”“\'VEF-;' 2 Edinburgh
: gegional
. omputin
eot&u}«su Cent?e g

I User Note

(June 1986)

Moving IMP Programs to EMAS-3

J.M. Murison

Advisory service

Software Support
Category:
See Note 15

This Note suggests a saries of steps to follow in order to convert an IMP80 program

on EMAS 2900 to an IMP program on EMAS-3.

Keywords

conditional compilation, EMAS 2900, EMAS-3, IMP, IMP80, SOAP

Edinburgh Regional Computing Centre

James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EHQ 3JZ. Telephone 031-667 1081

1986 Edinburgh Regional Computing Centre

Introduction

When IMP programs are moved from EMAS 2900 to EMAS-3, a number of changes
may have to be made. These are necessitated by changes in the implementation of the
IMP language, in the operating system and in the machine hardware.

The first section of this Note suggests a series of steps to follow in order to convert an
IMP80 program on EMAS 2900 to an [MP program on EMAS-3. In doing so it refers
to later sections and to other documents. Although there are, in total, a large number
of potential changes required to an IMP program. in practice it has been found that
conversion for EMAS-3 is straightforward in most cases.

The last section of this Note describes the technique of conditional compilation, by use

of which it is possible to produce a single ‘'master’ source program which will compile
on either EMAS 2900 or EMAS-3.

1. Making the move: steps to follow
~ This sectjon describes the moving of an IMP program from the EMAS or BUSH
services to the EMAS-A service at Edinburgh. In principle, it applies to any service

using the EMAS 2900 system and any service using the EMAS-3 system.

The steps are as follows:

a) Convert to IMP80 e) Compile program

b) Transfer source to EMAS-3 f) Check changes in [MP & EMAS
¢) Get familiar with EMAS-3 g) Command writers: use PAM

d) Use SOAP hj Test program

a) Convert to IMP80. If you use the EMAS 2900 command [MP80 to compile your
IMP program, go to step (b). Otherwise consult User Note 2 to convert to IMP80
on EMAS 2900.

b) Iransfer source to EMAS-3. Get yourself a number on EMAS-A (User Note 29),
and transfer your source IMP file(s) to it (User Note 60, Section 6). You can use
the command TRANSFER, or TOEMASA. For example:

Command: OPTION SEARCHDIR=ERCLIB.GENERAL (Once only)
Command: TOEMASA PROG2900S, USERNO:PROG2900S, BACKPASS

This command would transfer file PROG2900S to EMAS-A. USERNO is your user
number on EMAS-A; BACKPASS is your background password on EMAS-A. [f your
user number on the service from which the transfer is being made is the same as
on EMAS-A then the USERNO: part can be omitted; and if in addition the file is to
have the same name on EMAS-A (as shown here) then the second parameter can
be omitted entirely, but not the comma following.

You cannot transfer object files, but it would be pointless to try as they would not
run on EMAS-A anyway. You can, however, transfer partitioned files.

58-3

Get familiar uwith EMAS-3. If you have not already done so, get familiar with the
main differences between the two systems (User Notes 60 and 61). All the
conversion work, as recommended here, is to be done on EMAS-A.

Use SOAP. If your program does not contain any %EXTERNAL or %SYSTEM
%ROUTINE %SPECS, go to step (e). Otherwise, assuming that your file is called
PROG2900S, give the command:

Command: SOAP PROG2900S, PROG370S, TOEMAS3=Y

(soap is an IMP program formatter, described in User Note 14.) This produces, in
file PROG370S, an equivalent source program in which those %EXTERNAL and %SYSTEM
%SPECS which the SOAP utility knows about are converted to the correct EMAS-3
form. Warning messages are generated for %SPECs which it does not know about.

