worst and forget anything 

potentially dangerous after writing to unknown 

addresses. 
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3.1.2.2 Delaying 

Delaying is the process of generating 

instructions but not planting them in the code 

sequence until it is absolutely necessary. This is 

of advantage if it is discovered that such "pending" 

instructions are not needed, or can be combined with 

other instructions. 

The two common cases are illustrated below: 

---------------------------------- 
integerfn F(integername X) 

integer T 
T = X 

T = 0 if T < 0 

X = 1 

result = T 
end 

---------------------------------- 

The obvious code for the body of this function is 

(PE3220): 

------------------- 
L 3,X address of parameter 
L 0,0(3) value of parameter 
ST 0,T 
BGE $1 -> if T >= 0 

SR 0,0 
ST 0,T T = 0 

$1:LIS 2,1 
ST 2,0(3) X = 1 

LR 1,0 load result 
{return} 
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By delaying the first store into T until after 

the conditional statement, and delaying the second 

store into T until after the label, both 

instructions can be combined, resulting in the code: 

L 3,X 
L 0,0(3) 
BGE $1 
SR 0,0 

$1:ST 0,T 
LIS 2,1 
ST 2,0(3) 
LR 1,0 

{return} 

------------------- 

This store itself can now be delayed until the 

return from the function, at which point, as T is 

local to the function and will be destroyed, the 

instruction can be deleted altogether. 

Section 3.2 gives a description of one way in which 

this sort of optimisation has been achieved. 

3.1.2.3 Inaccessable code removal 

In several cases compilers can generate code 

which will never be executed. 
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The common causes of this are either user-specified 

conditions whose truth is constant and are used to 

achieve some sort of "conditional compilation", or 

structural statements following unconditional jumps 

as below: 

---------------------- 
if X = 0 start 

ERROR (1) 
return 

else 
V = V-X 

finish 

Here the branch instruction usually generated at the 

end of the if clause to take control past the else 

clause, can never be executed. 

Such inaccessable code can be eliminated to shorten 

the program, but without directly effecting its 

speed of execution. 

3.1.2.4 Peephole optimisations 

Peephole optimisation [McKeeman, 19651 is the 

technique of examining small sections of generated 

code to make fairly obvious, but ad hoc, 

improvements. Many of the gains from the 

optimisation come by simplifying code sequences 

created through the juxtaposition of code areas 

which were produced separately. 
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For example (PE3220): 

Before After 
---------------- ------------------- 

ST 4,X ST 4,X 
L 4,X 

AR 1,2 
AHI 1,48 AHI 1,48(2) 

---------------- ------------------- 

3.1.2.5 Special cases 

Special-case optimisations are those which make 

use of the particular structure and features of the 

target machine to control the way in which certain 

statements are implemented. 

For example: 

Obvious Optimised 

(PDP11) MOV #0,X CLR X X = 0 

(PDP11) ADD #1,X INC X X = X+1 

(PE3220) LHI 1,NULL SR 0,0 
; 

S = 

LHI 2,S STB O,S 
BAL 15,MOVE 

---------------- ----------- 

These optimisations are very similar to peephole 

optimisations but are distinguished because they 

actively control the generation of code rather than 

passively alter code which has already been 

produced. In particular they avoid one of the 

drawbacks of peephole optimisation, namely that even 

though it can reduce fairly complex instruction 

sequences to a simpler form, the side-effects of 

generating the long form in the first place often 
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degrade the code. In the example above of setting a 

string variable to the null string, the optimised 

form uses only one register, the value of which can 

be remembered. In the non-optimised version three 

registers are immediately altered and the knowledge 

of the contents of all of the registers may need to 

be forgotten unless the code generator knows how the 

MOVE routine works and can forget only those 

registers which it uses. 

3.1.2.6 Algebraic manipulations 

Algebraic optimisations are improvements brought 

about by using the algebraic properties of operators 

and operands, and include: 

Folding, or compile-time evaluation 

1+2 is replaced by 3 

. Removal of null operations 

A+0 is replaced by A 

Using commutative properties 

-B+A is replaced by A-B 
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3.1.3 Global ont'mis ions 

Global optimisation may be defined as those 

improvements to the code which require knowledge of 

substantial parts of the program. In effect they 

are performed by examining numbers of statements in 

parallel, in contrast to the sequential scan 

required by local optimisation. 

3.1.3.1 Restructuring 

Restructuring optimisations are those 

optimisations which may be brought about by changing 

the order in which the code is laid out in memory 

without otherwise changing the nature of the code. 

As will be discussed later (section 4.3), there are 

many reasons why programs can be improved by 

changing the order of chunks of the code. A common 

reason is that many machines have conditional branch 

instructions with limited range while the 

unconditional branches have a much larger range. 
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Hence if {A} represents a large number of statements 

and {B} represents a small number of statements, the 

program: 

---------------- 
X = 0 start 
{A} 

else 
{B} i 

i finish 

could be improved by reordering as on the right 

(PDP11): 

original reordered 
------------------ ---------------- 

MOV X,RO MOV X,RO 
BEQ $1 BEQ $1 
JMP $2 {B} 

i $1: {A} JMP $2 
BR $3 $1: {A} i 

$2: {B} $2: 
$3: 

------------------ ---------------- 
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3.1.3.2 Merging 

3.1.3.2.1 Forward merainA 

Forward merging, also somewhat confusingly 

referred to as "cross jumping" [Wulf, 19751, is the 

process whereby the point of convergence of two or 

more code sequences is moved back over common 

sub-sequences thus removing one of the 

sub-sequences, as in the case below. 

---------------------- 
i if X > Y start 

TEST(X, Y) 
else 

TEST(Y, X) 
finish 

obvious code (VAX) after merging 
--------------------- -------------------- 

CMPL X,Y CMPL X,Y 
BLE $1 ; BLE $1 
PUSHL X ; PUSHL X 

PUSHL Y PUSHL Y 

CALLS 2,TEST 
P1 -> i BRB $2 BRB $3 

$1:PUSHL Y $1:PUSHL Y 

PUSHL X PUSHL X 

CALLS 2,TEST $3:CALLS 2,TEST 
P2 -> $2: $2: 

--------------------- -------------------- 

The simplest way to perform this optimisation is to 

take the code sequence about the point of a label 

and a reference to that label, and set two pointers: 

one, P1, to the unconditional jump and the other, 

P2, to the label. If the instructions immediately 

preceding the pointers are identical both pointers 

are moved back over that instruction. 
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The label is redefined at the new position of P2 and 

the instruction passed over by P1 is deleted. The 

process is repeated until either another label is 

found or two different instructions are encountered. 

The redefinition of the label involves creating a 

completely new label, leaving the old one untouched. 

This both prevents trouble with multiple references 

to the label and permits the optimisation to be 

attempted on those references. 

As this optimisation simply causes the sharing of 

execution paths there is no direct gain in execution 

speed, but as the code size is reduced an indirect 

improvement may be achieved if the shorter code 

moves the label close enough to the reference to it 
for a shorter and usually faster jump instruction to 

be used. 

The optimisation obviously must be performed while 

labels and jumps are in a symbolic form, that is 

before code addresses have been resolved. This 

permits the merging of instructions which will 

eventually have program-counter relative operands 

and consequently be position dependent. 
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3.1.3.2.2 Backward merging 

A second, but much more difficult form of merging 

involves moving instructions back over the preceding 

branch code which generates the two paths being 

co id d . ns ere 

Original (PE3200) Optimised 
------------------- ------------------- 

L 1,X 

L 2,R 
L 1,X 

BNE $1 BNE $1 
P1 -> ; L 2,R 

LIS 3,1 LIS 3,1 

ST 3,A(2) ST 3,A(2) 
B $2 i B $2 

P2 > L $1 R 2 $1 - : , : 
LIS 3,3 LIS 3,3 
ST 3,B(2) ST 3,B(2) 

$2: i $2: 

The difficulty with this optimisation is that it 

requires the branch and the associated condition 

testing code to be treated as a single unit, so that 

merged instructions do not split the test and the 

use of the result. Also the testing instructions 

must be checked to ensure that they are not able to 

modify the operands of the merged instructions. 

This information is easily available to the 

code-generator as in IMP77 only procedure calls and 

string resolution can have such side-effects. In a 

way similar to the other form of merging the two 

pointers, P1 and P2 are set and adjusted; P1 being 

moved forward over common code carrying the branch 

sequence with it (L & BNE), and P2 being advanced, 

deleting the code it passes over. 
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3.1.3.3 Advancing 

Advancing is the process of moving operations 

back in the instruction stream so that they are 

executed earlier and pave the way for improving 

subsequent statements. 

On many machines the statements: 

--------------- 
X = X-1 

A(X) = P 

X = X-1 

A(X) = Q 

--------------- 

could be compiled to more efficient code if 

rewritten: 

--------------- 
X = X-2 
A(X+1) = P 

A(X) = Q 

as only one calculation will need to be done to 

address both A(X) and A(X+1), the constant, suitably 

scaled, being added into the displacement field of 

the appropriate instruction (PDP11): 

SUB #2, X 

MOV X,R1 
ADD R1,R1 
ADD A,R1 

MOV P,2(R1) 
MOV Q,(R1) 
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3.1.3.4 Factoring 

Factoring is the generalisation of merging and 

involves the removal of common sections of code. 

Included under this heading is the elimination of 

common sub-expressions. 

At the source level this can be seen in changes such 

as: 

D = SIN(X^2) + COS(X^2) ----------------------------- 

being replaced by 

---------------------------- 
real T 
T = X^2 
D = SIN (T) + COS (T) 

---------------------------- 

At the machine level the optimisation is often 

available as the result of address arithmetic in the 

case of simple arrays: 

A(J) = B(J) 

Original (PE3200) Optimised 

L 1,J L 1,J 
SLLS 1,2 SLLS 1,2 
AR 1,LNB AR 1,LNB 
L 3,J 
SLLS 3,2 
AR 

L 
3,LNB 
0,B(3) i L 0,B(1) 

ST 0,A(1) i ST 0,A(1) 
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In this case as the code-generator is in complete 

control the optimisation can be very simple, 

although rather specific. 

The techniques for handling common sub-expressions 

have been investigated at length by several authors, 

but measurements indicate that in most programs 

expressions are so trivial the expense in finding 

common sub-expressions is not repaid by the 

resulting improvement in the generated code [Knuth, 

1971]. 

The more general form of factoring can be seen in 

the transformation of the following statements: 

ff 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --------------------------------------- i f if X= 0 then C= 3 else D= 4 

--------------------------------------- 
into: 

if X = 0 start 
A = 1 

C=3 
else 

B = 2 

D = 4 

finish 
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3.1.3.5 Loop optimisations 

3.1.3.5.1 Iteration 

Iteration is the process whereby the values in 

variables from previous iterations of a loop are 

used to calculate the new values for the current 

iteration, rather than calculating those values from 

scratch each time. One of the effects of this 

optimisation can be the reduction in strength of 

operations, such as changing multiplications into 

additions. In this context the IMP77 operators "++" 

and "--" may be used to great effect. Their action 

is to adjust the reference on the left by the number 

of items to the right, hence if X is an integer then 

X++1 is the next integer and X--2 is the integer two 

integers before X. 

------------------------------- 
for J = 1,1,1000 cycle 

A(J) = J 

repeat 
------------------------------- 

Can be optimised to: 

------------------------------- 
integername T 

T == A(J)--1 
for J = 1,1,1000 cycle 

T T++1 
T = J 

repeat 
-------------------------------- 
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3.1.3.5.2 Holding 

Holding is the process of preloading values used 

in a loop, into registers or other such temporaries, 

using those temporaries within the loop and finally 

storing the values back into the required variables 

at the end of the loop, if necessary. In the 

previous example the value in T, the current address 

of the array element being considered, could be 

loaded into a register before the start of the loop. 

In this case, as T is a temporary created by another 

optimisation, the final value in the register need 

not be stored once the loop terminates. 

The application of most other optimisations will, 

at worst, have little or no effect on any particular 

program, however the danger of holding is that it 

assumes that the values loaded outside the loop will 

be required within the loop, and this assumption 

could well be invalid. 
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For example, consider the following equivalent 

programs: 

A B 

------------------- --------------------- 
TEMP = P//Q 

while X > 0 cycle while X > 0 cycle 
W(X) = P//Q W(X) = TEMP 
X = X-1 X = X-1 

repeat repeat 
------------------- --------------------- 

B will be faster than A if the loop is executed at 

least twice. If the loop is not executed at all 

(X <= 0) B will be much slower than A (by an 

alarming 80 microseconds on the 7/32). 

3.1.3.5.3 Removal of invariants 

This is the process whereby complex 

sub-expressions, which do not change their values as 

the loop progresses, are evaluated outside the loop 

and held in temporaries: 

-------------------------------- 
for J = 1, 1, 1000 cycle 

A(J) = LIMIT-MARGIN 
repeat ' 

-------------------------------- 

Can be optimised to: 

------------------------------- 
TEMP = LIMIT-MARGIN 
for J = 1,1,1000 cycle 

A(J) = TEMP 

1 reDeat 

It is simply a special case of Holding. 
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3.1.3.6 Expansion 

Expansion is the process of rewriting compact 

representations of parts of a program in a more 

explicit form, usually resulting in faster execution 

but at the expense of more code. The two main uses 

of expansion are to reduce the overheads in loop 

control by repeating (unrolling) the loop body and 

hence reducing the number of iterations, and to 

replace calls on procedures by the body of the 

procedure, with the necessary substitution for 

parameters. Extra gains can come from the 

interaction of the expanded code with the enclosing 

code as in the following example: 

----------------------------- 
for J = 1,1,100 cycle 

A(J) = 0 
repeat 

This can be expanded into: 

------------------------------- 
for J = 2, 2, 100 cycle 

A(J-1) = 0 

A(J) = 0 
retreat 

------------------------------- 

and can generate the following code (PDP11): 

CLR J 
$1:ADD #2,J 

MOV J,R1 
ADD R1,R1 
ADD LNB,R1 
CLR A-2(R1) 
CLR A(R1) 
CMP J'#100. 
BNE $1 
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3.1.4 Source optimisations 

Source optimisations [Schneck, 1973] are those 

optimisations which can be effected by changes in 

the source program. They can be sub-divided into 

three categories: machine-independent [Hecht, 1973; 

Kildall, 1973], machine-dependent, and tentative. 

Tentative optimisations are those which, while 

unlikely to make the code worse, may improve it on 

some machines. For example, most machines will 

handle the comparison "X<1" better if it is 

rewritten as "X<=0", where X is an integer variable. 
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3.2 Cgmbination Qf optimisations 

Many of the optimisations described above result 

in an improvement in the generated code not only by 

their own effects but also by their interaction with 

other optimisations, as one improvement often 

produces the conditions needed for another. As an 

example consider the compilation of the following, 

rather unlikely, statements on the Data General 

NOVA : 

--------------------- 
A = (B&C)<<1 
A = D if A = 0 

--------------------- 

The first statement can generate the obvious code: 

--------------- 
LDA 0,B 
LDA 1,C 

AND 0,1 

MOVZL 1,1 

STA 1,A 

--------------- 

At this stage the value in accumulator 1 (A) can be 

remembered, and the STA instruction marked as 

"pending" so that it can be removed later if it is 

decided that deferring the store will improve the 

code. 
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With this knowledge the second statement can be 

compiled to: 

MOV# 1,1,SZR 
JMP $1 

LDA 1,D 
STA 1,A 

$1: 

Immediately before the label $1 it is known that 

once again the value of A is in accumulator 1, and 

that the STA above the label is marked "pending" as 

before. Following the definition of the label the 

environment before the jump to that label, can be 

combined with the environment just before the label, 

to give the new environment following the label. 

The information in this environment is that A is in 

accumulator 1 and that the same store is pending 

from both old environments. This allows the two 

marked store instructions to be removed and one 

store placed after the label (and once again marked 

as being "pending"). This gives the following code: 

--------------------- 
LDA O,B 
LDA 1,C 
AND 0,1 
MOVZL 1,1 
MOV# 1,1,SZR 
JMP $1 

LDA 1,D 
$1:STA 1,A 
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A simple jump optimisation notices that the JMP 

passes over just one instruction and can therefore 

be removed by inverting the skip condition on the 

previous MOVe, giving: 

LDA O,B 
LDA 1,C 

AND 0,1 
MOVZL 1,1 

MOV# 1 , 1 , SNR 

LDA 1,D 

STA 1,A 

Finally, peephole optimisation combines the AND with 

the MOVZL giving ANDZL, and then combines this with 

the following MOV# to give the complete code 

sequence as: 

------------------ 
LDA O,B 

LDA 1,C 
ANDZL 0,1,SNR 
LDA 1,D 

STA 1,A 

------------------ 

The most interesting thing to notice about this 

particular sequence of optimisations is that with 

the possible exception of the removal of the marked 

STA instructions, the final code can be generated 

very simply with local optimisations. 
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4 The design of the compiler 

This section describes the features of the compiler which 

have had an influence on the form of the intermediate code. 

4.1 General structure 

One of the aims of this type of compilation strategy is 

to simplify the production of compilers, and a successful 

technique for simplifying programs is to divide them into 

several communicating modules, each largely independent of 

the others but with well-defined interfaces between them. 

At the highest level, a compiler can be split up into three 

major parts: 

1 A language processor, which deals with the 

language-dependent parts such as parsing, 

semantic checking, and error reporting. 

2 A code generator, which takes the decomposed 

form of the program as generated by 1 above, 

and constructs the appropriate code sequences 

to perform the required functions. 

3 An object-file generator, which builds an 

object-file from the code sequences produced 

by 2, in the form required by the system which 

is to execute the program. 

Commonly, the first two parts of this scheme are combined 

into one program which generates as its output an 

assembly-language source file corresponding to the original 

program. 
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The third part then becomes the standard system assembler. 

This approach clearly simplifies the production of the 

compiler, as one part, the assembler, is provided already 

and can ease the problems of checking the compiler because 

the code it generates is presented in a well-known form. 

Despite these advantages such a scheme was rejected for the 

following reasons: 

1 In order that assembly language can be 

generated, the compiler must have an internal 

form of the instructions, which is changed 

into text, processed by the assembler, and 

finally converted into the machine 

representation. These transformations can be 

eliminated if the compiler works directly with 

the machine representations. 

2 In general, the system-provided assembler will 

be expecting to receive a much more powerful 

language than the rather stereotyped text 

produced by compilers. This will certainly 

degrade the performance of the assembler. A 

solution to this is to produce a cut-down 

version of the assembler which only recognises 

those constructs generated by the compiler. 

However, producing a new assembler removes one 

of the reasons for choosing this route, 

namely, not requiring extra work in writing 

the object-file generator. 
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3 As will be seen later (section 4.7), even 

after the code sequences have been produced 

there remain several optimisations which can 

be performed using knowledge gained during the 

production of those sequences, for example, 

generating short forms of jump instructions 

when the distance between the jump and its 

destination is small enough. While in certain 

cases these optimisations can be performed by 

a standard assembler it is unlikely that the 

structure of the code-generator would be as 

simple as if a special-purpose object-file 

generator were available. 

The main interface in such a system is clearly that 

between the language and machine dependencies, as most 

languages are largely machine-independent. It is this 

interface between the language-dependent and 

machine-dependent parts of the compiler which is termed the 

INTERMEDIATE CODE. In the following discussion it is 

assumed that the reader has a reasonable understanding of 

the structure of the final form of I-code, a definition of 

which may be found in Appendix.A2. 
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4.2 The intermediate code 

Even while remaining independent of machine architecture, 

codes can be designed at various levels of abstraction. 

Roughly, the higher the level of the intermediate-code the 

closer it is to to the source language, and the lower the 

level the closer it is to some (possibly hypothetical) 

processor's instruction set. 