One important set of external routines are the standard EMAS commands (FILES,
MAIL, HELP, etc.). In EMAS 2900 IMP8O0 these can be called either by providing a
%SPEC of the form:

%EXTERNAL %ROUTINE %SPEC command(%STRING (255) PARAMS)

and then calling routine command directly, or by making use of CALL:

%EXTERNAL %ROUTINE %SPEC CALL(%STRING (255) PARAMS}

and then invoking the command by use of CALLicommand, params). In EMAS-3 IMP
the first, direct, method is not available; and in the second method routine CALL is
replaced by routine EMAS3:

%EXTERNAL %ROUTINE %SPEC EMAS3(%STRING %NAME COMMAND, PARAMS,
%INTEGER Y%aNAME FLAG}

This conversion is handled automatically by soar.

Have a look at PROG370S with vour favourite EMAS editor. If you do not like
what SOAP has done to your program, read User Note 14 to find out how to
control S0AP; you should be able to make it © rmat your program in the style you
prefer.

Compile program. Give the command:

Command: IMP PROG370S, PROG370Y, PROG370LST

[Note the change of command name from IMP to IMP80.] If the compilation
fails, read Section 2 of this Note to find out which changes are relevant to the
failure. If none seems to be relevant, contact the ERCC Advisory service.

Modify PROG370S with an editor until it compiles successfully. [n this context,
note that the editor ECCE has an IMP syntax checker built in; this can be
invoked within ECCE by use of the command %v. It will flag any syntactically
faulty IMP statements, but will not detect that variables have not been declared,
or have been declared twice, or that parameters to a procedure do not match the
%SPEC. etc. None the less, it does speed up the edit-compile-edit-... iteration.

58-4

g)

If the IMP compiler produces warning messages, do not disregard them: they can
indicate that some features of IMP used in the program do not have quite the
same effect on EMAS-3 as on EMAS 2900.

Do not proceed to the next step until your program compiles successfully.

Check changes in [MP & EMAS. If you have not already done so, you should row
read Section 2 of this Note, because some of the language and systemn changes do
not provoke compilation errors in unmodified IMP programs. Modify PROG370s
accordingly.

Command writers: use PAM. [f your program consists of one or several commands
(in the EMAS sense) then you should now read User Note 62, and apply the
necessary changes to PROG370S. Note: although the Parameter Acquisition
Mechanism described in User Note 62 may take some getting used to, it is strongly
recommended as it provides a uniform parameter-checking facility which can reduce
the amount of code in IMP programs quite dramatically. It also removes the need
to add code to handle group names, files within sub-groups, etc.

Test program. Try running PROG370Y. [f it fails, read Section 2 again to see
whether the failure is related to any item mentioned there. If it does not appear
to be, contact the ERCC Advisory service. If it does (apparently) work, but
contains constructions which you have had to change. then examine the logic of
your new code very carefully. especially if the program is a large one or if you
wrote it some time ago. It is surprising how a small change can have a large
impact, especially in the area of Input; Output. In this context, it is well to bear
in mind Dijkstra’s dictum: ” Testing can show the presence of bugs. but can never
show their absence”.

2. Relevant differences in IMP, EMAS and the hardware

2)

In EMAS-3 IMP, *%ROUTINE READSYMBOL returns [SO codes 10 (NL) and 32-126
only, and ignores all other values; in ¢ —=ticular it does not return ISO code 26
(SUB). For values greater than 127, it ignores the top bit (i.e. subtracts 128),
and then treats the result as for values 0-127. ReaDSYMBOL on EMAS 2900 ignores
all values greater than 127.

In EMAS 2800 IMP80, %ROUTINE PRINTSYMBOL ignores the top bit on output. This
does not happen on EMAS-3: PRINTSYMBOL can handle any value in the range 0-255
and is thus identical to PRINTCH.

In EMAS 2900 IMP80, access by use of CHARNO to a byte beyond the currently
defined length of a string is permitted. This is not true in EMAS-3 IMP.
However, in EMAS-3 IMP the length of a string constant or %CONSTANT %STRING
can be found (but not changed!) by use of LENGTH(STR), and the form CHARNO(STR.N),
where STR is a string constant or %CONSTANT %STRING and N is an integer constant
or %CONSTANT %INTEGER, is also permitted on the right hand side of an expression.
This is not true of EMAS 2900 [MP80.