The choice as to the level of the intermediate-code 

eventually comes down to a question of where decisions are 

to be taken. 

If a low-level code is chosen, more decisions will have to 

be made in the language-dependent phase (making it more 

complicated) but leaving less choices available to the 

code-generator (making it simpler, but removing chances for 

improving the code in the light of particular machine 

features). If a high-level code is chosen, decisions are 

left to the code-generator resulting in a simpler language 

processor but a more complicated code-generator which is 

better able to adapt to a particular processor. 

The design of the intermediate code can also be 

influenced by its intended role in the complete compiling 

system. If the code is to be used in the compilation of 

just one language on many machines, there may be an 

advantage in increasing the complexity of the code if it 

results in simpler code generators at the expense of a more 

complicated, but unique, first phase. 
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Conversely, if the code is to be generated by several 

different language processors, a simple intermediate code 

which is easy to produce may well be more attractive. 

As I-code was intended for optimisation, a high-level 

code was chosen. In addition, as it was hoped that the code 

could eventually be used in different language processors, 

it was decided to keep the structure of I-code as simple as 

possible. 

The complete compilation process may be thought of as a 

sequence of transformations working from the source program 

to the final object program via a number of intermediate 

representations. As the transformations are applied, the 

representations become less dependent on the source language 

and more dependent on the target machine. In order to 

simplify the code-generator as much as possible the 

intermediate code must lie as far from the source language 

as is possible without straying from the objectives set out 

below. 

4.2.1 Objectives 

One of the dangers in designing an intermediate code is 

that of building into it old techniques and standard 

expansions of source constructions, which while they may be 

tried and tested cannot in any way be said to be "the only 

solutions" or even "the best solutions". 
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One of the intentions behind the design of I-code was to 

permit the use of varied implementation strategies. In the 

same way that the only practical definition of a "good" 

programming language is that it fits the style of the 

particular programmer using it, so the measure of the power 

of an intermediate code must include the ease with which it 

can adapt to an existing style of code-generator writing. 

Inevitably, practical constraints prevent total generality: 

the most general form of a program is a canonical form of 

itself, but this is little help in compiling it. 

It follows that the intermediate code, while remaining true 

to the original program and distant from "real" machines, 

must provide enough simplification to make the task of 

code-generation as easy as possible without inhibiting 

optimisation. 

From the start it was appreciated that an intermediate 

code suitable for use in optimising compilers would 

necessarily require more processing than a code such as 

0-code which was aimed at a quick implementation. The 

original hope was that although each machine-dependent code 

generator would not be small, typically about 3000-4000 IMP 

statements, large portions of one could be taken as a basis 

for a new implementation. This has proved to be the case, 

and provision of an existing code-generator as a template 

greatly simplifies the task of creating a new one 

(section 6.4.1). 
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4.2.1.1 ScoDe 

The first and most fundamental objective in the design of 

I-code was that it should support the compilation of one 

specific language, IMP-77, on many different machines. 

Considerations of using the code to implement other 

languages were secondary to this main aim, but were used to 

bias the design when a choice had to be made from several 

otherwise equally suitable possibilities. In retrospect, a 

few areas of the code could have been made more general 

without significant overheads in the code generators, mainly 

in the area of data descriptor definitions, but a detailed 

discussion of one intermediate code supporting several 

languages is beyond the scope of this work. 

In direct contrast to many intermediate codes, I-code was 

not designed with the intention of making it convenient to 

interpret; the prime aim was to permit compilation into 

efficient machine-code. Nevertheless it is possible to 

"compile" I-code into threaded code [Bell, 1973] or a form 

suitable for interpretation, either by generating a 

conventional interpretive code or by leaving the code in 

more-or-less its current form but with labels resolved and 

descriptors expanded into a more convenient representation. 
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4.2.1.2 Information Dreservation 

As the translation of the source program into 

intermediate-code is to be machine-independent it will not 

be possible to know before code generation what details of 

the program will be of interest to the code-generator. It 
follows that any loss of information caused by the 

translation is likely to reduce the scope for optimisation. 

In addition, not only must the information present in the 

source be available at the intermediate-code level, but also 

it must be presented in a form in which it can be recognised 

easily and used. 
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For example, the following two program fragments are 

semantically identical: 

A B 
---------------------------------------------------- 

P = 0 
cycle 

TEST for P = 1, 1, 10 P = P+1 
TEST 

repeat until P = 10 

However, in "B" the information that the fragment contains a 

simple for construction, while not completely lost, has been 

scattered through the code, and this dilution of information 

will increase the complexity of any code-generator wishing 

to handle for loops specially. 

To leave open all avenues for optimisation it is 

necessary therefore, that all of the semantic information in 

the source program is preserved in a compact form in the 

I-code. One sure way of achieving this property is to 

design the code in such a way as to allow the regeneration 

of the source program, or at least a canonical form of it 
which is not significantly different from the original. In 

this context insignificant differences are the removal of 

comments and the standardisation of variant forms of 

statements, such as: 

NEWLINE if COUNT = 0 

and: if COUNT = 0 then NEWLINE 
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4.2.1.3 Target machine independence 

Most existing intermediate codes are built around a model 

of a machine which will perform the required computation, 

and it is this machine which must be mapped onto the actual 

target computer. In order to simplify this mapping, certain 

assumptions are made, resulting in the machine being defined 

in terms of fixed-sized data objects, a fixed way of 

addressing them, and a fixed set of operations on them, 

usually involving some kind of stack. When compiling for 

machines which are similar to this intermediate code machine 

there is little problem in obtaining a reasonable match, but 

when there are major differences it becomes impossible to 

convert the code into an efficient machine representation. 

For these reasons it was decided to make I-code 

independent of actual machine representations: objects would 

be described once in high-level terms and then all uses 

would refer to that definition. This immediately removes 

any assumptions about the sizes of data objects and the ways 

in which they are addressed, other than those assumptions 

built in to the source language. One of the main 

difficulties with existing codes has been their insistence 

on the store containing a linear array of equally-sized 

objects, the difference between one object and the next 

being one address unit. When mapping such a structure onto 

real machines with (say) byte addressed stores, problems 

arise with arithmetic involving addresses as the codes 

frequently pun on addresses and integer values. 
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Several later versions of such codes have attempted to solve 

these problems by parameterising the intermediate-code 

generator so that the characteristics of the target machine 

may be used to modify the code which is produced. However, 

they still have built in to them assumptions about how the 

objects can be addressed. 

There are so many constraints which can be imposed on the 

code to be generated, such as operating system requirements 

and conventions for communicating with the run-time 

environment, that a parameterised first phase could not be 

expected to generate code which was well-suited to every 

installation. The authors of JANUS [Coleman, 19741 write 

that they believe that the approach of using a parameterised 

intermediate code "... is a dead end, and that the 

adaptability must come in the translation from the 

intermediate language to machine code". 

4.2.1.4 Simplification 

For the complexity of the machine-dependent phases of 

compilation to be kept as low as possible, the 

machine-independent phase must do as much work as possible 

while keeping within the constraints imposed by the previous 

objectives. One way of simplifying the intermediate code is 

for certain high-level constructions to be expanded into 

lower-level constructions, but only when there is just one 

expansion possible under the rules of the language, and that 

expansion does not scatter information which may be of later 

use. 
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The most obvious case of such expansion is in dealing with 

complex conditional clauses such as: 

----------------------------------------------------- if (A=B an C#D) or (E<F and G>H) then X else Y 

IMP-77 specifies that the condition will only be evaluated 

as far as is necessary to determine the inevitable truth or 

falsity of the condition, and so, bearing in mind the 

modifications to be discussed in section 4.6.1, the 

statement can be represented more simply as: 

if A # B then ->L l if C # D then ->L2 
L1: if E >= F then ->L3 if G <= H then ->L3 
L2: X 

->L4 
L3: Y 
L4: 

This expansion is tricky and notoriously error prone, and 

therefore is best done once and for all in the common phase. 

Similarly it is possible to expand all simple control 

structures into their equivalent labels and jumps, providing 

that the structural information is not lost thereby. 

4.2.1.5 Decision binding 

In any program there will be various options open to a 

code generator and at some stage in the compilation 

decisions must be made as to the particular code sequences 

to be generated. Inevitably these decisions will influence 

the code which is produced subsequently. On the PDP11, for 

example, there are two obvious ways of assigning the value 
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in X to the variable Y: either MOVe the value in directly, 

or move the value into a register first and then assign the 

register. If the latter way is chosen the value of X will 

be available in the register for subsequent use, although 

the former way is better if the value is not required in the 

near future. In order to make use of information which may 

well be presented later, it is necessary to be able to defer 

taking irrevocable decisions until the last possible moment. 

The structure of I-code permits this delaying in the binding 

of decisions as it only specifies what needs to be done in 

abstract terms (using descriptors of arbitrary structure and 

complexity), and does not give instructions as to how 

particular results are to be achieved. 

4.2.1.6 Ease of use 

Of prime importance in the design of the code is the ease 

with which it may be used to generate good object code. 

Obviously a high-level code will by its nature be more 

difficult to handle than a low-level code, but this need not 

be serious if the code is consistent and results in a 

convenient expression of the original source. In particular 

the code should be designed to permit extensive checking to 

be performed during the compilation process to catch errors 

in both the intermediate code and the machine-code generator 

before those errors are passed on to the users. Low-level 

codes are at a serious disadvantage in this respect as they 

have lost much of the redundancy present in the source. 
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4.3 Code layout and addressing 

4.3.1 Nested procedure definitions 

A common feature of programming languages is the ability 

to nest the definition of a procedure within another 

procedure. In addition, several languages imply the 

definition of procedures within single statements, as in the 

case of Mme parameters in ALGOL-60, where the parameter 

which is actually passed can be a reference to a "thunk", a 

procedure to evaluate the parameter. 

With such nesting, provision must be made for preventing the 

flow of execution from "falling through" into the procedure 

from the preceding statements, and this is usually 

accomplished by planting at the start of the procedure a 

jump to the statement following the end. While this is 

simple to implement it does introduce extra instructions 

which are not strictly necessary. With user-defined 

procedures the overhead can be minimised when a number of 

procedures is defined, as one jump instruction can be used 

to skip them all. Unfortunately thunks will be generated 

throughout the code in a more-or-less random way, giving 

little opportunity to coalesce the jumps. 

Even if the extra execution time caused by these jumps is 

insignificant (the jumps round thunks defined in loops get 

executed repeatedly), the code which they are skipping 

stretches the code in which they are nested. 
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On machines with fixed-size jump instructions which can 

cover the whole machine, such as the DEC PDP10, the 

stretching causes no problems, but if the addressing is 

limited, or if several different sizes of jump instruction 

are provided, the presence of the nested procedure can 

result in more code being produced later in the generation 

of large jumps. 

4.3.2 Paged machines 

On paged machines the overall performance of a program 

does not depend solely on the efficiency of the code 

produced by the compiler but includes a factor depending on 

the locality of references made by the executing program. 

Traditionally this locality has been improved by monitoring 

the execution of the program and then re-ordering parts of 

it in the light of the measurements. Unfortunately not all 
operating systems provide the user with convenient tools to 

enable the measurement to be done, leaving only ad hoc 

methods or intuition for guidance. Without careful control 

it is all too easy to move one procedure to improve 

references to it and thereby cause another piece of code to 

cross page boundaries and counteract any gains in paging 

performance. Even if the user can obtain the necessary 

information, a slight change in the program can invalidate 

the changes. 
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Notwithstanding these problems, it is evident that by 

careful structuring of a program significant gains in paging 

behaviour can be obtained and so this option should not be 

pre-empted by the intermediate-code (as does Z-CODE which 

automatically reorders the definitions of procedures). 

The possibility of automatic improvement of paging 

behaviour was investigated by Pavelin who showed that the 

paging characteristics of a program can be improved by an 

automatic reordering of the code [Pavelin, 1970]. 

Pavelin's thesis describes the breaking-up of a program into 

"chunks", defined by branches and the destinations of 

branches. At each chunk boundary, extra instructions are 

planted to cause the updating of a "similarity array" which 

records the dynamic characteristics of the program. After 

several runs the similarity arrays are merged and the result 

is used to specify a reordering of the chunks which should 

improve the paging performance. In test cases the 

working-set size of the code was reduced by as much as 40%. 

The thesis also went on to say that the various compilation 

problems associated with this can be alleviated by 

operating on an intermediate code which is machine 

independent with symbolic code addresses". 
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4.3.3 Eve is 

IMP provides a mechanism for signalling the occurrence of 

synchronous "events" during the execution of a program. 

These events are either generated automatically as the 

result of a program error, or are signalled explicitly by 

the program. The signalling of the event causes control to 

be passed back through the dynamic chain of currently active 

blocks until one is found which has specified a trap for the 

particular event which has occurred. Execution then 

continues from a point in that block determined by the trap. 

In order for this to be implemented it is necessary that the 

signal routine be able to "unwind" the stack and recover the 

environment of the block containing the trap. 

If the entry and exit sequences of all blocks are identical, 

as, for example, in the standard procedure entry mechanism 

specified for the DEC VAX 11/780, the unwinding is fairly 

trivial. More commonly, however, the recovery is dependent 

on factors such as the textual level of the procedure and 

whether it has been optimised or not. In such cases the 

unwinding can be very expensive or even impossible unless 

extra information is provided. 
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For example, on the INTERDATA 7/16 a procedure at the 

outermost textual level uses register 15 to access its local 

stack frame, giving the exit sequence: 

------------------- 

LM 7, 4(15) 

BFCR 0, 8 

------------------- 

but a procedure nested within this 

thus: 

------------------- 

would use register 14 

LM 7, 4(14) 
BFCR 0, 8 

------------------- 

It follows that the signal routine must be told which 

base regiser to use at each stage of the recovery. This can 

be done either by planting code in the entry and exit 

sequences of each procedure, or by keeping a static table 

associating procedure start and finish addresses with the 

appropriate base register. 

The first method is poor as it imposes a run-time overhead 

on all procedures, whether they trap events or not. The 

second method is better but can be complicated if procedures 

are nested as the start-finish addresses alone no longer 

uniquely define the procedure. One solution is to cause all 

procedures which use the same exit sequence to be loaded 

into distinct areas, and to associate the recovery 

information for the signal routine with each area. This 

reduces the static overhead to a few words per area, rather 

than a few words per procedure. 
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4.4 Data addres si 

One of the most important problems which faces the 

compiler is the addressing of the various data objects used 

by the program. 

As an example of the difficulties which can arise, consider 

the IMP declarations: 

------------------------------------- 
integer X 
integer array V(0:999) 
integer Y 

On a machine such as the INTERDATA 7/16 which uses 

base+displacement addressing with a 16-bit displacement, the 

whole of the available storage, (64K bytes), can be 

addressed with a single instruction. In this case the most 

efficient implementation of the array is as a row of one 

thousand integers (halfwords) addressed directly via a local 

name base (LNB): 

LNB {Local Name Base} 

a a+2 a+4 a+2000 a+2002 

v .---.------.------. .--------.---. 
- i X i V(O) i V(1) i - - - - - V(999) i Y i - - 

.---.------.------. .--------.---. 

This implementation has several points in its favour: 

i As the size of the array is known at compile-time, 

no special code is required to create it at 

run-time; the necessary storage can be claimed on 

entry to the block along with that for simple 

variables, return addresses etc. 
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ii Array references with constant subscripts need no 

address calculations at run-time. For example 

using V as declared above, the element V(2) is 

immediately addressable as the halfword with 

displacement "a+2 + 2*2" from LNB. 

iii In certain more general cases when the subscript is 

a variable, access can be simplified by remembering 

previous calculations. For example, the address of 

the array element V(X) is 

------------------------------------- 
addr(V(0)) + X*size of each element 

In the example above this becomes: 

LNB+a+2 + X*size of each element 

which can be rearranged to: 
------------------------------------------- 

a+2 + (X*size of each element+LNB) 
------------------------------------------- 

Hence the following code could be produced (7/16): 

-------------------- 
V(X) = 0 

LH 1,X(LNB) pick up X 
AHR 1,1 

; 
*2 (2 bytes per integer) 

AHR 1,LNB add in LNB 
SHR 0,0 get zero 
STH O,a+2(1) store in V(X) 

-------------------- 

Noting that the value now in register 1 

(X*size+LNB) only depends on the size of each 

element, X, and the local name base, it is clear 

that register 1 can be used to address the X'th 

element of any integer array of one dimension and 

constant bounds declared at the current level. 
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Hence if the array W(1:12) were declared 

immediately after Y in the example above, while 

register 1 is not changed W(X) can be addressed as 

a+2002(1). 

On the other hand, a machine with limited store cover, 

such as the Data General NOVA which only has an eight-bit 

displacement, will almost certainly force the array to be 

implemented as an immediately addressable pointer which is 

initialised at run-time to the address of storage claimed 

explicitly. 

LNB 

v i 

-i X i V i Y i--- 
.---.---.---. 

.------.----- .--------. 
+->; V(0) ; V(1) ; - - - - ; V(999) - - - 

.------.------. .--------. 
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With this organisation the address of V(X) will be: 

---------------------------- 
V + X*size of each element ---------------------------- 

and there is little that can be done by rearranging the 

expression to improve on the "obvious" code (7/16): 

---------------- 
V(X) = 0 

LH 1,X pick up X 

AHR 1,1 double it 
AH 1,V add in addr(v(0)) 
SHR 0,0 
STH 0,0(1) 

Not only is this second code sequence longer than the first 

by two bytes, but it will execute more slowly as the second 

addition involves a store reference whereas the equivalent 

instruction in the first sequence uses a register. 

In both cases, however, some simplification can be done if 

the subscript is an expression of the form: 

------------------------------ 
X plus or minus CONSTANT 

------------------------------ 

in which case the constant can be removed from the subscript 

expression evaluation and added into the final displacement. 

For example (7/16): 

------------------------- 
V(X-7) = 0 

LH 1,X 
AHR 1,1 
AHR 1,LNB 
SHR 0,0 
STH O,a+2+(-7)*2(1) 

pick up X 
double it 
add in LNB 
get zero 
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Unfortunately even this optimisation may not be 

available. For example, the ICL 2900 series performs array 

accesses through a DESCRIPTOR REGISTER, and the extra 

displacement cannot be added into the instruction. Also 

some machines, such as the IBM 360, only permit positive 

displacements in instructions. 

The examples above pose the following problem: If the 

intermediate-code is to know nothing of the target machine 

it cannot know the best way to declare the array, nor the 

best way to access it. Therefore the code must always 

produce the same sequences for array declarations and array 

accesses. It follows that these sequences must remain quite 

close to the original source and not include any explicit 

address calculations. 

As another example, the DEC PDP11 range has a hardware 

stack which grows with decreasing store addresses. Because 

of this it could be convenient to allocate storage for 

variables in that order, from large addresses to small 

addresses. However, in several cases it may be necessary to 

force objects to be created in order of increasing 

addresses, such as when program structures are to be mapped 

onto hardware-defined structures in memory, resulting in an 

implementation which requires to be able to create similar 

objects in different ways depending on the context. 
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Finally, some machines provide instructions in which the 

displacement of the operand is scaled before use, depending 

on the size of that operand. The GEC 4080 is such a 

machine, with instructions such as: 

LDB 1 load byte <1> 

LD 1 load halfword, bytes <2> & <3> 

LDW 1 load fullword, bytes <4>,<5>,<6> & <7> 

When producing code for such machines it is convenient to 

allocate all the local objects of the same size in 

particular areas, and then arrange the areas in increasing 

order of the size of the objects they contain. This permits 

better use of the available displacement field in the 

instructions. 
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The solution to these problems which was chosen in I-code 

was to define a DESCRIPTOR for each object to be 

manipulated. On input to the code-generator descriptors are 

converted from their machine-independent form to a new form 

appropriate to the target machine. As all subsequent 

reference to the object will be through descriptors the code 

produced will automatically reflect the decisions made at 

the time the descriptors were created. 

As will be discussed in section 4.5, it may be possible 

to remove the overhead in setting up addressability for 

local variables and parameters if the parameters can be held 

in registers and the local variables are never referenced. 

After examining many procedures which do use local variables 

it is clear that a large number of them do not need the 

complete overhead in setting up a local frame base as they 

could use the workspace pointer (stack pointer) instead. 

The criterion is that the position of the locals relative to 

the workspace pointer must be known at compile time. This 

reduces to the procedure not having any objects with 

computed sizes (arrays with computed bounds, for example) 

and no calls on procedures which access those locals as 

their global variables. 
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Consider the compilation of the following procedure on the 

PDP11: 

---------------------------------------- 
routine MARK(record(cellfm)name CHAIN) 

integer N 
N = 0 

while not CHAIN == NULL cycle 
N = N+1 
CHAIN_INDEX = N 

CHAIN == CHAIN LINK 
re Ae at 

end 

The code normally produced for this routine would be: 

MOV LNB,-(SP) 
i remember old LNB 

MOV DS,-(SP) remember DS 

MOV RO,(DS)+ save the parameter 
MOV DS,LNB 

i set up local addressing 
ADD #20,DS i reserve local space 
CLR 10 (LNB) i N = 0 

$1: MOV -2(LNB),R1 test CHAIN 
BEQ $2 branch if NULL 
INC 10(LNB) N = N+1 

MOV 10(LNB),2(R1) CHAIN INDEX = N 

MOV (R1),-2(LNB) CHAIN == CHAIN LINK 
BR $1 repeat 

$2: MOV (SP)+,DS restore DS 
MOV (SP)+,LNB restore LNB 
RTS PC return 
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However, by using workspace pointer (DS) relative addressing 

this reduces to: 

-------------------------- 

1: 

MOV 
TST 

CLR 

MOV 

RO,(DS)+ 
(DS)+ 

-2(DS) 
-4(DS),R1 

BEQ $2 
INC 
MOV 

-2(DS) 
-2(DS),2(R1) 

MOV 

BR 

(R1),-4(DS) 

$1 
$2: SUB #4 , DS 

RTS PC 

This optimisation can 

reserve local space 

N = 0 

; test CHAIN 

N = N+1 
CHAIN __INDEX = N 

CHAIN == CHAIN LINK 

restore DS 
return 

be performed quite simply by the 

third phase of compilation. 

In the interface between the second and third phases, the 

code sequences generated by the second phase are made up of 

items of the form: 

<type> <VALUE> 

where <type> describes where <VALUE> is to be put, for 

example in the code area or in the private data area. To 

achieve the workspace-pointer-relative addressing, extra 

types are introduced which specify that the associated value 

is the displacement of a local variable from LNB. Other 

codes are needed to be able to modify the operation part of 

the instruction which uses the displacements but these will 

be ignored here as they cause no difficulty and would just 

obscure the discussion. In addition, an extra <modify DS> 

item is output whenever DS is explicitly altered (as when 

parameters are stacked using MOV ??,(DS)+. 
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By default the third phase will treat these extra types as 

being exactly equivalent to <code area> types, and will 

generate the first sequence of code. However, if when the 

end of the procedure is processed, the second phase 

discovers that no dynamic objects or dangerous procedure 

calls were generated, it marks the end of the procedure 

accordingly (in the same way as described in section 4.7.2). 

This mark instructs the third phase to relocate all VALUEs 

with the appropriate type so as to make them relative to DS. 

The <modify DS> types are used to keep the third phase's 

idea of the current position of DS in step with reality. 
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4.5 Procedure e ricn exit 

IMP is heavily based on the use of procedures, indeed the 

only method of communicating with the controlling 

environment is by means of procedure calls. Also the 

techniques of structured programming result in the extensive 

use of procedures. Clearly when writing a compiler for such 

languages much thought must be given to making procedure 

entry and exit (and the associated passing of parameters) as 

efficient as possible. 

4.5.1 User-defined procedures 

The usual technique for procedure entry and exit is to 

have standard preludes and postludes which cover all the 

different types of procedure. For example the EMAS IMP code 

sequences [Stephens, 19741 are (ICL4/75): 

STM 
BAL 

4,14,16(WSP) 
15, PROC 

save the current environment 
enter the procedure 

PROC ST 
LR 
LA 

15,60(WSP) 
LNB,WSP 
WSP,***(WSP) 

save the return address 
set up local stack frame 
claim local space 

BALR 10,0 
i 
set up code addressability 

LM 4,15,16(LNB) restore calling environment 
BCR 15,15 return 

------------------------- 
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While this has proved to be convenient to generate and 

efficient to execute it has one major problem, part of the 

housekeeping of the procedure entry is performed at the call 

itself. This seems undesirable for two reasons: 

i Procedures are generally called more often than 

they are defined. If part of the housekeeping of 

procedure entry is done at the call that code will 

be duplicated at each call, thus increasing the 

size of the program. Putting that code within the 

procedure reduces the size overhead. 

ii If the knowledge of what housekeeping needs to be 

done for procedure entry is needed outside the 

procedure it becomes impossible to alter the entry 

and exit sequences to suit the actual procedure. 

In particular, on certain machines it is possible 

to remove the entry and exit sequences altogether 

when the procedures are simple enough. 
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If the 4/75 compiler moved the environment-saving STM 

instruction into the body of the procedure, the storing of 

the return address would be performed automatically: 

------------------------- 
BAL 15,PROC 

PROC STM 4,15,16(WSP) 
LR 8,WSP 

This not only saves four bytes per call, very important on a 

machine with a very severely limited immediate addressing 

range, but also reduces the overhead in entering the 

procedure by one instruction. 

A further modification would be to pass one or more of the 

parameters in the registers, leaving the way open for 

remembering that fact inside the procedure. 
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Hence a call could be reduced from: 

L 1,X 
ST 1,64(WSP) 
L 2,Y 
ST 2,68(WSP) 
BAL 15,PROC PROC(X, Y) 

PROC STM 4,15,16(WSP) 

------------------------ 

to: 

----------------------- 
L O,X 
L 1,Y 
BAL 15,PROC 

PROC STM 4,1,16(WSP) 

The ability to determine exactly how parameters are to be 

passed can be of crucial importance in the efficiency of the 

procedure mechanism. 
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When compiling for the PDP11 the obvious calling sequence 

for a procedure with two integer value parameters would be: 

------------------- 
MOV X,-(SP) 
MOV Y,-(SP) 
JSR PC,PROC 

------------------- 

Unfortunately this produces problems inside the procedure as 

the return address, stacked by JSR, is too far down the 

stack to permit the use of the RTS instruction to return, 

for this would leave on the stack the space used by the 

parameters. Neither can the stack be adjusted before the 

return, which would then be made indirectly through a 

location beyond the stack pointer, as space there must be 

considered volatile, being used by interrupt handling. 

Extra instructions are needed either at the call or inside 

the procedure to adjust the stack; the JSR instruction may 

well not be "a beauty" as claimed by some implementors 

[Bron, 1976]. A MARK instruction has been introduced in an 

attempt to overcome this problem, but it is far from helpful 

as it imposes an arbitrary register convention and puts all 
of the overhead on the call rather than on the procedure 

itself. 
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On the other hand, if all of the parameters can be passed in 

registers, the JSR will put the return address on a clear 

stack, permitting the use of RTS for the return. As in 

practice most procedures have few parameters, usually only 

one or two, this can give a large saving. 

As an example of the power of being able to alter entry and 

exit sequences, consider a recursive implementation of the 

IMP routine SPACES: 

----------------------------- 
routine SPACES(integer N) 

return if N <= 0 

SPACES(N-1) 
SPACE 

end 

----------------------------- 

On the PDP10 the straightforward coding for this would be: 

-------------------------- 
MOVE 0, X pick up X 
MOVEM 0, 3(SP) assign the parameter 
PUSHJ SP, SPACES call SPACES 

SPACES: MOVEM LNB,1(SP) save old frame base 
MOVE LNB,SP pick up new frame base 
ADDI SP,3 reserve stack space 
SKIPLE 1,2(LNB) load, test & skip if X<=0 
JRST LAB1 jump to LAB1 
MOVE SP,LNB restore stack pointer 
MOVE LNB,1(SP) restore old frame base 
POPJ SP return 

LAB1: SOJ 1, 0 X-1 -> ACC1 

MOVEM 1,3(SP) assign parameter 
PUSHJ SP,SPACES call SPACES 
PUSHJ SP,SPACE call SPACE 
MOVE SP,LNB restore stack pointer 
MOVE LNB,1(SP) restore old frame base 
POPJ SP ; return 
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By applying the optimisations of passing the parameter in an 

accumulator (called ARG) and remembering that the parameter 

is in this accumulator on entry to the procedure, the code 

reduces to: 

MOVE ARG,X i 

PUSHJ SP, SPACES 

SPACES: MOVEM 
MOVEM 

LNB, 

ARG, 

1(SP) 

2(SP) 
ADDI 
JUMPG 
MOVE 

MOVE 
POPJ 

SP, 
ARG, 

SP, 

LNB, 
SP 

3 

LAB1 
LNB 
1(SP) 

LAB1: SOJ ARG, 0 

PUSHJ 
PUSHJ 
MOVE 
MOVE 
POPJ 

SP,SPACES 
SP,SPACE 
SP, LNB 
LNB, 1(SP) 
SP 

pick up X 
call SPACES 

assign the parameter 

->LAB1 if ARG > 0 

parameter = ARG-1 
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On inspection it is clear that the local stack frame 

(pointed at by LNB) is never used within the procedure 

except by the entry and exit sequences. Hence by reducing 

those sequences to the absolute minimum, the code becomes: 

--------------------------- 
MOVE ARG, X 

PUSHJ SP, SPACES 

SPACES: JUMPG ARG, LAB1 
POPJ SP 

LAB1: SOJ ARG, 0 
PUSHJ SP, SPACES 
PUSHJ SP, SPACE 
POPJ SP 

--------------------------- 

Finally, an opportunistic optimisation may be performed 

[Knuth, 1974; Spier, 1976] by noticing that the final two 

instructions may be combined so that the procedure SPACE 

uses the return address pushed onto the stack for the return 

from SPACES. This results in the tightest form of the code: 

---------------------------- 
MOVE ARG, X 
PUSHJ SP, SPACES 

SPACES: JUMPG ARG, LAB1 
POPJ SP 

LAB1: SOJ ARG, 0 
PUSHJ SP, SPACES 
JRST SPACE 

---------------------------- 
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The final steps in this optimisation can only be performed 

once the body of the procedure has been compiled. In order 

that the correct (in this case non-existent) entry sequence 

can be used, an extra pass over the object code is 

necessary. This pass can be combined with the process of 

adjusting labels and jumps which is carried out in the third 

phase of compilation described in section 4.7. The code 

generator can mark the position where an extra sequence is 

required and at the end of the procedure can inform the 

third phase of any salient features found in the body. The 

third phase can then decide on the best entry and exit 

sequences to use. 

This ability to tailor the "housekeeping" parts of 

procedures can be used in many circumstances to limit the 

inclusion of code which is needed to handle rare 

constructions to those procedures which use the feature. 

As an example of this consider the ICL 2900 series. 

The machines of the series are designed around a hardware 

stack, which resides in one, and only one, segment of the 

user's virtual memory, and thus limits this data space to 

255K bytes. In order to be able to handle programs using 

very large arrays, space must be available off-stack in 

another segment or set of consecutive segments. The 

maintenance of this extra data space will require 

instructions to be executed on entry to and on exit from 

procedures which claim space from it, but not from those 

which only use space from the stack. 
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These extra instructions can be added to the procedure in a 

simple manner by the third phase as it now controls the form 

of the procedure when all the necessary information is 

available. 

For these optimisations to be performed the intermediate 

code must not lay down rules for procedure entry and exit, 

rather it should simply mark the points at which suitable 

code is required. 

An additional consideration in the design of the I-code 

for procedure entry and exit is the requirement of some 

machines for a "pre-call" to be made the prepare a hardware 

stack for parameters prior to their evaluation and 

assignment. 
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For example (ICL2900): 

PROC(1, 2, 3) 

PRCL 4 pre-call 
LSS 1 load 1 

SLSS 2 stack it and load 2 

SLSS 3 stack it and load 3 

ST TOS store it on Top Of Stack 
RALN 8 raise the Local Name Base 

to point to the new frame 
CALL PROC enter the procedure 

Following these considerations the form of procedure call 

chosen for I-code was: 

----------------- 
PROC P stack procedure descriptor 

(stack param} repeated for each parameter 
ASSPAR / 
ENTER enter the procedure 

----------------- 

ASSPAR causes the value described on the top of the stack to 

be assigned to the next parameter, identified by the 

procedure descriptor second on the stack, using either 

ASSVAL or ASSREF as appropriate. 

In order to pass some of the parameters in registers all 

that need be done is for the initial processing of the 

descriptors for those parameters to define them as the 

appropriate registers. PROC can then "claim" those 

registers, the parameter assignment will load them, and 

finally ENTER can release them for subsequent re-use on 

return from the procedure. 
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4.5.2 External procedures 

Most useful languages provide means for compiling files 

of procedures (and less commonly, data objects) which can be 

accessed from other modules. Also, systems usually provide 

extensive libraries of procedures which users of high-level 

languages will want to access. In general an external 

procedure is identified by a vector of quantities including 

at least the entry address and a description of the 

environment in which the procedure is to execute. Depending 

on the type of operating system in question, the number of 

quantities in this vector will change. When the system 

requires a "store image" which has all the addresses fixed 

before execution, only the entry address is required, as the 

code of the procedure can be relocated in order to define 

its environment. As this method demotes code-sharing to a 

limited facility (making programs shareable is often a 

privileged operation), several systems have selected a more 

flexible scheme whereby executing programs have a writeable 

"linkage area" into which are placed the entry vectors for 

procedures. The code of these procedures may now be made 

read-only and shared with only the linkage areas being 

unique to each user. These vectors are filled in with the 

references to the externals either prior to program 

execution, or dynamically when the procedure is first 

called. Finally, it must be noted that the compiler writer 

will have little or no control over the standards required 

by external procedures unless they have been generated with 

the same compiler. 
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In particular the parameter passing mechanisms may be 

different from those used in the intermediate code. 

In order to cope with these and other considerations any 

intermediate code which permits access to external 

procedures must be sufficiently flexible to allow the 

variations to be handled efficiently. 

4.5.3 Permanent procedures 

Most languages define a set of procedures which will be 

available on any implementation without explicit action by 

the user (such as the IMP procedures ITOS, REM, READSYMBOL, 

and READ). Such procedures are termed "permanent 

procedures". It is common for intermediate codes to provide 

specific code items to invoke permanent procedures, but this 

has the problem that the code-generator must know about all 

such procedures, and the language-dependent phase must be 

changed and the intermediate-code extended if an 

implementation wishes to make efficient use of procedures 

which can be compiled in-line on particular machines. For 

example many machines provide an instruction for moving 

blocks of store around and it could be advantageous to have 

a procedure which invoked this instruction directly. 

Before investigating ways of improving the implementation 

of permanent procedures it is useful to examine in some 

detail the properties of the procedures mentioned above, 

which were chosen because they typify the main problems in 

this area. 
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ITOS is a fairly complicated string function which 

returns as its result the decimal character-string 

representation of the integer value passed to it as a 

parameter. Because of its complexity this procedure is 

almost always best implemented as an external procedure 

which is linked into the program along with any other 

external entities required. 

REM is an integer function which returns the remainder of 

dividing the first integer parameter by the second, and on 

many machines can be efficiently compiled in-line, as most 

integer divide instructions provide both the quotient and 

the remainder. However, when compiling for machines such as 

the DATA GENERAL NOVA or the DEC PDP11 when they do not have 

the optional divide instructions, division has to be 

performed by a complicated subroutine, suggesting that REM 

itself should be an external procedure like ITOS. 

READSYMBOL falls somewhere between the two, mainly 

because it is defined to have a general name parameter, that 

is, the parameter may be a reference to any type of entity: 

integer, real, byteinteger, etc. To implement READSYMBOL as 

an external procedure it would have to be passed the general 

name parameter (comprising both the address of the actual 

parameter and information about its type and precision), and 

would have to interpret that parameter in order to be able 

to store the character, suitably converted, in the 

appropriate way. 
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A much more efficient implementation is to convert the 

statement: 

--------------- 
READSYMBOL(S) 
--------------- 

into the equivalent form: 

S = F$READSYMBOL 
------------------ 

where F$READSYMBOL is a function which returns as its result 

the character value that READSYMBOL would have placed into 

its parameter. Once this is done, conversions and the 

choice of store operation can be left to the usual 

assignment part of the compiler. A further complication can 

arise if, as in the case of the INTERDATA 7/16 operating 

system, ISYS [Dewar, 1975], several permanent procedures map 

directly onto system-provided facilities: the function 

F$READSYMBOL can be replaced by the supervisor call 

"SVC 8,0", SELECT INPUT by "SVC 6" etc. 

The difficulty caused by READ is mainly one of space. As 

read can input an integer value, a real value, or a string 

value depending on the type of its (general name type) 

argument, it is going to be fairly large, especially if the 

hardware on which it runs does not provide floating-point 

instructions, forcing those functions to be performed by 

subroutine. It follows that on small systems it may be 

convenient to replace calls on READ by calls on smaller 

procedures, chosen at compile-time by examining the type of 

the parameter given to READ, which input solely integer, 

real, or string values. 
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Finally it should be noted that the substitutions and 

modifications discussed above may only be generated as 

replacements for direct calls on the procedure; if the 

procedure is passed as a parameter to another procedure no 

alterations are possible and a "pure" version must be 

available. As passing a procedure as a parameter is totally 

distinct from calling the procedure this case does not 

prevent the improvements being carried out where possible. 

It should now be clear that the efficient implementation 

of permanent procedures will differ greatly from the 

implementation of user-defined procedures, and the 

implementation of permanent procedures on different 

machines. Hence the intermediate-code must make no 

assumptions about either which permanent procedures are 

available or how they are to be implemented. 

As a side-effect of removing any built-in properties from 

permanent procedures it becomes possible for a simple 

code-generator to ignore any possibility of producing 

special code and compile them all as externals. 

These transformations of procedures can only be applied 

when the procedures are invoked (called) directly. In the 

case of procedures passed as parameters all calls will of 

necessity be the same and hence either it will not be 

possible to pass some permanent procedures as parameters, an 

unfortunate limitation imposed by several languages, or 

there must be a "pure" form of the procedures available. 
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This latter can be done very simply using I-code. The 

primitive procedure descriptors are defined exactly as if 

the procedures were truly external, but with an extra marker 

showing them to be "permanent". The only time that this 

marker is used is in the procedure-call generating section 

of the compiler. If the procedure is being passed as a 

parameter this section of the compiler is not entered and so 

the procedure will be passed as an external. All that is 

now necessary is for there to be an external manifestation 

available when the program executes. This method has the 

added advantage that there is no compile-time overhead, 

especially important considering that passing procedures as 

parameters is one of the least-used features of IMP77. 

4.5.4 Primitive Procedures 

It is rare for machines to provide simple instructions 

which can deal directly with all of the requirements-of 

high-level languages and so several constructions will have 

to be handled by subroutines. The code generator may then 

refer to these "primitive procedures" as though they were 

machine instructions. 
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The cases in which such procedures are required commonly 

include exponentiation, string manipulation, and array 

declaration and access. 

Given these procedures, the code-generator has a choice 

between calling them as closed subroutines or expanding them 

in-line. The former produces dense code but will execute 

more slowly than the latter (and possibly suffer from not 

knowing what is corrupted by the routine and therefore 

having to forget everything it knows). On the other hand 

while the expansion of primitive procedures in-line will 
improve the execution speed of the program, it becomes 

necessary for the code-generator to be able to create the 

appropriate code sequences and thereby become more bulky. 