58-5

aq
~—

i)

In EMAS-3 IMP, jumping into %CYCLE/%REPEAT loops is faulted.

In EMAS-3 IMP, within a block no declarations of variables are allowed after any
executable code.

In EMAS 2900 IMP80, the %ARRAY %MAP ARRAY can take the name of an existing
array as its second parameter, the format of that array then being used by ARRAY.
This is not permitted in EMAS-3 IMP: the second parameter of ARRAY must be an
explicitly declared %ARRAY %FORMAT.

2900 assembler code will not work on EMAS-3. The best advice is to translate the
assembler into IMP. If this proves impossible, contact the ERCC Advisory service.

%LONG %INTEGER operations are provided by software emulation. Those involving
multiplication or division are very slow. Exponentiation of a %LONG %INTEGER is
not allowed in EMAS-3 IMP.

The keyword %SYSTEM is permitted in EMAS-3 IMP, but does not cause the prefix
‘S#' to be added to the procedure entry point (see below). It is therefore advisable
to remove all occurrences of this keyword from IMP programs, by use of %ALIAS;
for example: '

%SYSTEM %STRING %FUNCTION %SPEC ITOS(%INTEGER N)

should become

%EXTERNAL %STRING %FUNCTION %SPEC 1ITOS %ALIAS "S#ITOS"(%INTEGER N)
See also the next item.

On EMAS 2900 some Subsystem procedures require the keyword %SYSTEM in their
specification, some require %EXTERNAL. On EMAS-3 this situation has been tidied
up, as described in User Note 80. There are two sets of procedures: the
language-independent programming interface (the procedure names start EMAS3.):
and the IMP-only interface (the procedure entry points start S#.). The two sets of
procedures are equivalent, althouzh the parameter types are usually different, the
former set using %NAME-type parameters exclusively.

When converting an EMAS 2900 [MP80 program, you thus have a choice as to
which set of procedures you use (perhaps a mixture of the two). Generally it is
simpler when converting an existing program to use the IMP-only interface, and
this is what $0AP will do. But if you decide to use the language-independent
interface, note that in EMAS-3 IMP a value or ezpression can be given as an
actual parameter to an ezternal procedure where the formal parameter is
%NAME-type. For example:

%EXTERNAL %ROUTINE %SPEC EMAS3 PROMPT{%STRING %NAME PSTRING)

EMAS3 PROMPT{"Input:")

This feature is not available in EMAS 2900 IMP8&0.

58-6

k)

As indicated earlier, the text formatting utility soap (User Note 14) can make the
necessary changes automatically. [f you prefer to make these changes ‘by hand’,
then file ERCLIB:SOAPSPECS. which contains the specs used by SOAP, may be of use to
you.

In EMAS-3 full filenames can be up to 255 characters in length, and so all string
variables intended to hold filenames should be declared with maximum length 253.

%HALF %INTEGERs are not implemented in EMAS-3 IMP. They are treated as
%INTEGERS by the compiler and a warning message is printed in the listing file.

For some programs this may be an adequate compromise, but it will not work for
any programs that access %HALF %INTEGERs by mapping, e.g. those which access
%HALF %INTEGERS in store mapped files. There is no mapping function HALF INTEGER.