Once again the choice must be left to the code-generator as 

the benefits of a particular decision will depend on both 

the target machine and the use to which the compiler is to 

be put. If the compiler is to be used for large 

mathematical problems it is likely that the gains made by 

putting exponentiation in-line will outweigh the 

disadvantage of the extra code size, whereas in 

operating-system work, as exponentiation is probably never 

needed, the extra complexity of the code generator to expand 

the routine would not be desirable. 

Given that some of the primitive procedures will be 

referenced often (checked array access, for example) it is 

important that entry to them is made as efficient as 

possible and in this area the ability to reorder code can be 

used to great effect. 
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In the original Interdata 7/32 IMP77 compiler the 

primitive routines were gathered together at the end of the 

user's code, as it was only then that it was known which 

procedures were required. 

<- CODE BASE (register 14) 
USER 
CODE 

PRIM 
PROCS 

With this scheme programs of 16Kbytes or less can reference 

the primitive procedures with 32-bit instructions 

(program-counter relative addressing). Unfortunately once 

the program grew beyond this limit the larger and slower 

48-bit form of the instructions had to be used in order to 

achieve addressability. In the IMP77 code generator there 

were 352 such large instructions. 
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In the new compiler the object code is reordered to place 

the primitive procedures at the head of the user's code 

where they can be addressed relative to CODE BASE. 

<- CODE BASE (register 14) 
PRIM 

PROCS 

The immediate disadvantage of this is that it will push the 

user's procedures further away from CODE BASE and hence 

increase the chances of a user procedure reference requiring 

a long (48-bit) instruction. However in practice this is 

not a problem as the total size of the primitive procedures 

is usually quite small, typically less than 800 bytes on the 

7/32. The IMP77 code generator mentioned above now needs no 

long references at all, saving 724 bytes of code, out of 

about 40Kbytes. The compression of the code so achieved can 

be enhanced slightly by bringing the destinations of more 

jumps into the short-jump range, giving an extra saving of 

20 bytes the case above. In addition, now that a register 

(CODE BASE) is pointing to the first primitive procedure, 

the list of procedures required can be reordered to place 

the most frequently referenced one first and thereby reduce 

references to it to 16-bit instructions 

(BALK LINK,CODEBASE). 
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When compiling with checks on, by far the most commonly 

referenced primitive procedure is the routine which checks 

for the use of an unassigned variable (over 2000 references 

to it in the code generator), and this trivial optimisation 

results in a saving of more than 4000 bytes. 
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4.6 Language-specified an compiler-generated o ec 

During compilation, various objects will be manipulated 

in order to generate code. Some of these objects have a 

direct representation in the source program and are referred 

to as "language-specified" objects, whereas others are 

created by the compilation process itself and are referred 

to as "compiler-generated" objects. The fact that the 

compiler-generated objects will be (or can be constrained to 

be) used in a stereotyped and well-behaved fashion can be 

used to great advantage to give simple means for optimising 

parts of the program. 

4.6.1 Internal labels 

Using most intermediate codes the following program parts 

would translate into effectively identical sequences: 

---------------------------------------------------- 
->LAB if X = 0 ; if X # 0 start 
Y = 3 Y = 3 

LAB: ; finish 
---------------------------------------------------- 

At first glance this is as it should be, for the two 

program fragments are semantically identical and could 

therefore be implemented by the same object code, for 

example on the PERKIN-ELMER 3200: 

----------------- 
L 1,X pick up X and set the condition code 
BZ $1 branch equal (to zero) 
LIS 0,3 pick up 3 

ST O,Y store it in Y 

$1: define label $1 
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However, if it is known that the label $1 will only ever be 

used once, the code-generator may remember that the current 

value of the variable X will still be in register 1 

following the label, and thus remove the need for it to be 

loaded again if it is required before register 1 gets 

altered. In the case of user-defined labels no statement 

can be made about the number of uses of each label without a 

complete analysis of the parts of the program where the 

label is in scope. 

This suggests that I-code should maintain a clear 

distinction between user-defined and compiler-generated 

labels. Also, by making the rule that compiler-generated 

labels may only be used once, the internal representations 

of labels may be reused by the code-generator, removing the 

necessity for large tables of label definitions in this 

phase of compilation. 

This now leaves the question of how to represent 

conditional jumps in the intermediate code. The first 

observation is that user-specified jumps need never be 

conditional, as they can always be surrounded by appropriate 

compiler-generated conditional jumps. This can be used to 

restrict the processing of conditions and tests to the 

compiler-generated jumps. The second observation is that in 

IMP77 conditionals are always associated with the comparison 

of two values or the testing of an implied boolean variable 

(predicates and string resolution). 

There are currently three main ways in which processors 

handle this: 
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"compare" instructions are used to set flags or 

condition-codes which represent the relationship 

between two values (one of which is frequently an 

implied value of zero). These condition-codes are 

later used to control the execution of conditional 

branch instructions. This method is used in the 

PDP11: COMP, BNE etc. 

2 Instructions are provided which compare two values 

as above but instead of setting condition-codes 

they skip one or more subsequent instructions 

depending on a specified relationship. By skipping 

unconditional branches in this way conditional 

branch sequences may be generated. This method is 

used in the PDP10: SKIPE etc. 

3 Instructions are provided which compare two values 

and branch to a specified label if a given 

relationship holds. This method is used in the 

PDP10: JUMPNE etc. 

P-code uses compare instructions to set the boolean value 

TRUE or FALSE on the stack and then uses this value either 

as an operand in an expression or to condition a branch (a 

variant of technique 1 above). 

Z-code tests the value in a register against zero and 

branches accordingly (technique 3 above). 

100 



These three techniques have fairly obvious possible 

representations in I-code: 

if X = Y start 

1) PUSH X 

PUSH Y 

COMP {set condition code} 

BNE 1 {branch not equal} 

2) PUSH X 

PUSH Y 

SKIPE {compare and skip if equal} 

GOTO 1 

3) PUSH X 

PUSH Y 

JUMP # 1 {compare and branch if not equal} 

All three of these representations have been tried in 

different versions of I-code. 

Technique 2) was rejected as it proved cumbersome to 

implement effectively, especially on machines which did not 

use skips; either the code-generator had to "look ahead" to 

be able to locate the destination of the skip (which is 

dependent on the instruction being skipped) or to check 

before each instruction whether on not a skip had been 

processed earlier and its destination had not yet been 

resolved. 
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Technique 1) was perfect for machines with condition-codes 

but required look-ahead over subsequent jumps on machines 

which used skips. 

Both 1) and 2) had the additional problem that to generate 

conditional branches, two separate I-code instructions had 

to be given. In the case of 1) condition-codes are usually 

altered by many instructions not directly involved in 

comparison and hence the compare and its associated branch 

must be made adjacent. With 2) there is the possibility of 

generating meaningless constructions such as skipping a 

line-number definition instruction. These difficulties add 

complexity to the definition of the intermediate code and 

require extra checks in the code generator. 

Thus the third form was chosen as the most convenient, 

even though all three forms can be suitably defined to be 

totally equivalent. In particular the third technique 

provides all the relevant information to the code-generator 

in one instruction, and has proved to be simple and 

effective as a basis for generating code for both 

condition-code and skip sequences. 
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Using these ideas the following is the expansion of the 

statements given at the start of section 4.6.1. 

PUSH X 
i PUSH X 

PUSHI 0 ; PUSHI 0 

COMP # 1 1 COMP 1 

JUMP 
LOCATE 

LAB 
1 

PUSH Y ; PUSH Y 
PUSHI 3 

1 
PUSHI 3 

ASSVAL 
1 

ASSVAL 
LABEL LAB 1 LOCATE 1 

4.6.2 Temporary objects 

During the compilation of high-level languages it often 

becomes necessary to create temporary objects which are not 

present in the source program. The most common need for 

temporaries is in the evaluation of expressions. Regardless 

of the number of accumulators or registers available it is 

always possible to construct an expression which will 

require one more. To obtain this register, a register 

currently in use must be selected and the value currently in 

it must be saved in a temporary location. One apparent 

exception to this is a machine in which expressions are 

evaluated using a stack (e.g. ICL 2900) but in this case 

the operands are always in temporaries. 
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Temporary variables may also be required to implement 

certain high-level constructions, such as the IMP for 

statement: 

----------------------- 
for V = A, B, C cycle 

----------------------- 
which is defined so that the initial values of B and C, and 

the initial address of the control variable, V, are to be 

used to control the loop regardless of any assignments to V, 

B and C. While it is possible for a machine-independent 

optimiser to discover whether these variables are modified 

in the loop or not, in the simple case where little 
optimisation is required the code generator must use 

temporaries. 

In the case of expression evaluation, however, the machine 

independent phase cannot know how many temporaries will be 

required. Even giving the first phase knowledge of the 

number of registers available is not adequate for several 

reasons. Firstly, the use of registers is commonly tied to 

the operations being performed, as in the case of integer 

multiplication on several machines which requires a pair of 

registers. For a machine-independent first phase to be able 

to cope with this sort of limitation would require great 

flexibility of parameterisation. 

104 



Secondly, the first phase would have to be given details of 

the problems encountered in statements such as: 

LEFT = REM(A,5) + REM(B,7) 

On a PDP11 equipped with the EIS option, a divide 

instruction is available which provides both the quotient 

and the remainder. Hence the statement could be compiled 

into: 

MOV A,R1 
SXT RO propagate the sign of A 
DIV RO,#5 remainder to R1 
MOV B,R3 
SXT R2 
DIV R2,#7 remainder to R3 
ADD R2,RO 
MOV RO,LEFT 

In this case no temporary store locations are required. 

However, if the EIS option is not present, no DIV 

instruction is available and so a subroutine must be used 

instead. The code becomes: 

----------------- 
MOV A,R1 
MOV #5,R2 
JSR PC,DIV result back in R1 
MOV R1,T1 preserve remainder 
MOV B,R1 
MOV #7,R2 
JSR PC,DIV result in R1 
ADD T1,R1 
MOV R1,LEFT ----------------- 

As the subroutine REM uses R1 (for one of its arguments and 

to return its result) the result of the first call on REM 

must be saved in a temporary, T1. 
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Of course, the function REM could be written so as to 

preserve the value in, say, R2 and this could be used 

instead of T1, but this would increase the cost of REM when 

it is likely that the value in R2 will not be of use as most 

expressions are trivial [Knuth, 1971]. 

Unless the machine-independent phase is given intimate 

knowledge of the target machine (something of a 

contradiction) it cannot know how many temporaries to use 

nor when to use them. 

The solution adopted by most intermediate codes is to base 

the code around a stack, thus providing an unlimited number 

of temporaries which are handled automatically. While this 

in itself does not hinder the compilation for a machine 

without a hardware stack, as the code-generator can always 

simulate the stack internally, its presence invariably 

results in other parts of the code using it, for example to 

pass parameters to procedures where the receiving procedure 

contains built-in knowledge of the layout of the stack. 

As a stack does not require the explicit mention of 

temporaries it has been adopted by I-code, but purely as a 

descriptive mechanism. Because I-code does not specify the 

computation but the compilation process needed to produce a 

program which will perform the computation, this internal 

stack need have no existence when the final program 

executes. 
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The implementors of SIMPL-T describe an intermediate code 

with some properties similar to I-code, but based on 

"quadruples" of operators and operands rather than an 

internal stack [Basili, 1975]. The stack approach was 

rejected by them because "quads allow more flexibility in 

the design of the code generator since, for example, no 

stack is required". The exact meaning of this is not clear 

but it suggests the misconception that a stack-based 

intermediate code forces a stack-based object code 

representation. Regardless of the exact structure of the 

code generator or the input it takes, some form of internal 

stack is invariably required for operations such as 

protecting intermediate values in registers which are needed 

for other purposes, and it seems reasonable to make this 

stack more explicit if so doing will simplify the 

intermediate code and its processing. 
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.7 Object file generation 

Once a program has been compiled into sequences of 

machine code instructions, there still remains the task of 

producing an object file in a form suitable for processing 

by the operating system (if any) under which the program is 

to be executed. This task was separated from the main part 

of code generation (the second phase) and has become the 

third phase of compilation for the following reasons: 

i The particular format required in the final object 

file will vary on any particular machine depending 

on the operating system in use. As this is to a 

large extent independent of the code sequences 

needed to implement the program, it was thought 

sensible to keep the processes separate. 

ii Even following the generation of the code by the 

second phase there remain many opportunities for 

further optimisation, both global and structural, 

which require information only available once the 

complete program has been compiled. Rather than 

build global analysis into the second phase these 

optimisations were left to a third phase. 
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The third phase takes as its input two data streams 

generated by the second phase. These streams are: 

i The object stream, a sequence of items of the form: 

<type> <value>* defining the code sequences 

required in the object file. 

ii the directive stream, a sequence of items defining 

the logical structure of the object stream, that is 

a specification of label definitions and label 

references, and details of various code groupings 

(blocks, procedures etc.). 

The third phase starts by taking in the directive stream and 

constructing a linkage map describing the whole program. 

This linkage map is processed and then used to control the 

generation of the final object file from the object stream. 

The operations performed using the map are: 

4.7.1 Reordering 

As discussed previously in section 4.3, there are several 

gains to be made by having the ability to output 

instructions in an order different from that in which they 

were implied by the linear structure of the source program. 

This reordering is performed on the linkage map in a manner 

controlled by items in the directive stream. 
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In the most simple case of exbedding procedures (section 

14.3.1) this only entails allocating code addresses to the 

items in the map each time an "end-of-block" control item is 

input, resulting in the procedures being laid out in "gfl " 

order. 

To facilitate evaluating references to the reordered areas, 

all references in the object stream are made relative to the 

start of the appropriate area. 

As this process does not cause the physical moving of the 

various areas there is an implicit assumption that either 

the subsequent processing of the object stream can do the 

reordering (for example by writing its output to specific 

sections of a direct-access file), or that the object file 

format can instruct the loader or linker to do the 

shuffling. 

With the linkage map available it becomes possible to 

make a preliminary pass over the object stream performing 

structural modifications which require knowledge of the 

generated code and which alter its size and general 

appearance. These modifications may be made by passing the 

object stream through a buffer which is scanned and modified 

under the control of the linkage table. In this way merging 

common code sequences and reordering the arms of conditional 

sequences may be achieved quite simply. 
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4.7.2 Jumps and Branches 

Following the construction of the linkage map structural 

optimisations may be performed on jumps. The three 

optimisations which are currently applied are: 

i Use of the smallest instruction 

A common feature of machines is that they 

provide a variety of sizes of jump instruction, 

depending on the reason for the jump (conditional 

or unconditional) and the distance to be jumped. 

e.g. PDP11 

BEQ (2 byte instruction) conditional jump up to 

256 bytes in either direction. 

JMP (4 byte instruction) unconditional jump to 

anywhere. 

Perkin-Elmer 3200 

BFFS 
BFBS (2 byte instructions) conditional jump 

forward (F) or backward (B) up to 32 bytes 

away. 

BFC (4 byte instruction) conditional jump to 

within 16Kbytes of the current instruction. 

BFC (6 byte variant) conditional jump to anywhere. 
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In typical programs the frequency of occurrance 

of such jumps is: 

PDP11 PE3200 
------------------ 

2 byte 88% 28% 
4 byte i 8% 71% 
6 byte i 

2% <1% 

It has been suggested [Brown, 1977] that the 

problem of deciding which form of jump to use can 

be eased on certain machines by specifying a 

"distance" parameter with the intermediate code, 

e.g. "GOTO LAB,80" informing the code generator 

that the label LAB is 80 instructions ahead. 

It is difficult to think of any case in which this 

could be of any use as it requires the code 

generator to be able to predict the amount of 

target machine-code which will be generated for 

each intermediate code instruction. 

The solution adopted by the IMP compilers has 

been for the code generator to assume that all 

jumps are the minimum size, and to let the third 

phase stretch them where necessary. 

The Perkin-Elmer CAL assembler [Interdata, 1974] 

makes the opposite assumption, namely that jumps 

are long until proven short. This was rejected as 

the size of one jump is often dependent on another, 

so that one of them will be short if and only if 

both of them are short. 
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By assuming them long either they will never be 

found to be short, or the process will have to 

examine all the jumps repeatedly trying each jump 

in turn to see if it can be "squeezed". Commonly 

enabling the "SQUEZ" option in the CAL assembler 

can double or treble the time to assemble programs. 

With the assumption that all jumps start short and 

then grow, all truly short jumps will be found with 

no possibility of infinite loops, as the process 

must terminate, in the worse case when all the 

jumps have been made long. 

Several methods for achieving this optimisation 

have been described [Szymanski, 1978; Williams, 

19781. 

The technique used by the third phase of the IMP77 

compilers for stretching jumps is as follows. 

Once the linkage map has been constructed and 

addresses provisionally allocated, all labels and 

references to them are grouped according to the 

block in which they occurred. This is to take 

advantage of the fact that most references will be 

local. A procedure STRETCH is now defined which 

repeatedly attempts to lengthen each reference 

within a particular group. 

113 



If a reference is found which must be stretched, 

the entry in the linkage map is updated and all 

subsequent entries are suitably modified to take 

account of the increased size of the code. The 

process is repeated until no alterations have been 

made. 

STRETCH is first called once for each group of 

references in the program. This "local stretch" 

commonly resolves up to 80% of the references. A 

final call on STRETCH is then made with all the 

references lumped together as one group in order to 

resolve references between blocks, and any local 

references which, although processed by the local 

stretch, have become invalidated by changes made by 

the "global stretch". 

The use of a local and a global stretch has a 

considerable effect on the performance of the 

compiler: If the calls on "local stretch" are taken 

out, "global stretch" has to do all the work in 

ignorance of the block-structure of the labels. 

This involves repeated searching of the complete 

label and reference lists in order that changes in 

the position of these items may be recorded. On 

the Interdata 7/32 this increases the stretching 

time for 1968 branches from 2.3 seconds out of a 

total compilation time of 146 seconds, up to 35 

seconds! 
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The time taken to perform the stretching using both 

local and global stretch is on average just over 1% 

of the total compilation time excluding the time 

for input and output. 

Wulf et al. describe an optimisation on the PDP11 

which attempts to shorten otherwise long 

conditional jumps by making them jump to suitable 

jumps to the same destination, as this is smaller 

and faster than the six byte instructions which 

would be generated by default [Wulf, 1975]. This 

was tried but eventually removed from the PDP11 

compiler as finding suitable jumps was a tedious 

task and of the average 2% of jumps which were 

long, in compiling many programs only one case was 

found where the optimisation could be applied. 

That case was in a program specially constructed to 

test the optimisation. 

At the same time that jumps and labels are being 

processed, certain operations which depend on the 

flow of control may be inserted into the code. 

The GEC 4080 provides a good example of this 

problem which can be handled elegantly by the third 

phase. The machine provides arithmetic 

instructions which take either fixed point or 

floating point operands depending on the state of a 

processor status bit. This bit must be altered by 

the instructions SIM (Set Integer Mode) and SFM 
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(Set Floating Mode). During code generation when a 

label is encountered the state of the status bit 

will not in general be known, and so a suitable 

mode switching instruction will need to be planted; 

frequently this instruction will be redundant. 

Given the presence of the third phase, the second 

phase merely needs to mark jumps with the current 

state of the bit, and to mark labels with the 

required state (and the previous state of the bit 

if control can "fall through" past the label). 

During the process of expanding jumps, these mark 

bits can be checked. If all references to a label 

have the same mode, no action needs to be taken, 

but if the bits differ the appropriate instruction 

must be added. As an extra improvement if only one 

jump to a label is from the wrong mode, the mode 

switching instruction can be planted before that 

jump rather than after its destination label, so 

shortening the execution paths when no change is 

required. 

ii Conflating .lumps to iumos. 