In EMAS-3 IMP %SHORT %INTEGERs are implemented as described in the ERCC
IMP80 Language manual, as they were on the System 4. Although both %HALF
%INTEGERS and %SHORT %INTEGERs take two bytes to hold an integer value, the
distinction between them is that %HALF %INTEGERs are treated as unsigned and
%SHORT %INTEGERs are signed. Hence:

%HALF %INTEGERs hold positive integer values in the range 0 to 65,535
%SHORT %INTEGERs hold integer values in the range -32,768 to 32,767

Programs which use %HALF %INTEGERs for holding values within the range O to
32,767 can be converted by substituting %SHORT for %HALF throughout. In other
cases it may be possible to use a jam transfer assignment (i.e. using the operator
<-). However, if you do this you should be careful when making arithmetic
comparisons between the resultant values. For example:

%SHORT %INTEGER VAL

VAL <- X'FFFF’; ! VAL = X'FFFF’ would fail {integer overflow).
%IF VAL=X'FFFF %THEN

The test for equality will fail. This is because X’FFFF’ is held as a 32-bit integer
constant (X'0000FFFF) and to make the test the value in VAL has to be expanded up
to a 32-bit quantity also. This is done by propagating the most significant bit
(the sign bit) leftwards so that the numerical value is preserved. In this case the
result is X'FFFFFFFF, which is not equal to X‘0G00FFFF'.

On EMAS-3, the %EXTERNAL %ROUTINE SET RETURN CODE prints a message
appropriate to the integer value passed to it (see Section 5 of User Note 80), this
message including the name of the routine from which SET RETURN CODE was called.
On EMAS 2900 SET RETURN CODE does not print any message.

On EMAS-3, if SET RETURN CODE is called at the outer level of a command

{%EXTERNAL %ROUTINE), then the change is normally of benefit. For example,

if %EXTERNAL %ROUTINE WIDGET calls SET RETURN CODE(271) then the user receives the
message

58-7

WIDGET fails - Attempt to write to PD member

waever, if the programmer has called SET RETURN CODE in an inner routine, then
the name of that routine will be included in the message. To get round this, the
following approach can be used:

%EXTERNAL %ROUTINE %SPEC PSYSMESS %ALIAS "S#PSYSMESS"{%STRING (255) CALLER,
%INTEGER FLAG)

PSYSMESS("WIDGET", 271)
%STOP

PSYSMESS sets the return code to the value of its second parameter. If you do not
want any message to be printed then call SET RETURN CODEIFLAG) with FLAG

negative. This has the effect of inhibiting its message; the return code set is
IMOD{FLAG).

If you want to print a system message without setting the return code, use routine
FAILURE MESSAGE:

Y%EXTERNAL %STRING %FUNCTION %SPEC FAILURE MESSAGE %C
%ALIAS “S#FAILUREMESSAGE"(%INTEGER N)

A new routine, EMAS3 CLAIM CHANNEL, is provided on EMAS-3. While not strictly
relevant to the conversion of an EMAS 2900 [IMP80 program to EMAS-3 IMP, it
is none the less a useful facility if you are revising your program while moving it.

Many programs have been written with channel numbers ‘built in’, and this often
leads to clashes and inconvenience. The new procedure has been provided to
eliminate this problem. [ts specification is:

%EXTERNAL %ROUTINE %SPEC EMAS3 CLAIM CHANNEL(%INTEGER %NAME CHAN)

When you want to get a new [/O channel within an IMP program, call this
procedure. If a free channel is available (it nearly always will be), its number will
be set into the %INTESER parameter passed; otherwise the value returned wili be O.
The channel number supplied will normally be negative, though you need not be
concerned with this fact. Negative channel numbers may only be used when
supplied by EMAS3 CLAIM CHANNEL.

The channel number obtained can be used as a parameter to DEFINE. Within an
IMP program the string function [TOS can be used to do this:

%EXTERNAL %STRING %FUNCTION %SPEC | TO S %ALIAS “S#ITOS"{%INTEGER !)

%EXTERNAL %ROUTINE %SPEC EMAS3(%STRING %NAME COMMAND, PARAMS,
%INTEGER %NAME FLAG)

%EXTERNAL %ROUTINE %SPEC EMAS3 CLAIM CHANNEL{%INTEGER %NAME CHAN)

EMAS3 CLAIM CHANNEL{CHAN NO)
EMAS3("DEFINE”, ITOS(CHAN NO).".T#TEMP1", FLAG)

SELECT OQUTPUT(CHAN NQ)

58-8

p)

On EMAS-3 a T#. filename is allowed a maximum of only 9 characters in its
name. This is because the EMAS-3 system appends two ‘hidden’ digits to the
name, as compared with only one digit on EMAS 2900.