Nested conditional structures in high-level 

languages often generate jumps which take control 

directly to another jump. If the second jump can 

be shown always to be taken whenever the first is, 

the first can be redefined as jumping directly to 

the destination of the second. 
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e.g. ----------------------------------- 
-while N > 0 cycle 

N = N-1 
if N > 5 then TEST1 else TEST2 

,neap 
----------------------------------- 

In this program following the call on TEST1 the 

else causes a jump to be taken to the repeat. This 

statement is simply a jump back to the previous 

cycle. 

Hence the following code can be generated (PE3200): 

------------------- 
$1: L 1,N 

BLE $3 
STS 1,1 

ST 1,N 
CHI 1,5 

BLE $2 
BAL 15,TEST1 

B $1 
$3: BAL 15,TEST2 

B $1 

The danger with this optimisation is that an 

otherwise short jump can be expanded to a long jump 

as the following program demonstrates: 

if X = 1 start 
-if Y = 1 stark 

{A} 
else 

{B} 
finish 

else 
{C} 

finish 
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The else following the sequence {A} causes a jump 

to the next a se which jumps past the finish. In 

that form, the first jump only has to skip {B} and 

is likely to be a short jump. If it is made to 

jump directly to the second finish it has to cover 

{B} and {C}, so reducing the chances of its being 

short. 

Equally, the position can be reversed, resulting in 

the optimised jump being short when the original 

was long. If this problem is considered serious 

the third phase can check the sort of jump which 

would be generated and act accordingly. 

iii Removal of imps round jumps. 

Statements such as: 

------------------ 
->LABEL if X = Y 

are common, either in the explicit form as given 

above or in some higher-level representation such 

as: 

exit if X = Y 
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The simple code sequence generated for this would 

be similar to (PE3200): 

-------------- 
L 1,X pick up X 
C 1,Y 

i 
compare with Y 

BNE $1 branch not equal 
B LABEL jump to LABEL 

$1: 

-------------- 

by combining the two branches the code can be 

reduced to: 

-------------- 
L 1,X 
C 1,Y 
BE LABEL 

-------------- 

While it is possible for the code generator to do 

this immediately, it was decided to leave the 

optimisation to the third phase for four reasons: 

1 The third phase can perform this optimisation 

simply, almost as a side-effect of 

constructing the linkage map. 

2 The are several cases where the optimisation 

can be extended in ways which would be awkward 

for the second phase to deal with. In 

particular, it would have either to look ahead 

or to be able to modify code sequences already 

generated. With a third phase, however, the 

optimisation reduces to a straightforward 

inspection of the linkage map. 
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For example: 

exit if X = Y 

repeat 

in which case the optimisation may be applied 

twice to reduce the code to two instructions. 

3 Leaving the optimisation to a later phase 

simplifies the second phase which is the most 

complicated part of the compiler. 

4 On several machines if the destination of the 

jump is too far away the original "jump round 

a jump" may be the only form available (e.g. 

PDP11). The distance to be jumped will only 

be known exactly when all labels have been 

processed. 

4.7.5 In-line constants 

When compiling for machines such as the Data General NOVA 

which have a limited direct addressing range and no 

full-length immediate operands, it is useful if constants 

can be planted in the code sequence and addressed as 

program-counter-relative operands. The simplest technique 

for doing this is for the code generator to maintain a list 

of required constants and to dump them in-line at a suitable 

opportunity before the limit of addressability has been 

exceeded. 
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Such constants will need to be protected from being executed 

and so will need to have a jump round them or will have to 

be planted in a "hole" in the code, that is between an 

unconditional jump and the next label. As holes occur 

frequently in high-level languages (for example following 

every else or repeat) and do not require extra code to be 

planted round the constants, they must be the preferred 

position for the constants. In order to minimise the number 

of constants planted it is necessary to delay the dumping of 

them until the last possible moment, making them as near the 

forward limit of the addressability of the first outstanding 

reference. This increases the chance of a subsequent 

reference to the constant being able to address the previous 

location. 

This poses problems if the second phase is to handle the 

constants as it cannot know which is the optimum position 

for the constants in advance of producing the code 

(especially if the code is to be reordered). 

A convenient solution is to utilise the linkage table in the 

third phase and include in it references to constants and 

the locations of holes and "forced" holes, that is places 

where an extra jump is required. 

Following the initial resolution of jumps (4.7.2) the list 
of constants can be examined and holes allocated. The 

labels are processed again to take account of the extra code 

and any alignment limitations. During the processing of the 

object stream the constants are infiltrated into the object 

file. 
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4.8 Summary 

The major decisions about the design of the compiler 

were: 

a) All information present in the source program 

should be easily visible in the intermediate code. 

b) The intermediate code should be as 

machine-independent as the source language. 

c) The code generator should be split into two 

distinct phases joined by a stream of code 

fragments and a linkage map defining the 

connections between them. 

d) The intermediate code should handle objects in 

terms of language-dependent descriptors which are 

converted into appropriate machine-dependent 

descriptors by the second phase. 

e) The intermediate code should distinguish clearly 

between objects explicitly specified in the source 

program and those implied by the translation. 

f) All decisions about code and data addressing must 

be left to the code-generator. 
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5 Review .Q.t the overall structure 

5.1 Division .1 function 

The division of the machine-dependent phase into two 

parts was motivated by three main considerations: 

i to localise the changes necessary to produce 

different object-file formats, 

ii to permit the reordering of sections of the code, 

iii to enable the production of short jumps whenever 

possible. 

In addition it turns out that on all of the machines for 

which this technique has currently been applied points (ii) 
and (iii) can be handled by almost identical pieces of code, 

making this phase of compilation machine-independent to a 

large extent and therefore easing the task of creating new 

compilers. 

Against this must be set the overheads incurred by 

separating the compilation into two parts which have to 

communicate. The interface between phases two and three 

comprises the object file and the directive file, and the 

third phase needs to process the whole of the directive file 

before starting to look at the object file. 
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The ways in which these 'files' will be implemented, and 

consequently the cost of the communication, will in general 

vary from system to system. If large virtual memories are 

available the data may be held in memory as mapped files or 

arrays, and accessed much more efficiently than on simpler 

systems using the conventional approach of 'true' files with 

their more cumbersome transfer operations. 

5.2 Testing and development 

Although the initial reason for choosing a multi-phase 

approach to compiling was that of simplifying the generation 

of new compilers, an extra advantage arose in that the task 

of checking the compilers so produced, and diagnosing faults 

in them was very much simplified. This was because of two 

features of the technique. 

Firstly, the programs corresponding to the phases were of 

managable size, varying from about one thousand statements 

up to four thousand statements. 

Secondly, the phases communicated with each other using 

well-defined interfaces which could be monitored to narrow 

down errors to a particular phase and even to specific parts 

of that phase. 

In addition, as the structure of the intermediate code 

inevitably suggests the general techniques to apply in code 

generation, many of the complete compilers on different 

machines had great similarities; usually only the lowest 

levels of code production and machine-specific optimisation 

were appreciably different. 
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This gave rise to three convenient properties with regard to 

testing and development: 

An error in one compiler will frequently give 

notice of similar faults in others. Clearly, any 

faults in the common first phase will be present in 

all the compilers and only one correction will be 

required. 

ii An improvement in the performance of one compiler, 

or the code it generates, can suggest similar 

improvements in others. 

iii The third effect on reflection seems obvious yet 

was noted with some surprise. The systems on which 

most of the investigation was done, are run with 

very different operating systems and used by 

different types of user. These two factors 

together caused a great spread in the demands 

placed upon the compiler, resulting in more parts 

of the compiler being thoroughly tested than would 

happen when running on one particular system, where 

users tend to be more stereotyped. Questions of 

"proper practice" aside, it is a fact of life that 

all software gets a better testing in the field 

than at the hands of its creator. 
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5.3 Diagnostics 

As mentioned previously, optimisation is not just a 

process of improving the storage requirements and speed of a 

program but also involves fitting a program into the overall 

framework of the run-time environment. In many applications 

the provision of extensive run-time checks and post-mortem 

traces can be of great importance. The ability to generate 

such diagnostic code has certain implications for the 

features in the intermediate code. 

5.3.1 Line numbers 

When producing information about the state of a 

computation, whether it be an error report following a 

run-time fault or an execution trace [Satterthwaite, 1972], 

the data must be presented in a form which is meaningful to 

the user in terms of the source program. The 

commonly-provided dump of the machine state, registers, code 

addresses etc., is a complete failure in this respect, as 

the correspondence between this and the program state 

depends on the workings of the compiler and other factors of 

which the user should not need to be aware. 

The simplest way of specifying the point of interest in a 

program is to give its line number. There are two common 

techniques for providing line number information at 

run-time, the choice of which depends on the uses to which 

the compiler is to be put. 
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The first is to plant instructions which dynamically update 

a variable with the current line number whenever it changes. 

This has the significant advantages that it is extremely 

cheap to implement and the line number is always immediately 

available. Its obvious disadvantages are that it increases 

the execution time for the program, and more significantly, 

it increases the size of the program, typically by about 6K 

bytes on the Interdata 7/32 for a 1000 line program, 

approximately a 50% increase. 

The second technique is to build a table giving the 

correspondence between line numbers and the addresses of the 

associated code sequences. While this imposes a greater 

burden on the compiler and takes more time to extract the 

line number, it has the advantage that it does not increase 

the code size of the program, nor does it alter its 

execution speed. Indeed it may even be possible to keep the 

table out of main memory until it is required. 
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The choice of technique will have implications on the 

compiled code. If the line number table approach is used 

error procedures must have available the address of the 

point of the error. The effects of this can be seen in the 

following example of the sort of code generated for 

unassigned variable checking on the 7/32 using both methods: 

1 17 Y X = 

LHI 0,17 update line no 
ST 0,LINE 
L 1,Y L 1,Y 
C 1,UV ; C 1,UV i check value 
BE ERROR i i give the error 

ST 1,X 
BAL 
ST 

8,TU 
1,X 

i test for error 

TU:BNER 8 return if OK 

B ERROR; give the error 
------------- ------------- 

As the generated code depends on the method in use it cannot 

be specified in the intermediate code and so the latter must 

simply indicate the points in the program at which the line 

number changes. 
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5.3.2 Diagnostic tables 

In the event of program failure, or when explicitly 

requested by the user, a trace of the current state of a 

program, including the values in active variables and the 

execution history, can be of immense value. For such a 

trace to be provided the intermediate code must contain the 

identifiers used in the source program for all the 

variables, and a source-dependent description of those 

variables. This latter is needed so that the machine 

representations may be interpreted in the correct way when 

giving the values in variables. In I-code all this 

information is presented in the definitions of descriptors 

and may be used or discarded at will. 

5.3.3 Run time necks 

Most languages define circumstances under which a program 

is to be considered in error and its execution terminated. 

These errors include creating a value too large to be 

represented (overflow), division by zero, use of an array 

index which is outwith the declared bounds, and so on. 

There is a natural division of these errors into those which 

are detected automatically by the machine and those which 

must be detected by explicit checks in the program. 

Commonly, machines catch division by zero automatically but 

do not provide such a feature for checking array subscripts. 

The "hardware-detected" errors may be furthur divided into 
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those which on detection cause the normal flow of control to 

be interrupted, and those which simply make the knowledge of 

the occurrance of the error available to the program, for 

example by setting a condition-code bit. For the purposes 

of this discussion the second form of hardware-detected 

error may be considered an error which is not detected 

automatically, as it still requires explicit instructions to 

test for the error and to transfer control accordingly. 

Clearly, the more errors that fall into the automatic 

category the better, as they do not cause the user's program 

to grow with sequences of instructions which, in a correct 

program, will always be testing for conditions which never 

arise. 

These differences complicate the design of intermediate 

codes as the classification differs from machine to machine: 

with the VAX all forms of overflow can be made to generate 

automatic interrupts, but the PDP11 only sets a 

condition-code bit on some overflows. 

There are two basic ways of handling this in the 

intermediate code: firstly the code can contain explicit 

requests for the checks to be performed, and secondly the 

code can be designed in such a way as to give the 

code-generator enough information to be able to decide where 

checks are necessary. 

Two specific examples can indicate which of these ways 

should be adopted. 
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Testing for arithmetic overflow is currently handled by 

machines in three main ways: 

1. An interrupt is generated whenever overflow occurs. 

This is by far the best method as it requires no 

overheads in the checked code. 

2. A bit is set on overflow and is only cleared when 

it is tested. This requires explicit checks in the 

code but several tests may be conflated into a 

single test at an appropriate point, for example 

before the final result is stored. 

3 A bit is set on overflow, but is cleared by the 

next arithmetic operation. This again requires 

explicit checking code but the tests must be 

inserted after every operation. 

For the intermediate code to indicate where overflow 

testing is to be performed it would have to choose the 

worst case from the three above, namely case 3. This 

would result in a test being requested after every 

arithmetic instruction, which test may just as well be 

included into the definition of the instructions 

themselves. 
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The other area of low-level testing is in implied type 

conversions such as storing from a 32-bit integer into a 

16-bit integer. The VAX provides an instruction which 

combines the test for truncation with the store (CVTLW). 

The 7/32 has an instruction (CVHR) which can test the 

value before assignment, and the 4/75 can most 

efficiently test following the assignment (CH). 

If the request for the check is a separate intermediate 

code item, the 7/32 case is simple but the other 

machines will require much more work to be able to 

generate the efficient check. The problem can be 

simplified by introducing new assignment instructions 

which also perform the test, but this adds many new 

instructions to the code as one instruction will be 

required for every valid combination of types and every 

sort of assignment. 

The high-level checks such as array bound checking are 

usually so complicated that the most efficient 

implementations depend greatly on the particular 

hardware, so much so that it would be foolish to attempt 

to express them in the intermediate code. The simplest 

solution is to ensure that the intermediate code 

provides enough information to let the code generator 

decide where and what checks are necessary. 
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The inclusion of checks against the use of unassigned 

variables provides a good example of the power of 

leaving the checking to the code-generator. In a 

simple-minded approach the code-generator tests every 

suitable value loaded from store. A minor improvement 

to this is to mark the descriptor for every local 

variable in a block when it is first assigned, 

inhibiting the marking after the first jump. 

Subsequently, marked objects need not be checked. 

A much better improvement may be obtained by making a 

trivial extension to the register remembering mechanism. 

If an object is 'known' it must have been used 

previously, and hence it will have been checked if 

necessary. Even after the register which held the value 

of the object has been altered, and hence the 

association between the register and the object lost, if 

the compiler remembers that the value as known it can 

suppress any unassigned checks on future references. 

At this point a useful property of IMP77 may be used to 

great effect: once a variable has been assigned it 

cannot become unassigned. This is not true in many 

languages, as for example, in ALGOL60 the control 

variable of a for loop is undefined (unassigned) at the 

end of the loop. This means that in IMP77 the 'was 

known' property of variables may be preserved across 

procedure calls, even though all the register content 

information must be forgotten. 
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This technique when applied on the 7/32 compiler results 

in a reduction of 33% in the code required for checking. 

While it is possible for the unassigned checks to be 

placed in the intermediate code and for the first phase 

to remove redundant checks, this supression would 

require a duplication of the remembering logic which 

must, in any case, reside in the machine-dependent 

phase. 
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6 Observations 

6.1 Suitability I-code for Optimisation 

When considering the use of I-code for global 

optimisation there are two techniques available: 

Firstly, the optimisations can be performed using the 

I-code and going straight into object code, possibly via a 

third phase. In this case the only real constraint on 

I-code is that it be powerful enough to be able to carry all 

the information available in the source and to present it in 

a compact form. 

Secondly, the optimisations can be seen as an extra phase 

introduced between the first phase (the I-code generator) 

and what is normally the second phase (the code generator). 

The optimiser takes in I-code and produces as its output a 

new I-code stream which can be fed into the code generator. 

In this case not only must the I-code carry all the source 

information but it must be able to describe the generation 

of an optimised program. Clearly the code must be able to 

reflect the structure of the target machine in some way and 

hence must be able to lose its machine independence. 
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The second technique is the more interesting as not only 

does it permit the optional inclusion of the global 

optimising without affecting the structure of the other 

phases, but it removes the optimisations from the low-level 

details of code production and provides a means for 

separating the machine-independent and machine-dependent 

optimisations. In particular in the same way as much of the 

code generator can be built from a standard "kit" with a few 

special machine-specific parts, so the global optimiser can 

utilise code from other optimisers. 

The way in which the optimiser can influence the 

operation of the code generator is by making use of the fact 

that the intermediate code does not describe a computation 

but a compilation process. This compilation is driven by 

the descriptors which are normally translated by the code 

generator from the machine-independent form in the I-code 

into the appropriate machine-dependent representation, 

reflecting the target machine architecture: registers, 

stacks, memory etc. By short-circuiting this translation a 

global optimiser can force the use of specific machine 

features. 
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For example consider the following fragment of an integer 

function: 

------------------- 
integer X 
X = A(J) 

X = 0 if X < 0 
result = X 

-------------------- 

The standard I-code produced for this fragment would have 

the form: 

DEF 12 "X" INTEGER 
SIMPLE 
NONE 

PUSH 

DEFAULT NONE 

12 X 

PUSH 6 A 

PUSH 7 - J 

ACCESS 
ASSVAL 
PUSH 12 X 

PUSHI 0 

COMP >= 1 

PUSH 12 ; - X 
PUSHI 0 

ASSVAL 
LOC 1 

PUSH 12 X 

RESULT 

On the PDP11 the code generated for this could be: 

MOV J, R2 i 

ADD R2,R2 Scale the index 
ADD A,R2 Add in ADDR(A(0)) 
MOV (R2),X 1 

X = A(J) 
BGE $1 ->$1 if X >= 0 
CLR X i X = 0 

$1: MOV X,R1 
; 
assign result register 

{return} 

Here the obvious optimisation is to note that the local 

variable, X, is eventually to be used as the result of the 

function and so needs to end in register 1. 
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By changing the definition of X in the I-code into: 

DEF x X INTEGER SIMPLE DEFAULT NONE SPECIAL R1 

and making no other changes, the code generator will produce 

code of the form: 

MOV J,R2 
ADD R2,R2 

ADD A,R2 
MOV (R2),R1 

BGE $1 

CLR R1 

$1: {return} 

-------------------- 

As this process necessitates the I-code becoming more and 

more intimately involved with the structure of the target 

machine, in that it starts referring directly to registers 

and the like, it is necessary that a new control item be 

added so that the code generator may be prevented from 

pre-empting resources which the optimiser is manipulating. 

The new item is RELEASE and it is used in conjunction with 

the definition of machine-dependent descriptors. When such 

a descriptor is introduced (using DEF) the associated target 

machine component is considered to have been claimed and may 

only be used in response to explicit direction from the 

I-code. On receipt of the corresponding RELEASE the 

component is once again made available for implicit use by 

the code generator (for temporaries etc.). This mechanism 

is an exact parallel to the way in which memory locations 

are claimed by the definition of descriptors and released by 

the END of the enclosing block. 
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The main assumption about this style of optimisation is 

that the code generator has the ability to generate any 

required instruction, provided that the pertinent 

information is available at the required time. 

As an example, the VAX 11/780 provides addressing modes in 

which the value in a register may be scaled and added into 

the effective operand address before the operand is used, 

hence the following code: 

------------------------ 
integerarray A(1:9) 

A(J) = 0 

MOVL J,R5 
; 

pick up J 

CLRL 12(R3)[R5] 1 A(J) = 0 

------------------------ 

The operand address generated by the CLRL instruction is: 

12+R3 + R5*4 

as there are 4 bytes (address units) to a longword. 

This instruction can be generated naturally during the 

non-optimised evaluation of array subscripts, and so the 

optimiser can assume that the index mode of operand will be 

used whenever a register operand is specified as an array 

index. 

The procedure has the added advantage that in the worst case 

when the code generator will not produce the instructions 

that the optimiser hoped, as long as the optimised I-code 

still describes the required compilation, the code generator 

will simply produce a more long-winded, but equally valid 

version of the program. 
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In other words, as long as some choice is available and some 

temporary objects are left at the disposal of the code 

generator, the optimiser cannot force it into a state where 

working code cannot be produced. In the example above even 

if the code generator does not produce index mode operands, 

it can still generate sequences of the form: 

---------------------- 
MULLS R5,#)I,R1 R5*)I -> R1 
ADDL2 R3,R1 R3+R1 -> R1 
CLRL 12(R1) 0 -> (12(R1)) 

---------------------- 

140 



6.2 Performance 

The figures in appendix A3 are the results of measuring 

the effect of various optimisations on the Interdata 7/32 

and the DEC PDP11/45. 

One problem in choosing programs to be measured is that 

heavy use of particular language features will increase the 

overall effect of certain optimisations. 

As a trivial example of this consider the following 

"program": 

begin 
integerarray A(1:1000) 
A(1) = 0 

endofprogram 
-------------------------------- 

With all array optimisations enabled, on the 7/32 this 

generates 30 bytes of code, whereas without the optimisation 

it results in 170 bytes of code, largely due to the 

procedure for declaring the array. 

Clearly a reduction of 82% is not to be expected on more 

typical programs. 

Similarly the absence of features will bias the results. 

In particular the smaller programs will not demonstrate the 

power of the optimisations which only take effect when 

various size limits have been exceeded: the most obvious 

such limits being addressing restrictions caused by the size 

of address fields in instructions. 
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The major difficulty in producing results which are of 

any real value is that the effects of the optimisations 

depend on the individual style in which the programs under 

consideration were written. Inevitably users get a "feel" 

for the sort of statement for which the compiler generates 

good code and they often modify their style of programming 

accordingly. If at some state in its development a compiler 

produces poor code for a particular construction, users will 

tend to avoid that construction, even long after the 

compiler has been improved and can compile it effectively. 

This well-known phenomenon [Whitfield, 19731 argues strongly 

that users should never see the object code generated by the 

compilers they are using. 

The effects of many optimisations are difficult if not 

impossible to measure with any degree of accuracy as they 

interact with other optimisations to a great deal. The most 

obvious interaction is that between the size of jump 

instruction required and most of the other optimisations. 

The size of jump is determined by the amount of code 

generated between the jump and the label it references. If 

any other optimisation is inhibited this volume of code is 

likely to increase, decreasing the chances of being able to 

use the shorter forms of the jump. 
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Some optimisations depend almost totally on others; it is 

unlikely that the optimisation of reducing or removing the 

entry and exit code sequences associated with procedures 

(section 4.5.1) would have much effect if the parameters 

were not passed in registers and references to them in the 

procedures were replaced by references to those registers. 

In particular, it must be noted that it is always possible 

to generate programs which will benefit greatly from those 

optimisations which do not appear to be of much use from the 

figures given. However, the test programs used to derive 

the figures are typical of the programs processed by the 

compiler, and it is hoped that they give a more realistic 

and balanced view of the improvements which may be achieved 

in 'real' cases. 

Under some circumstances it may be advantageous to apply 

all optimisations, even though some may appear to give 

little benefit, since this 'squeezing the pips' frequently 

removes one or two instructions from critical loops in a 

program. 

Yet again this shows the difficulty in quantifying the 

usefullness of optimisations as they are so dependent on the 

particular circumstances. 
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One area of measurement has been deliberately omitted 

from the figures, namely the effect on execution time of the 

optimisations. This was for several reasons: 

1. On the systems used it was impossible to get 

reliable timing measurements with any accuracy 

greater than about plus or minus 5%. 

2. For the reasons given previously, many programs 

could benefit greatly from fortuitous optimisations 

which removed just one crucial instruction, 

optimisations which could not be expected in every 

program. 

3. Programs which executed for long enough to improve 

the accuracy of the measurements, invariably lost 

this accuracy through spending much time in the 

system-provided procedures, mainly for input and 

output. This point in particular suggests that as 

the overhead is beyond the control of the general 

user, the savings in code space may be much more 

important. Even with ever-growing store sizes, 

virtual memory systems will continue to treat 

smaller programs better than larger ones. 
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4. Some of the optimisations, particularly passing 

parameters in registers, prevent the compiled 

program from running, unless the controlling 

environment is modified in a parallel way. This 

would invalidate the timings as the environment is 

not usually under the control of the compiler. 

From the crude measures which were obtained there is a 

suggestion that the decrease in execution time roughly 

parallels the decrease in code size. 

6.3 Cost (af optimisation 

The cost of an optimisation is, in general, very 

difficult to measure, as may be seen by considering the 

three relevant areas: compile time, space requirement, and 

logical complexity. 

6.3.1 mile time 

In order to generate good code, the compiler must spend 

time looking for the cases which are amenable to 

improvement. If no optimisation is performed this time is 

not used and so the compilation should take less time. 

However, the non-optimised version commonly requires the 

production of more code than the optimised version, 

frequently over fifty percent more when comparing fully 

diagnostic code with fully optimised code. On all the 

compilers written so far, the time saved by not having to 

generate these extra instructions, more than outweighs the 

time spent in deciding not to generate them. 
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6.3.2 Space requirement 

Several optimisations increase the requirement for 

workspace, notably all the remembering optimisations. On 

most machines available at the present, the number of things 

which may be remembered is fairly small: sixteen registers 

and one condition-code is probably the maximum. Even if 

this number is increased by remembering several facts about 

each *thing, the total amount of space needed will be small 

when compared with the space needed to hold the information 

about user-defined objects, information which is required 

whether optimisation is being performed or not. On large 

machines the extra memory required will be cheap; on small 

machines the need for the optimisation will have to be 

balanced against the size of the largest program which must 

be compiled. 

6.3.3 Logical complexity 

The cost of providing an optimisation includes a 

non-recurrent component, which is the difficulty of 

performing the optimisation at all because of the logical 

complexity of discovering the necessary circumstances. In a 

system which is aimed at portability this cost can often be 

shared over a number of implementations; the techniques used 

in one being applicable to others, perhaps after minor 

modifications. 
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6.4 Comments ont g results 

6.4.1 Register remembering 

Of all the optimisations tested, a simple 

remembering of values in registers provided by far 

the greatest improvement in code size. 

One problem in 

deciding what to remember, 

following code sequence: 

implementing this optimisation is 

x = Y 

L 1,Y 
ST 1,X 

as shown by the 

Following this sequence register 1 will contain 

both the value in X and the value in Y; should the 

compiler remember X or Y or both? 

The measurements show that the gain in remembering 

both (2 uses) as opposed to just one (1 use) are 

quite small. The algorithm used to determine what 

to remember in the '1 use' case was simply to 

remember a new piece of information only if nothing 

else was known about the register in question. 

This gives the best results in cases such as: 

A = 0; B = 0; C = 0 

where the value '0' will be remembered, but will 

perform badly with the more contorted case: 

A = 0; B = A; C = B 

as again only the value '0' will be remembered. 

Unless very tight code is required, the cost in 
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maintaining multiple sets of information about each 

register and searching for particular values will 

probably rule out such extended remembering 

optimisations. 

Perhaps a surprising result is that the PDP11 on 

average gains about as much from this optimisation 

as the 7/32. 

This is the result of two interacting effects. 

Firstly, the 7/32 dedicates up to five registers to 

address local variables in the last five levels of 

procedure nesting, and locks three for other fixed 

purposes, leaving about ten for intermediate 

calculations. The PDP11, however, uses a display 

in store to access intermediate levels, and has to 

load the address of a particular level each time it 

is required. In addition the PDP11 implementation 

fixes the use of four registers, leaving only four 

for intermediate calculations. 

Secondly, the 7/32 needs to use at least one 

register to move values around while the PDP11 

often requires none. 

These two effects give a fairly large number of 

transient values in the registers of the 7/32, and 

a smaller number of more frequently used values 

(addresses) in the registers of the PDP11. On 

average it appears that the number of times 

necessary values are found is roughly equal in the 

two cases. 
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6.4.2 Remembering environments 

An environment is the complete knowledge 

maintained by the compiler at any time. By 

remembering and merging environments while 

compiling IF-THEN-ELSE constructions, the effects 

of the implied labels and jumps on the remembering 

optimisations can be minimised. 

The measurements show that the gains achieved by 

remembering more and more environments fall off 

very quickly; two environments seem to be about the 

best. However, the overhead in providing more than 

one environment is simply compiler table space, and 

so a compiler which can handle one environment can 

easily handle more to get a very small but cheap 

gain. 

One clear result is the difference between the 

effects on the two machines (sometimes an order of 

magnitude). This is almost entirely due to the 

difference in the number of available registers. 
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6.4.3 Array allocation and use 

From monitoring service versions of the 

compilers is it clear that in IMP77 the vast 

majority of arrays have constant bounds. 

Allocating these arrays on the local stack frame at 

compile time is a simple operation and can save a 

fair amount of code, much of which would only be 

executed once, as most arrays are declared in the 

outermost block. 

Remembering array address calculations can reduce 

the code by about five percent, but it commonly has 

little effect and is quite tedious and expensive to 

achieve. The small increase in code size for a few 

cases is a side-effect of the register allocation 

mechanism. Registers are chosen by giving priority 

to those about which the least is known, and then 

by selecting the least recently used such register. 

Hence, which register will be used depends on the 

compilation of previous statements. When a value 

is required in a specific register, for example 

during parameter transmission, occasionally it will 

already be in that register purely by chance. A 

minor change in the generated code, such as not 

requiring a new register for an array access, can 

result in the value not being in the correct 

register later on. 
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This instability seems to be undesirable, but 

alternative strategies, such as biasing the 

allocation towards or away from particular 

registers, on average results in worse code. 

6.4.4 Common 2Derands 

On the 7/32 the only instruction which can be 

used to simplify statements of the form: X = X op Y 

is the AM (add to memory) instruction. It is 

therefore somewhat surprising that its use 

frequently saves over two percent of the code. 

The two possible expansions of a suitable addition 

statement are: 

------------ ----------- 

L 1,Y i L 1,X 

AM 1,X i A 1,Y 
ST 1,X 

------------ ----------- 

The first saves four bytes and leaves the increment 

in the register. Even if the incremented value is 

required immediately afterwards, the extra load 

instruction will only increase the code size to 

that of the alternative sequence. 

As the PDP11 has many instructions which can be 

used in this way it is hardly surprising that it 

benefits much more. 

151 



6.4.5 Parameters in registers 

This optimisation gives another significant 

saving in code at little cost to the compiler, 

simply by moving the store instructions for 

parameter assignment from the many calls to the 

unique procedure definitions. The effect is more 

pronounced on the 7/32 as all assignments require 

two instructions, a load and a store, whereas the 

PDP11 can usually make do with one MOV instruction. 

In the latter case the saving comes from the 

ability to reduce the size of the procedure entry 

and exit sequences if all of the parameters can be 

passed in registers. 

6.4.6 Condition-code remembering 

On machines with condition codes many 

instructions set the result of a comparison with 

zero as a side-effect. Knowledge of this can be 

used to inhibit explicit code to compare values 

with zero. However, the small benefit so gained 

suggests that it is not worth doing, even though it 

is a very cheap test. 
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6.4.7 Merging 

The large difference between the effect of 

forward merging on the 7/32 and the PDP11 is mainly 

due to the addressing modes available on the 

machines. 

On the PDP11 statements of the form "A=B" can be 

compiled into a single instruction "MOV B,A", 

ignoring any extra instructions which may be needed 

to make A and B addressable. However, on the 7/32 

all values must be moved via the registers, 

resulting in two instructions for the same 

statement: 

------------- 
L 1,B 
ST 1,A 

------------- 

Hence the following code: 

if X=0 then Y=1 else Y=12 

7/32 PDP11 
------------------- ------------------- 

L 1,X TST X 

BNE $1 BNE $1 
LIS 2,1 

ST 2,Y MOV #1'Y 
B $2 BR $2 

$1:LIS 2,12 $1: 

ST 2,Y MOV #12.,Y 
$2: $2: 

With the 7/32 code, merging can reduce the sequence 

by one instruction, a "STore", while with the PDP11 

no such improvement is possible. 
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As the techniques for merging and delaying are 

quite expensive, but not complicated, and have a 

major influence on the design of the 

code-generator, the small gains achieved are 

probably not worth the trouble, unless the last 

drop of efficiency is required at all costs. 
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6.5 Criticisms an benefits Qf the technique 

6.5.1 Complexity 

The main argument against the use of high-level 

intermediate codes is that they move the complexity of code 

generation from the common machine-independent phase into 

the machine-dependent phase, forcing work to be repeated 

each time a new compiler is required. 

While this is undoubtedly true, the overheads are not as 

great as they may at first appear. 

The extra complexity of the code generators may be split 

into two parts: an organisational part which builds and 

maintains the structures used during the compilation, and 

processes the intermediate code, using it to drive the 

second part, an operational part which uses the structures 

to generate code as instructed by the organisational part. 

The changes in the organisational part when moving to a new 

machine are small enough to permit the use of large sections 

of code from old compilers. Even when considering the 

operational part, much will be similar from machine to 

machine, in particular the communication between the second 

and third phases and the bulk of that latter phase can be 

taken without change. From examining the compilers produced 

using I-code it appears that about 60% of the source of the 

machine dependent parts is common, 20% can be considered as 

being selected from a standard "kit" of parts, and the final 

20% unique to the host machine. 
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6.5.2 1Q overhead 

One of the disadvantages of dividing a compiler into 

several distinct phases is that it results in an additional 

cost in communicating between consecutive phases. As 

discussed in section 5.1 this cost depends on the operating 

system running the compiler. Even in the worst case where 

communication is achieved using conventional files the 

overhead may not be too serious. 

The time spent doing input and output on the Interdata 7/32 

compiler is about 27% of the total compilation time, and for 

the PDP11 is about 22%, breaking down as follows: 

-------------------------------------------------------- 

Source ----> P1 1----> P2 1 P3 i----> Object 
-----> 

7/32: 7% 7% 10% 3% 

i (4%) (4%) (5%) (3%) 

PDP11: 9.4% 11% 0.6% 0.5% 
-------------------------------------------------------- 

The figures in parentheses give the percentage of time taken 

when the input and output requests are made directly to the 

file manager rather than via the standard subsystem 

procedures, thus reducing the internal I/O overhead to about 

10% of the total compilation time. 
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6.5.3 Lack of Gains 

It has been argued that the increases brought about by 

adopting a high-level code as opposed to a low level one are 

not worth the increased effort involved in processing it. 

Depending on the uses to which the compiler is to be put, 

small increases in code efficiency can outweigh a reasonable 

increase in the cost of producing the compiler and using it. 

A 5% improvement in the execution speed of the compiler 

itself is not insignificant when the number of times it is 

used and the cost of each use are considered. However, it 

cannot be denied that a careful redesign of critical parts 

of a program can have a greater effect on its performance 

than any amount of automatic optimisation. Notwithstanding, 

it seems reasonable that programmers should be able to 

concentrate on the large-scale efficiencies of program 

design and have the detailed improvements left to the 

compiler. 

Also it should be noted that measurements indicate that the 

compilers execute faster when performing certain 

optimisations than when not performing them, for example 

passing parameters in registers. 

If low-level codes are needed for some reason, the 

complexity saved from the machine independent phase can be 

moved into a new phase which converts the high-level code 

into a low-level one. This provides the low-level code for 

those who want it while preserving the high-level interface 

for use when good code is required. 

157 



One important gain in using such intermediate codes is 

that they can ease the difficulties associated with 

maintaining a number of compilers for different machines, 

when those compilers are self-compiling. 

For several reasons it may not be desirable to permit sites 

to have the source of the machine-independent phase: 

commonly to give freedom of choice for the form of the 

language in which that phase is written and to prevent local 

"improvements" which rapidly lead to non-standard language 

definitions. In such cases the intermediate-code generator 

can be maintained at one site and updated versions can be 

distributed in the intermediate code form without fear of 

compromising the quality of the object code generated from 

it. Such a technique is currently being used in the 

production of portable SIMULA compilers [Krogdahl, 1980]. 

6.5.4 Flexibility 

At some stage in producing a compiler, the needs of the 

end user must be considered. The flexibility afforded by 

the high-level nature of the intermediate code allows the 

compiler to be adapted to fit its environment. If the 

compiler is to be used for teaching, the quality of the code 

it produces can be sacrificed for compilation speed and 

high-quality diagnostics, particularly as compilation time 

may well be an order of magnitude greater than the execution 

time, indeed many of the programs will fail to compile and 

never reach execution. 
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If the application is for compiling programs that will be 

compiled once and then executed many times, more effort can 

be expended in producing fast code, although this is not to 

say that diagnostics and fast code must be kept separate as 

the longer a program runs without failing the more trouble 

will be caused when it fails without convenient diagnostics. 

6.6 Comments Instruction sets and compilation 

Following the production of IMP compilers for several 

different processors, various features of instruction sets 

have become evident which influence the generation of code. 

i The instruction set should be complete, that is, 

where an instruction is available for one data type 

it should be available for all data types for which 

it is well-defined. Similarly, instruction formats 

used by one operation should be available for all 

similar operations. The best example of such an 

instruction set is that provided by the DEC PDP10. 

Unfortunately the majority of machines are not so 

helpful. As an example of the sorts of thing which 

go wrong, consider the Perkin-Elmer 3200 series. 

These machines provide three integer data types: 

fullword (32 bits, signed), halfword (16 bits, 

signed), and byte (8 bits, unsigned). There are 

"add fullword" (A) and "add halfword" (AH) 

instructions but no "add byte" instruction. 
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There are "add immediate short" and "subtract 

immediate short" instructions but multiply, divide, 

and, or etc. do not have short immediate operands. 

ii The instructions should be consistent, that is, 

logically similar instructions should behave in 

similar fashions. 

Again, on the Perkin-Elmer 3200: 

Load fullword (L) and load halfword (LH) set the 

condition code but load byte (LB) does not. 

Most register-store instructions can be replaced by 

a load of the appropriate type followed by a 

register-register instruction: e.g. 

-------------- -------------- 
CH 1,X i LH O,X 

CR 1,0 

-------------- -------------- 

both result in the same setting of the condition 
code, but 

CLB 1,B 
i 

LB O,B 
CLR 1,0 

could result in different settings of the condition 

code as CLR compares two unsigned 32 bit quantities 

whereas CLB compares a zero-extended byte from 

store with the zero-extended least significant byte 

of register 1. For consistency, either compare 

halfword (CH) should use the sign-extended less 

significant half of the register, or better, CLB 

should not tamper with the value in the register. 
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iii Complex instructions should be avoided. There are 

two reasons for this. Firstly, it is easier for a 

compiler to break down statements into simple 

operations than it is to build them up into complex 

ones [Stockton-Gaines, 19651. Secondly, if the 

complex instructions do not perform the exact 

function required by the language, more 

instructions will be needed to "prepare" for the 

complex instruction and to "undo" its unwanted 

effects. As an example, the DEC VAX11/780 is full 
of complex instructions which seem to be 

well-suited to high-level languages at first 
glance, but on closer inspection they are not so 

useful. A CASE instruction is provided which 

indexes into a table of displacements and adds the 

selected value to the program counter. This would 

seem ideal for compiling SWITCH Jumps. 

Unfortunately, as the table of displacements 

follows the CASE instruction it would be very 

expensive to use it each time a jump occurred using 

a particular switch. Instead all references to the 

switch must jump to a common CASE instruction. 