Mapping functions: consider the situation where an %INTEGER %MAP returns a
reference to an address which is not word-aligned,

|l a:b:c:d]le:f:g:hl| iieen.

such as the address of the byte labelled d in the above diagram. In EMAS 2900
IMP80, the hardware causes this to be modified to a reference to the integer made
up of bytes a-b-c-d. In EMAS-3 IMP the reference returned is to the (unaligned)
integer made up of bytes d-e-f-g; this does not cause an address error. A similar
effect can occur with halfword-aligned objects.

The [BM-type machines on which EMAS-3 runs do not use descriptors to access
items. This reduces the amount of checking that is done by the hardware, for
example the types of parameters passed to %EXTERNAL procedures. This may give
rise to problems, which can be avoided by checking that the specifications of
%EXTERNAL items are correct. [n particular, where a string is passed by value to an
external procedure, the string maximum size given in the specification must match
the procedure’s description exactly. This is because the size given determines how
many bytés are passed to the procedure. The problem does not arise on 2900
series machines.

Of course, the EMAS-3 IMP compiler checks within your IMP program that the
actual parameters you supply are consistent with the specifications you provide.
[n addition, the program loader (User Note 85) checks that the number and total
size of the parameters passed to an external procedure are consistent with the
procedure’s expectations.

The IBM-type hardware used by EMAS-3 does not provide such a sophisticated
mechanism for store access control as the 2900 series. Although there is no greater
risk of your information being read or ai:ered illegally by other users, there is =
greater chance of your program being able to read from incorrect addresses. For
example, if your program computes an incorrect address and attempts to read from
the data at that address then in the case of the 2900 it is likely that it would fail
with an address error. On EMAS-3 there is a greater chance that it will read
something at the incorrect address. This is obviously only a problem with faulty
programs, but is something to bear in mind when investigating apparently
intermittent behaviour of your program.

Programs should manipulate addresses with care. On EMAS-3 you should not
assume that addresses will be positive values. Before comparing two addresses you
should AND off the most significant bit. This will normally arise only where an
IMP program calls (or is called by) a non-IMP program.

The serious limitation imposed on the size of the stack on the 2900 series machines

does not apply, so there is no longer the complication of having a User stack and
an Auxiliary stack, and of having to partition the available space between them.

58-9

3. Conditional compilation

When you have successfully completed the conversion of your INMP program to run on
EMAS-3 you will probably notice that the differences between the two versions lie in
three areas:

changes in %EXTERNAL .. %SPECS
changes as a result of other language and system differences
(for commands) changes in the acquisition and checking of parameters

These differences are often quite localized within a program, and the rest of the two
versions may well be identical. There can be advantages in working with a single
source file for both versions, particularly if the program is to remain in use on EMAS
2900.

A facility is provided with the EMAS 2900 IMP80 compiler and the EMAS-3 IMP
compiler which is useful in this context, namely conditional compilation. Consider the
following example:

%CONSTANT %INTEGER TARGET=2900; ! Possible values: 370, 2800.

%IF TARGET=370 %START

%CONSTANT %STRING (1) NAMESEP="""

%EXTERNAL %ROUTINE %SPEC PROMPT %ALIAS “S#PROMPT"(%STRING (255) S)
Y%FINISH
%IF TARGET=2900 %START

%CONSTANT %STRING (1) NAMESEP="."

%EXTERNAL %ROUTINE %SPEC PROMPT(%STRING (31) S)

%FINISH

If a piece of code is bracketed by

%IF <condition> %START

%FINISH

where <condition> involves only constants and %CONSTANT %INTEGERs, then the IMP
compiler will compile the code if the condition is satisfied and will ignore the code if it
" is not. In particular, the example above would not produce the fault “Name set twice”.