Even this does not help, as in the event of an 

attempted jump to a non-existent switch label, the 

diagnostics or the event mechanism will see the 

error as having occurred at the wrong place in the 

program. 
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Although this problem can be "programmed around" it 

turns out that it is faster to implement switches 

using sequences of simpler instructions. 

iv Machine designers should investigate carefully the 

full consequences of building-in special fixed uses 

of machine features. One of the best examples of a 

clear oversight which causes grief to compiler 

writers is found in the DATA GENERAL NOVA 

multiplication instruction. This instruction 

multiplies the value in register 1 by register 2 

and places the double-length result in registers 0 

and 1. As only registers 2 and 3 may be used for 

addressing, and as register 3 is always used for 

subroutine linkage, it follows that register 2 must 

be used for addressing the local stack frame, but 

this is exactly the register which must be 

corrupted in order to use the multiply instruction! 

Although specific machines have been used in the 

examples, similar problems abound in all machines. Indeed 

it is clear that machines are most commonly designed for 

programmers writing in assembler or FORTRAN, and furthermore 

writing their programs in a particular style. 
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While it is clear that the problems could be called "mere 

details" and that they are not difficult to surmount, it 

remains that they complicate otherwise simple 

code-generation algorithms, making compilers larger, slower, 

and correspondingly more difficult to write, debug, and 

maintain. 

In conclusion it appears that the machine most suited to 

supporting high-level languages should have a small but 

complete set of very simple instructions, their simplicity 

permitting rapid execution and great flexibility. 
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7 Conclusions 

7.1 Viability of the technique 

The techniques described above have been used to create 

several IMP77 compilers which are in regular use on a number 

of systems. In terms of total memory space required for a 

compilation, about 80K bytes on the 7/32, they compare 

favourably with other compilers. The major weakness seems 

to be execution time which can vary from twice as long as 

other compilers in the worst case, to half as long in the 

best case. As most of the effort in writing the compilers 

was spent in investigating the techniques involved and not 

in minimising compile time, and as the compilers which ran 

much faster were either totally, or partially written in 

machine code (the IMP77 compilers are all written 

exclusively in IMP77), it seems that the technique can be 

used to produce acceptable service compilers. 

7.2 Ease of portability 

Although using I-code does not permit compilers to be 

written in as short a time as with P-code and OCODE, the 

large amount of code which is common to all of the compilers 

written so far means that, given a working code generator as 

a template, a new optimising compiler can be written in the 

space of a few months, with the final result producing code 

of high quality. 
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7.3 Nature of optimisations 

During the course of the investigation it became clear 

that one of the difficulties of optimisation is that gains 

are achieved by applying a large number of ad hoc rules, 

especially where peephole optimisations are concerned. 

As instruction sets become more complicated and rich, there 

is a corresponding increase in the variety of ways of 

implementing high-level language features. This increases 

the possibilities of optimisation and subsequently the 

complexity of compilers. By using high-level intermediate 

codes, such as I-code, it should be possible to concentrate 

on machine-independent optimisations knowing that the 

resulting intermediate code can be used to generate 

efficient code for current machines. Eventually, when 

better instruction sets are available, hopefully with only 

one way of doing things and no opportunities for non-trivial 

optimisation, the same intermediate code can be used to 

drive code generators which are much simpler and more 

directly portable. 
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Appendix Al 

The IMP Intermediate Code 

A Brief mmar 

The IMP intermediate code may be considered a sequence of 

instructions to a stack-oriented machine which generates 

programs for specific computers. It is important to note 

that the intermediate code describes the compilation process 

necessary to generate an executable form of a program; it 

does not directly describe the computation defined by the 

program. 

The machine which accepts the intermediate code has two 

main components: 

1 A Descriptor area. This is used to hold 

descriptors containing machine-dependent 

definitions of the objects the program is to 

manipulate. This area is maintained in a 

block-structured fashion, that is new descriptors 

are added to the area during the definition of a 

block and are removed from the area at the end of 

the block. 

2 A Stack. The stack holds copies of descriptors 

taken from the descriptor area or created 

specially. 
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Items on the stack are modified by intermediate 

code control items to reflect operations 

specified in the source program. Such 

modifications may or may not result in code being 

generated. From the point of view of this 

definition stack elements are considered to have 

at least three components: 

i Type 

ii Value 

iii Access rule 

The "Access rule" defines how the "Type" and 

"Value" attributes are to interpreted in order to 

locate the described object. 

For example, the access rule for a constant could 

be "Value contains the constant" while for a 

variable it could be "Value contains the address 

of the variable". Clearly, the access rules are 

target-machine dependent. Descriptors may be 

combined to give fairly complex access rules, as 

in the case of applying "PLUS" to the stack when 

the top two descriptors are for the variable X 

and the constant 1, resulting in one descriptor 

with the access rule "take the value in X and add 

1 to it". The complexity of these access rules 

may be restricted by a code-generator. In the 

example above code could be generated to evaluate 

X+1 resulting in an access rule "the value is in 

register 111, say. 
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The importance of the code not describing the actual 

computation which the source program specified but the 

compilation process required, is seen when attempting to use 

the code for statements of the form: 

A := if B=C then D else E; 

This could not be encoded as: 

PUSH A 

PUSH B 

PUSH C 

JUMP # L 1 

PUSH D 

BR L2 
LOC L1 
PUSH E 

LOC L2 
ASSVAL 

The reason is that the items on the stack at the time of the 

ASSVAL would be (from top to bottom) [E], [D], [A], because 

no items were given which would remove them from the stack. 

hence the ASSVAL would assign the value of E to D and then 

leave A dangling on the stack. 

Unless otherwise stated, all constants in the 

intermediate code are represented in octal. 
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Descriptors 

DEF TAG TEXT TYPE FORM SIZE SPEC PREFIX 

This item causes a new descriptor to be generated 

and placed in the descriptor area. On creation, 

the various fields of the DEF are used to 

construct the machine-dependent representation 

required for the object. 

TAG 

TEXT 

TYPE 

FORM 

is an identification which will 

be used subsequently to refer to 

the descriptor. 

is the source-language identifier 

given to the object (a null 

string if no identifier was 

specified). 

is the type of the object: 

GENERAL, INTEGER, REAL, STRING, 

RECORD, LABEL, SWITCH, FORMAT. 

is one of: SIMPLE, NAME, ROUTINE, 

FN, MAP, PRED, ARRAY, NARRAY, 

ARRAYN, NARRAYN. 

SIZE is either the TAG of the 

appropriate record format 

descriptor for records, the 

maximum length of a string 

variable, or the precision of 

numerical variables: DEFAULT, 

BYTE, SHORT, LONG. 
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SPEC has the value SPEC or NONE 

depending on whether or not the 

item is a specification. 

PREFIX is one of: NONE, OWN, CONST, 

EXTERNAL, SYSTEM, DYNAMIC, PRIM, 

PERM or SPECIAL. If SPECIAL is 

given there will follow an 

implementation-dependent 

specification of the properties 

of the object (such as that it is 

to be a register, for example). 

170 



Parametera and- Formats 

The parameters for procedures and the elements of record 

formats are defined by a list immediately following the 

procedures or format descriptor definition: 

START 

FINISH 

ALTBEG 

ALT 

Start of definition list 

End of definition list 

Start of alternative sequence 

Alternative separator 

ALTEND End of alternative sequence. 

Blocks 

BEGIN Start of BEGIN block 

END End of BEGIN block or procedure 
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PUSH <tag> Push a copy of the descriptor <tag> onto 

the stack. 

PROC <tag> This is the same as PUSH except that the 

descriptor being stacked represents a 

procedure which is about to be called 

(using ENTER). 

PUSHI <n> Push a descriptor for the integer constant 

<n> onto the stack. 

PUSHR <r> Push a descriptor for the real 

(floating-point) constant <r> onto the 

stack. 

PUSHS <s> Push a descriptor for the string constant 

<s> onto the stack. 

SELECT <tag> TOS will be a descriptor for a record. 

Replace this descriptor with one describing 

the sub-element <tag> of this record. 
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Assignment 

ASSVAL Assign the value described by TOS to the 

variable described by SOS. Both TOS and 

SOS are popped from the stack. 

ASSREF Assign a reference to (the address of) the 

variable described by TOS to the pointer 

variable described by SOS. Both TOS and 

SOS are popped from the stack. 

JAM This is the same as ASSVAL except that the 

value being assigned will be truncated if 

necessary. 

ASSPAR Assign the actual parameter described by 

TOS to the formal parameter described by 

SOS. This is equivalent to either ASSVAL 

(for value parameters) or ASSREF (for 

reference parameters). 

RESULT TOS describes the result of the enclosing 

function. Following the processing of the 

result code must be generated to return 

from the function. 
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MAP Similar to RESULT except that TOS describes 

the result of a MAP. Again a return must 

be generated. 

DEFAULT <n> 

INIT <n> Create N data items corresponding to the 

last descriptor defined, and given them all 

an initial (constant) value. The constant 

is popped from the stack in the case of 

INIT but DEFAULT causes the 

machine-dependent default value to be used 

(normally the UNASSIGNED pattern). 
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Binary operators 

ADD 

SUB 

MUL 

QUOT 

DIVIDE 

IEXP 

REXP 

AND 

OR 

XOR 

LSH 

RSH 

CONC 

ADDA 

SUBA 

Addition 

Subtraction 

Multiplication 

Integer division 

Real division 

Integer exponentiation 

Real exponentiation 

Logical AND 

Logical inclusive OR 

Logical exclusive OR 

Logical left shift 
Logical right shift 

String concatenate 

++ 

The given operation is performed on TOS and SOS , both of 

which are removed from the stack, and the result 

(SOS op TOS) is pushed onto the stack. 

e.g. A = B-C 

PUSH A 

PUSH B 

PUSH C 

SUB 

ASSVAL 
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Unary Operators 

NEG Negate (unary minus) 

NOT Logical NOT (complement) 

MOD Modulus (absolute value) 

The given operation is performed on TOS. 
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Arrays 

DIM <d> <n> The stack will contain <d> pairs of 

descriptors corresponding to the lower and 

upper bounds for an array. This 

information is used to construct <n> arrays 

and any necessary accessing information for 

use through the last <n> descriptors to 

have been defined. All of these 

descriptors will be for similar arrays. 

INDEX SOS will be the descriptor for a 

multi-dimensional array and TOS will be the 

next non-terminal subscript. The stack is 

popped. 

ACCESS SOS will be the descriptor of an array and 

TOS will be the final/only subscript. Both 

descriptors are replaced by a descriptor 

for the appropriate element of the array. 

E.g. given arrays A(1:5) and B(1:4, 2:6), 

and integers J,K: 

A(J) = 0 K = B(J, K) 

PUSH A PUSH K 

PUSH J PUSH B 

ACCESS PUSH J 
PUSHC 0 INDEX 
ASSVAL PUSH K 

ACCESS 

ASSIGN 
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Internal labels 

Internal labels are those labels in the 

intermediate code which have been created 

by the process of translating from the 

source program, and so do not appear 

explicitly in the source program. The main 

property of these labels is that they will 

only be referred to once. This fact can be 

used to re-use these labels, as, for 

example, a forward reference to a 

currently-defined label must cause its 

redefinition. 

LOCATE <1> define internal label <1> 

GOTO <1> forward jump to internal label <1> 

REPEAT <1> backward jump to internal label <1> 
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Conditional branches 

These branches are always forward. 

JUMPIF <cond> <label> 

JUMPIFD <cond> <label> 

JUMPIFA <cond> <label> 

Where: <cond> ::= =, 4#, 

>, >=, 
TRUE, FALSE 

The two items on the top of the stack are compared and a 

jump is taken to <label> is the condition specified by 

<cond> is true. In the case of <cond> being TRUE or FALSE 

only one item is taken from the stack, and this represents a 

boolean value to be tested. 

User Labels 

LABEL <d> locate label descriptor <d> 

JUMP <d> Jump to the label described by <d> 

CALL <d> Call the procedure described by <d> 
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Sundry Items 

ON <e> <1> Start of event trap for events <e>. 

Internal label <1> defines the end of the 

event block. 

EVENT <e> Signal event <e> 

STOP stop 

MONITOR monitor 

RESOLVE <m> Perform a string resolution 

FOR Start of a j loop 

SLABEL <sd> Define switch label 

SJUMP <sd> Select and jump to switch label 

LINE <1> Set the current line number to <1> 
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Appendix A2 

The IMP77 Intermediate code 

Internal representation 

In production compilers the mnemonics used in the text 
are output in an abbreviated form, each mnemonic being 
translated into a single ASCII printing character. 

OR G ALIAS c MCODE 
" JUMPIFD H BEGIN d DIM 
# BNE I unused e EVENT 
$ DEF J JUMP f FOR 
% XOR K FALSE g unused 
& AND L LABEL h ALTBEG 

PUSHS M MAP i INDEX 
( unused N PUSHI j JAM 

unused 0 LINE k RELEASE 
MUL P PLANT 1 LANG 

+ ADD Q DIVIDE m MONITOR 
SUB R RETURN n SELECT 
CONCAT S ASSVAL o ON 

/ QUOT T TRUE p ASSPAR 
LOCATE U NEGATE q ALTEND 
END V RESULT r RESOLVE 

< unused w SJUMP s STOP 
unused X IEXP t unused 

> unused Y DEFAULT u ADDA 

? JUMPIF Z ASSREF v MOD 
@ PUSH [ LSH w SUBA 
A INIT \ NOT x REXP 

B REPEAT ] RSH y DIAG 
C JUMPIFA PROC z CONTROL 
D PUSHR SLABEL { START 

E CALL a ACCESS ALT 
F GOTO b BOUNDS } FINISH 
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Appendix A3 

Results from the INTERDATA 7/32 and PDP11 

In these results the various test programs are referred 
to by the following codes: 

PDP11 7/32 Program 

P11.1 
P11.2 
P11.3 
P11.4 
P11.5 
P11.6 
P11.7 
P11.8 
P11.9 
P11.10 
P11.11 
P11.12 

732.1 TAKEON The compiler's grammar processor 
732.2 EDWIN A graphics package 
732.3 LAYOUT A text formatting program 
732.4 ECCE A text editor 
732.5 PILOT A CAI interpreter 
732.6 TIMETAB A schools' timetable generator 
732.7 DRAFT A draughts program 
732.8 SQUARE A least-squares fitting program 
732.9 GPM A macro processor 
732.10 OS32MT An operating system emulator 
732.11 HAL A high-level assembler 
732.12 DIRECT A file and directory handler 
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Remembering values in registers 

Code 
Size 

Total 
Reduction 

Incremental 
Reduction 

P732.1 0 uses 9504 
1 use 8194 13.8% 13.8% 
2 uses 8192 13.8% 0.0% 

P732.2 0 uses 6500 
1 use 6126 5.8% 5.8% 
2 uses 6126 5.8% 0.0% 

P732.3 0 uses 10960 
1 use 9968 9.0% 9.0% 
2 uses 9956 9.2% 0.2% 

P732.4 0 uses 5288 
1 use 4970 6.0% 6.0% 
2 uses 4958 6.2% 0.2% 

P732.5 0 uses 5468 
1 use 4990 8.7% 8.7% 
2 uses 4986 8.8% 0.1% 

P732.6 0 uses 3424 
1 use 3208 6.3% 6.3% 
2 uses 3208 6.3% 0.0% 

P732.7 0 uses 10736 
1 use 9880 8.0% 8.0% 
2 uses 9874 8.0% 0.0% 

P732.8 0 uses 824 
1 use 770 6.6% 6.6% 
2 uses 770 6.6% 0.0% 

P732.9 0 uses 6448 
1 use 6148 4.6% 4.6% 
2 uses 6148 4.6% 0.0% 

P732.10 0 uses 22968 
1 use 20656 10.1% 10.1% 
2 uses 20650 10.1% 0.0% 

P732.11 0 uses 13996 
1 use 12470 10.9% 10.9% 
2 uses 12442 11.1% 0.2% 

P732.12 0 uses 32600 
1 use 28532 12.5% 12.5% 
2 uses 28392 12.9% 0.4% 
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Code 
Size 

Total 
Reduction 

Incremental 
Reduction 

--- --------- 
P11.1 0 uses 9060 - 

1 use 7712 14.9% 14.9% 
2 uses 7660 15.4% 0.5% 

P11.2 0 uses 6276 - - 

1 use 6000 4.4% 4.4% 
2 uses 6000 4.4% 0.0% 

P11.3 0 uses 9992 - - 
1 use 9480 5.1% 5.1% 
2 uses 9444 5.5% 0.4% 

P11.4 0 uses 5052 - - 

1 use 4772 5.4% 5.4% 
2 uses 4768 5.6% 0.2% 

P11.5 0 uses 5096 - - 

1 use 4460 12.5% 12.5% 
2 uses 4452 12.6% 0.1% 

P11.6 0 uses 3692 - - 
1 use 3064 17.0% 17.0% 
2 uses 3064 17.0% 0.0% 

P11.7 0 uses 7976 - - 

1 use 7060 11.5% 11.5% 
2 uses 7032 11.8% 0.3% 

P11.8 0 uses 668 - - 
1 use 652 2.4% 2.4% 
2 uses 624 6.6% 4.2% 

P11.9 0 uses 4888 - - 
1 use 4492 8.1% 8.1% 
2 uses 4484 8.3% 0.2% 

P11.10 0 uses 20318 - - 

1 use 19120 5.9% 5.9% 
2 uses 19120 5.9% 0.0% 

P11.11 0 uses 12938 - - 

1 use 12162 6.0% 6.0% 
2 uses 12148 6.1% 0.1% 

P11.12 0 uses 12068 - - 
1 use 10594 12.2% 12.2% 

2 uses 10584 12.3% 0.0% 
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Remembering sets registers (environments) 

Code 
Size 

Total 
Reduction 

Incremental 
Reduction 

---- --------- --------- 
P732.1 0 environments 8556 - - 

1 environment 8316 2.8% 2.8% 
2 environments 8238 3.7% 0.9% 
3 environments 8232 3.8% 0.1% 
4 environments 8222 3.9% 0.1% 
5 environments 8218 4.0% 0.1% 
6 environments 8192 4.2% 0.2% 

P732.2 0 environments 6202 - - 

1 environment 6128 1.2% 1.2% 
2 environments 6130 1.2% 0.0% 
3 environments 6126 1.2% 0.0% 
4 environments 6126 1.2% 0.0% 

5 environments 6126 1.2% 0.0% 
6 environments 6126 1.2% 0.0% 

P732.3 0 environments 10174 - - 

1 environment 10062 1.1% 1.1% 
2 environments 9968 2.0% 0.9% 
3 environments 9966 2.0% 0.0% 
4 environments 9964 2.1% 0.1% 
5 environments 9956 2.1% 0.1% 
6 environments 9956 2.1% 0.1% 

P732.4 0 environments 5068 - - 

1 environment 4978 1.8% 1.8% 
2 environments 4958 2.2% 0.4% 
3 environments 4958 2.2% 0.0% 
4 environments 4958 2.2% 0.0% 
5 environments 4958 2.2% 0.0% 
6 environments 4958 2.2% 0.0% 

P732.6 0 environments 3262 - - 

1 environment 3250 0.4% 0.4% 
2 environments 3216 1.4% 1.0% 
3 environments 3208 1.7% 0.3% 
4 environments 3208 1.7% 0.0% 
5 environments 3208 1.7% 0.0% 
6 environments 3208 1.7% 0.0% 

P732.7 0 environments 10062 - - 

1 environment 9970 0.9% 0.9% 
2 environments 9894 1.7% 0.8% 

3 environments 9880 1.8% 0.1% 
4 environments 9874 1.9% 0.1% 
5 environments 9874 1.9% 0.0% 
6 environments 9874 1.9% 0.0% 
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P732.8 0 environments 806 
1 environment 782 3.0% 3.0% 
2 environments 782 3.0% 0.0% 
3 environments 770 4.5% 1.5% 
4 environments 770 4.5% 0.0% 
5 environments 770 4.5% 0.0% 
6 environments 770 4.5% 0.0% 

P732.9 0 environments 6244 

1 environment 6202 0.7% 0.7% 
2 environments 6156 1.4% 0.7% 
3 environments 6158 1.4% 0.0% 
4 environments 6148 1.5% 0.1% 
5 environments 6148 1.5% 0.0% 
6 environments 6148 1.5% 0.0% 

P732.10 0 environments 21214 
1 environment 20928 1.3% 1.3% 
2 environments 20748 2.2% 0.9% 
3 environments 20678 2.5% 0.3% 
4 environments 20678 2.5% 0.0% 
5 environments 20668 2.6% 0.1% 
6 environments 20650 2.6% 0.0% 

P732.11 0 environments 12772 
1 environment 12592 1.4% 1.4% 
2 environments 12486 2.2% 0.8% 
3 environments 12472 2.3% 0.1% 
4 environments 12460 2.4% 0.1% 
5 environments 12452 2.5% 0.1% 
6 environments 12442 2.6% 0.1% 

P732.12 0 environments 11522 
1 environment 11418 0.9% 0.9% 
2 environments 11342 1.6% 0.7% 
3 environments 11314 1.8% 0.2% 
4 environments 11314 1.8% 0.0% 
5 environments 11296 2.0% 0.2% 
6 environments 11296 2.0% 0.0% 

P11.1 0 environments 7686 - - 

1 environment 7670 0.2% 0.2% 
2 environments 7660 0.3% 0.1% 

3 environments 7660 0.3% 0.0% 
4 environments 7660 0.3% 0.0% 
5 environments 7660 0.3% 0.0% 
6 environments 7660 0.3% 0.0% 

P11.2 0 environments 6012 - - 

1 environment 6000 0.2% 0.2% 

2 environments 6000 0.2% 0.0% 
3 environments 6000 0.2% 0.0% 
4 environments 6000 0.2% 0.0% 

5 environments 6000 0.2% 0.0% 
6 environments 6000 0.2% 0.0% 
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P11.3 0 environments 9472 
1 environment 9440 0.3% 0.3% 
2 environments 9444 0.3% -0.0% 
3 environments 9444 0.3% 0.0% 
4 environments 9444 0.3% 0.0% 
5 environments 9444 0.3% 0.0% 
6 environments 9444 0.3% 0.0% 

P11.4 0 environments 4784 0.2% 0.2% 
1 environment 4776 0.2% 0.0% 
2 environments 4776 0.2% 0.0% 
3 environments 4776 0.2% 0.0% 
4 environments 4776 0.2% 0.0% 
5 environments 4772 0.2% 0.0% 
6 environments 4768 0.3% 0.1% 

P11.5 0 environments 4512 
1 environment 4464 1.1% 1.1% 
2 environments 4456 1.2% 0.1% 
3 environments 4452 1.3% 0.1% 
4 environments 4452 1.3% 0.0% 
5 environments 4452 1.3% 0.0% 
6 environments 4452 1.3% 0.0% 

P11.6 0 environments 3076 - - 

1 environment 3070 0.2% 0.2% 
2 environments 3064 0.4% 0.2% 
3 environments 3064 0.4% 0.0% 
4 environments 3064 0.4% 0.0% 
5 environments 3064 0.4% 0.0% 
6 environments 3064 0.4% 0.0% 

P11.7 0 environments 7104 - - 

1 environment 7048 0.8% 0.8% 
2 environments 7048 0.8% 0.0% 

3 environments 7048 0.8% 0.0% 
4 environments 7048 0.8% 0.0% 
5 environments 7048 0.8% 0.0% 
6 environments 7032 1.0% 0.2% 

P11.8 0 environments 640 - - 

1 environment 624 2.5% 2.5% 
2 environments 624 2.5% 0.0% 

3 environments 624 2.5% 0.0% 
4 environments 624 2.5% 0.0% 

5 environments 624 2.5% 0.0% 

6 environments 624 2.5% 0.0% 
P11.9 0 environments 4492 - - 

1 environment 4484 0.2% 0.2% 

2 environments 4484 0.2% 0.0% 

3 environments 4484 0.2% 0.0% 

4 environments 4484 0.2% 0.0% 

5 environments 4484 0.2% 0.0% 

6 environments 4484 0.2% 0.0% 
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P11.10 0 environments 19332 - - 

1 environment 19196 0.7% 0.7% 
2 environments 19158 0.9% 0.2% 
3 environments 19138 1.0% 0.1% 
4 environments 19138 1.0% 0.0% 
5 environments 19120 1.1% 0.1% 
6 environments 19120 1.1% 0.0% 

P11.11 0 environments 12280 - - 

1 environment 12200 0.6% 0.6% 
2 environments 12168 0.9% 0.3% 
3 environments 12160 1.0% 0.1% 
4 environments 12156 1.0% 0.0% 
5 environments 12148 1.1% 0.1% 
6 environments 12148 1.1% 0.0% 

P11.12 0 environments 10690 - - 

1 environment 10616 0.7% 0.7% 
2 environments 10604 0.8% 0.1% 
3 environments 10604 0.8% 0.0% 
4 environments 10594 0.9% 0.1% 
5 environments 10584 1.0% 0.1% 
6 environments 10584 1.0% 0.0% 
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Simple allocation of arrays and remembering subscripts 

Allocation 
Neither Simple (gain) 

Remembering 
Subscripts (gain) 

P732.1 8596 8476 (1.4%) 8312 (3.3%) 
P732.2 6126 6126 (0.0%) 6126 (0.0%) 
P732.3 10450 10114 (3.2%) 10426 (0.2%) 
P732.4 5056 4958 (1.9%) 5056 (0.0%) 
P732.5 5306 5054 (4.7%) 5308 -(0.0%) 
P732.6 3384 3254 (3.8%) 3386 -(0.0%) 
P732.7 10346 10112 (2.3%) 10344 (0.0%) 
P732.8 806 806 (0.0%) 770 (4.5%) 
P732.9 6138 6138 (0.0%) 6148 -(0.2%) 
P732.10 20806 20684 (0.6%) 20776 (0.1%) 
P732.11 12442 12442 (0.0%) 12442 (0.0%) 
P732.12 11976 11946 (0.2%) 11326 (5.4%) 

Both optimisations Total gain 

------------------ P732.1 8192 

P732.2 6126 0.0% 
P732.3 9956 4.7% 
P732.4 4958 1.9% 
P732.5 4986 6.0% 

P732.6 3208 5.2% 
P732.7 9874 4.6% 

P732.8 770 4.5% 
P732.9 6148 -0.2% 
P732.10 20650 0.7% 

P732.11 12442 0.0% 

P732.12 11296 5.8% 

189 



Allocation Remembering 
Neither Simple (gain) Subscripts (gain) ------ ---------- 

P 1 1 . 1 8572 8188 (4.5%) 7704 00.1%) 
P11.2 6000 6000 (0.0%) 6000 (0.0%) 
P11.3 9764 9556 (2.1%) 9644 (1.2%) 
P11.4 4848 4776 (1.5%) 4848 (0.0%) 
P11.5 4656 4568 (1.9%) 4452 (4.4%) 
P11.6 3356 3202 (4.6%) 3218 (4.1%) 
P11.7 7844 7728 (1.4%) 7204 (8.2%) 
P11.8 644 624 (3.1%) 644 (0.0%) 
P11.9 4796 4796 (0.0%) 4484 (6.5%) 
P11.10 19236 19140 (0.5%) 19216 (0. 1%) 
P11 . 11 12148 12148 (0.0%) 12148 (0.0%) 
P11.12 11094 11060 (0.3%) 10616 (4.3%) 

Both optimisations Total gain 
------------------ ---------- 

P11.1 7660 10.6% 
P11.2 6000 0.0% 
P11.3 9444 3.3% 
P11.4 4768 1.6% 
P11.5 4452 4.4% 
P11.6 3064 8.7% 
P11.7 7032 10.4% 
P11.8 624 3.1% 
P11.9 4484 6.5% 
P11.10 19120 0.6% 
P11.11 12148 0.0% 
P11.12 10584 4.6% 
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Simplifying: X = X I 

Code 
Without 
------- 

Code 
With 
---- Gain 

---- 
P732. 1 8292 8192 1.2% 
P732.2 6156 6126 0.5% 
P732.3 10068 9956 1.1% 
P732.4 5088 4958 2.6% 
P732. 5 5180 4986 3.7% 
P732. 6 3368 3208 4.8% 
P732. 7 11438 11296 1.2% 
P732.8 772 770 0.2% 
P732. 9 6214 6148 1.1% 
P732. 10 21086 20650 2.1% 
P732.11 12590 12442 1.2% 
P732. 12 11438 11296 1.2% 

P11.1 8284 7660 7.5% 
P11.2 6220 6000 3.5% 
P11.3 10040 9444 5.9% 
P11.4 5136 4768 7.2% 
P11.5 4800 4452 7.2% 
P11.6 3342 3064 8.3% 
P11.7 7596 7032 7.4% 
P11.8 668 624 6.6% 
P11.9 4724 4484 5.1% 
P11.10 20634 19128 7.3% 
P11.11 12892 12148 5.8% 
P11.12 11492 10584 7.9% 
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Passing some parameters in registers 

Code 
Size 

Total 
Reduction 

Incremental 
Reduction ---- --------- 

P732.1 0 registers 8862 
1 register 8360 5.7% 5.7% 
2 registers 8192 7.6% 1.9% 

P732.2 0 registers 7196 
1 register 6544 9.1% 9.1% 
2 registers 6126 14.9% 5.8% 

P732.3 0 registers 10586 
1 register 9976 5.8% 5.8% 
2 registers 9956 6.0% 0.2% 

P732.4 0 registers 5126 
1 register 4958 3.3% 3.3% 
2 registers 4958 3.3% 0.0% 

P732.5 0 registers 5198 
1 register 5022 3.4% 3.5% 
2 registers 4986 4.1% 0.7% 

P732.6 0 registers 3402 
1 register 3222 5.3% 5.3% 
2 registers 3208 5.7% 0.4% 

P732.7 0 registers 10400 - 

1 register 10048 3.4% 3.4% 
2 registers 9874 5.0% 1.6% 

P732.8 0 registers 840 - 
1 register 810 3.6% 3.6% 
2 registers 770 8.3% 4.7% 

P732.9 0 registers 6404 - - 

1 register 6172 3.6% 3.6% 
2 registers 6148 4.0% 0.4% 

P732.10 0 registers 21650 - - 
1 register 20826 3.8% 3.8% 
2 registers 20650 4.6% 0.8% 

P732.11 0 registers 13476 - - 
1 register 12442 7.7% 7.7% 
2 registers 12442 7.7% 0.0% 

P732.12 0 registers 11916 - - 

1 register 11452 3.9% 3.9% 
2 registers 11296 5.2% 1.3% 
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Code 
Size 

Total 
Reduction 

Incremental 
Reduction 

--------- 
-- P11.1 0 registers 7796 . 

1 register 7756 0.5% 0.5% 
2 registers 7660 1.7% 1.2% 

P11.2 0 registers 6192 - 
1 register 6072 1.9% 1.9% 
2 registers 6000 3. 1% 1.2% 

P11.3 0 registers 9564 - 
1 register 9448 1.2% 1.2% 
2 registers 9444 1.2% 0.0% 

P11.4 0 registers 4776 - 

1 register 4768 0.2% 0.2% 
2 registers 4768 0.2% 0.0% 

P11.5 0 registers 4508 - 
1 register 4452 1.2% 1.2% 
2 registers 4452 1.2% 0.0% 

P11.6 0 registers 3098 - 
1 register 3064 1.1% 1.1% 
2 registers 3064 1.1% 0.0% 

P11.7 0 registers 7124 - 
1 register 7096 0.4% 0.4% 
2 registers 7032 1.3% 0.9% 

P11.8 0 registers 624 - 
1 register 624 0.0% 0.0% 
2 registers 624 0.0% 0.0% 

P11.9 0 registers 4520 - 
1 register 4488 0.7% 0.7% 

2 registers 4484 0.8% 0.1% 
P11.10 0 registers 19302 

1 register 19166 0.7% 0.7% 

2 registers 19128 0.9% 0.2% 
P11.11 0 registers 12364 - 

1 register 12152 1.7% 1.7% 

2 registers 12148 1.7% 0.0% 
P11.12 0 registers 10734 - 

1 register 10648 0.8% 0.8% 

2 registers 10584 1.4% 0.6% 
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Remembering condition-codes 

Unknown Remembered Gain 

- P732.1 8820 8192 0.3% 
P732.2 6134 6126 0.1% 
P732.3 9976 9956 0.2% 
P732.4 4968 4958 0.2% 
P732.5 4988 4986 0.0% 
P732.6 3212 3208 0.1% 
P732.7 9880 9874 0.1% 
P732.8 770 770 0.0% 
P732.9 6150 6148 0.0% 
P732.10 20684 20650 0.2% 
P732.11 12474 12442 0.2% 
P732.12 11318 11296 0.2% 

P11.1 7732 7660 0.9% 
P11.2 6012 6000 0.3% 
P11.3 9516 9444 0.8% 
P11.4 4792 4768 0.5% 
P11.5 4452 4452 0.0% 
P11.6 3076 3064 0.4% 
P11.7 7064 7032 0.4% 
P11.8 624 624 0.0% 
P11.9 4496 4484 0.3% 
P11.10 19204 19128 0.4% 
P11.11 12192 12148 0.4% 
P11.12 10626 10584 0.4% 
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S6L 

(%0'0) t8SOL (%0'0) h8SOL (%0'0) h8SOL h8SOL ?L*LLd 
(%?'0) h?L?L ($L'0) 9EL?L ($L'0) 98L?L 8hl?L LL'LLd 
(%0'0) 8?L6L (%0'0) 8?L6L (%0'0) 8?L6L 9?L6L OL LL d 
(%0'0) h8hh (%0'0) h8hh (%0'0) h8hh h8hh 6'LLd 
($8'L) 9L9 (%9'0) 0?9 (%9'0) 0?9 h?9 9 L Ld 
(%h'O) hOOL (%0'0) ?8OL (%h'O) hOOL ?EOL L'LLd 
($L'0) 090E (WO) 090E (%0'0) h908 h908 9'LLd 
($L'0) 8hhh (%0'0) ?Shh (%L*O) 8hhh ?Shh S'LLd 
(%0'0) 89Lh (%0'0) 89Lh (%0'0) 89Lh 89Lh h'LLd 
(%L'0) h8h6 (%l'0) h8h6 (%0'0) hhh6 hhh6 E LL d 
(%?'0) 8865 (%?'0) 9965 (%0'0) 0009 0009 ?'LLd 
(%0'0) 099L (%0'0) 099L (%0'0) 099L 099L L LL d 

(%h'0) 95?LL (%?'0) ?L?LL (%l'0) 08?LL 96?LL ?l'?8Ld 
(%L'L) 908?L (%9'0) ?h8?L (%8'0) 90h?L ?hh?L LL ?8Ld 
(%8'0) 06h0? (%h'0) 8550? (%8'0) 995O? 0590? Ol'?8Ld 
(%h'0) 0?L9 (%8'0) ?EL9 (%?'0) 9EL9 9hL9 6'?8Ld 
(%h'S) 9?L (%?'h) 88L (%S'O) h9L OLL 8'?8Ld 
(%9'L) ?L96 (%h'0) h886 (%?'L) ?SL6 tL96 L'?8Ld 
(%L'?) ??L8 (We) ?) OtLE (%h'0) h6L8 80?8 9'?8Ld 
(%h'0) 996h 

' 

(%l'0) ?96h (%8'0) OL6h 986h S'?8Ld 
(%8 0) ?h6h (%8'0) ?h6h (%?'0) OS6h 8S6h h'?8Ld 

(%6'0) h986 (%8'0) ?L86 (%?'0) 8h66 9566 8'?8Ld 
(%8'l) hh09 (%?'L) tS09 ($8'0) OLL9 9?L9 ?'?8Ld 
(%L'0) 9818 (%h'0) 0918 (%?'0) ?LL8 ?6L9 l'?8Ld 

------------- -------- 
BjaQ a2 a 8ui8jaQ asaaw iaygtaH 

paumiod 

,T Timuug 



AU optimisations 

None All Gain 

P732. 1 11300 8136 28.0% 
P732.2 7520 6044 19.6% 
P732. 3 12286 9864 19.7% 
P732.4 5782 4942 14.5% 
P732.5 6204 4966 19.9% 
P732. 6 4004 3122 22.0% 
P732.7 11750 9812 16.5% 
P732. 8 988 728 26.3% 
P732.9 6848 6120 10.6% 
P732. 10 24722 20490 17.1% 
P732. 11 14618 12306 15.8% 
P732. 12 14064 11256 20.0% 

P11.1 9664 7660 20.7% 
P11.2 6588 5988 9.1% 
P11.3 11092 9434 14.9% 
P11.4 5540 4768 13.9% 
P11.5 5572 4448 20.2% 
P11.6 3666 3060 16.5% 
P11.7 8632 7004 18.7% 
P11.8 752 616 18.1% 
P11.9 5256 4484 14.7% 
P11.10 23940 19128 20.1% 
P11.11 14328 12124 15.4% 
P11.12 12816 10584 17.8% 
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M time in input/gutRmt 
(as percentages of compile time) 

Phase 1 Phase 2 Phase 3 

---------- --- 
Total % Total % Total % 

CPU I/O CPU I/O CPU I/O 

All optimisations: 

P732.1: 53% 8% 32% 6% 14% 5% 

P732.2: 53% 8% 35% 8% 12% 5% 

P732.3: 51% 7% 34% 7% 15% 5% 
P732.4: 54% 8% 32% 6% 14% 5% 

P732.5: 49% 12% 36% 5% 14% 5% 

P732.6: 50% 7% 37% 7% 12% 6% 

P732.7: 48% 7% 39% 7% 13% 7% 

P732.8: 54% 7% 36% 7% 10% 5% 

P732.9: 50% 8% 36% 8% 14% 6% 

P732.10: 54% 6% 28% 5% 17% 4% 

P732.11: 52% 7% 32% 6% 16% 5% 

P732.12: 52% 8% 32% 8% 17% 7% 

No optimisation: 

P732.1 50% 7% 30% 7% 19% 8% 

P732.2 55% 8% 31% 9% 14% 8% 

P732.3 54% 8% 28% 8% 18% 6% 

P732.4 57% 8% 26% 7% 16% 6% 

P732.5 52% 8% 30% 8% 17% 7% 

P732.6 53% 8% 32% 9% 15% 8% 

P732.7 49% 7% 31% 8% 19% 8% 

P732.8 56% 7% 32% 9% 12% 6% 

P732.9 55% 9% 29% 8% 16% 7% 

P732.10 55% 6% 23% 6% 21% 5% 

P732.11 55% 8% 26% 6% 20% 6% 

P732.12 54% 8% 27% 8% 19% 8% 
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Overall CPU in in ut/output 

Internal I/O = communication between phases. 
External I/O = source input & object file output. 

Internal I/O External I/O 

No Opts. All Opts. No Opts. All Opts. 

-------- --------- -------- --------- 
P732.1 16% 13% 7% 7% 
P732.2 16% 16% 8% 7% 

P732.3 15% 13% 7% 6% 
P732.4 14% 13% 7% 7% 
P732.5 16% 12% 7% 6% 
P732.6 17% 14% 8% 7% 

P732.7 17% 15% 6% 6% 
P732.8 18% 16% 5% 4% 

P732.9 16% 15% 8% 7% 
P732.10 13% 11% 6% 6% 
P732.11 12% 11% 6% 6% 
P732.12 16% 15% 8% 7% 
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