[The use of the name TARGET is merely a convention which need not be followed.
The use of the value 370 to represent EMAS-3 reflects the fact that EMAS-3 runs on

IBM 370-type hardware; again, some other value can be used if preferred.]

Although the example above shows only declarations being the subject of conditional
compilation, executable statements can also be handled in this way. However, the code

58-10

within such a %START/%FINISH block must be syntactically complete: it is not valid to
have a %BEGIN or %CYCLE. etc. within the conditional block without also having the
matching %END or %REPEAT, etc. in the same block.

One consequence of this requirement is that when you wish to produce a common
source for a set of %EXTERNAL %ROUTINEs which are EMAS commands, it is necessary to

use the following approach:

%ROUTINE INNER ROUTINE
! Your program goes here {apart from the parameter checking and analysis).
%END; ! Of %ROUTINE INNER ROUTINE.

%IF TARGET=2900 %START
%EXTERNAL %ROUTINE WIDGET{%STRING(255) S)

! Decompose and analyse parameter string
INNER ROUTINE: ! This routine does the work.

%END; ! Of %EXTERNAL %ROUTINE WIDGET.
%FINISH

%IF TARGET=370 %START
Y%EXTERNAL %ROUTINE WIDGET %ALIAS “C#WIDGET"

! Decompose and analyse paramaeter string {using PAM of course}
INNER ROUTINE; ! This routine does the work.

SET RETURN CODE(FLAG)
%END:; ! Of %EXTERNAL %ROUTINE WIDGET.
%FINISH

[t is necessary to do it this way because conditional compilation does not allow you to
give an alternative for the first line only of an %EXTERNAL %ROUTINE.

Once you have dealt with all the s;stem-specific parts of your program, all that is
necessary to obtain a program suitable for one or other of the EMAS systems is to set
the TARGET variable appropriately before compilation (on the correct system).
Experience shows that it is best to keep the single source program on one system only.
When a change is required, the source should be updated, copied (transferred) to the
other system, and then compiled there with the appropriate value for TARGET (or
whatever) selected. This copy of the source should then be destroyed.

58-11

References

The IMP80 Language, 1982

User Note 2: IMP80 on EMAS 2900: Differences from IMP9

User Note 14: SOAP80: A program for formatting [MP80 source programs

User Note 29: How to register as a user of ERCC services

User Note 60: EMAS-3: Changes from EMAS 2900 for all users

User Note 681: EMAS-3: Naming files

User Note 62: EMAS-3: Writing commands

User Note 80: EMAS-3: Subsystem language independent programming interface
User Note 85: EMAS-3: Program loader

Acknowledgements

Some of the text of Section 2 was taken from an earlier version of this Note, written by
Roderick McLeod. I am also grateful to several colleagues for their comments before
and after the writing of this Note, particularly Neil Hamilton-Smith, Andrew
McKendrick, Sandy Shaw, Peter Stephens, Nick Stroud and Keith Yarwood.

Exampie

The first program below is the EMAS or BUSH IMP80 code for the transfer commands
TOEMAS, TOEMASA, TOBUSH. The second program is the equivalent on EMAS-A.

EMAS or BUSH

%routine toemasx(%string (255) s, host)

‘Transfer a file to another emas machine

!parameter = file,owner.newname,pass (2ng param may be null)

'‘optional last param "overwrite" allows overwriting of an existing file

%external %string %fn %spec uinfs(%integer entry)

%record %format rf(%integer conad, filetype, datastart, dataend)

%system %routine %spec connect{%string (31) s, %integer access, maxbytes,
protection, %record (rf) %name r, %integer %name flag)

%system %string %fn %spec failure message(%integer flag)

%system %routine %spec psysmes{%integer root, flag)

%record (rf) r

%string (255) newname, pass, file, overwrite

%string (63) t1, t2, owner, this host

%integer flag

%external %routine %spec transfer(%string (255) s)

%routine fail(%string (63) s)
newline
printstring("T0".host." fails - ".s)
newline
%stop
%end; ! OF FAIL

this host = uinfs(16)
%if this host->t1.(".").t2 %then this host = t2
%if host=this host %then fail(“this host is ".host)
%unless s->file.(",").newname.(",").pass %then fail("Too few parameters”)
%unless pass->pass.(",").overwrite %then overwrite = ""
%if “""#overwrites"OVERWRITE" %and "MAKE"#overwrite#"FILE" %and overwrite# 'REPLACE" %cC
%then fail("OVERWRITE?")
%if newname->owner.(":").newname %or newname->owner.(".").newname %then %start
%if length(owner)#6 %then fail("Invalid owner ".owner)
%finish %else %start

58-12

owner = uinfs(1)
%if newname="" %then %start
%if file=->t1.(".").t2 %then newname = t2 %else newname = file
%finish
%finish
%unless 1<=length(newname)<=31 %and ‘A’'<=charno(newname, 1)<='Z’ %then %c
fail("Invalid new name ".newname)
%if newname->t1.("_").t2 %then fail("Invalid new name “.newname)
%if length(pass)=0 %then fail(“Invalid password ".pass)
connect(file, 0, 0, 0, r, flag)
%if flag#0 %then psysmes(8, flag) %and %return
%if overwrite="" %then overwrite = "MAKE" %else %start

%if overwrite="QOVERWRITE" %then overwrite = "FILE"
%finish
transfer(file.”,"”.host."(".owner."”,".pass.”)".newname.",".overwrite)
%end; '0OF TO70

%external %routine tobush(%string (255) s)
toemasx(s, "BUSH")
%end

%external %routine toemas(%string (255) s}
toemasx(s, "“EMAS")
%end

%external %routine toemasa(%string (255) s)
toemasx(s, "EMAS-A")
%end

%end %of %file

EMAS-A

%routine toemasx(%string (255) host)
'Transfer a file to another emas system i
'parameters = file,owner:newname,pass (2nd param may be null)
‘optional last param MODE controls whether an existing file may be overwritten
'May be MAKE, FILE, REPLACE (or OVERWRITE) - by default, MAKE
%external %routine %spec emas3 string(%string %name vector, value)
%external %routine %spec psysmess %alias "S#PSYSMESS" %c N
(%string (255) caller, %integer flag)
%external %string %function %spec uinfs %alias "S#UINFS"(%integer n)
%external %routine %spec emas3 set fname(%string %name text)
%string (255) newname, pass, file, mode
%string (63) t1, t2, owner, this host
%integer flag
%external %routine %spec emas3(%string %name command, params,
%integer %name flag)
%routine fail(%string (63) s)

emas3 set fname(s); ithe taxt of the error message
psysmess{“TO" .host, 100); talso tuts return code
%stop

%end; ! OF FAl

this host = uinfs(16)
%if this host->t1.(",").t2 %then this host - .
%if host=this host %then fail("this host is “ 1 .aut)

! Now call PAM,

emas3 string("Local file;fileormem,read,exist", file)

emas3 string(“Remote file;file;".file, newname)

newname -> owner.(":").newname; !'Full filename returned by emas3d string.

emas3 string(“"Password;any,secret”, pass)

emas3 string("Mode;word,MAKE ,REPLACE,FILE,OVERWRITE;MAKE", mode)
%if mode="OVERWRITE" %then mode = "FILE"
emas3("TRANSFER", file.",".host."“(".owner.",".pass.")".newname."," . .mode, flag)
psysmess("TO".host, flag); 'to set return code

%end; 'OF TOEMASX

%external %routine tobush %alias "C#TOBUSH"
toemasx ("BUSH")
%end

%external %routine toemas %alias “C#TOEMAS"
toemasx ("EMAS")

%end

%external %routine toemasa %alias "C#TOEMASA"
toemasx ("EMAS-A")

%end

%end %of %file

58-13

