I-code V1.3 Working-Notes
Peter S. Robertson
1 October 1984

 Note: This document is not intended to be a complete formal description of I-code
Copyright (c) 1984
Lattice Logic Limited
9, Wemyss Place
Edinburgh EH3 6DH
Scotland

Contents
1.	Philosophy	7
2.	Definitions	8
3.	Conventions	10
4.	Instructions	11
Absolute	11
Access	11
Add	11
Address	11
Adjust	12
Alias	12
Alt-Start	12
Alt-Finish	13
And	13
Assign-Parameter	13
Assign-Value	14
Assign-Reference	14
Backward	14
Begin	14
BEQ	15
BF	15
BGE	15
BGT	16
BLE	16
BLT	16
BNE	17
Bounds	17
BT	17
Byte	18
Call	18
‘E’	18
CALL	18
Compare-References	18
Compare-Repeated-Values	18
Compare-Unsigned-Values	19
Compare-Values	19
Complement	19
Concat	19
Control	20
Define	20
Define-Range	23
Diagnose	23
Dimension	23
Div	24
Duplicate	24
End	24
End-Of-File	24
Eval	25
Eval-Addr	25
Finish	25
Float	26
For	26
Forward	26
Include	27
Index	27
Init	27
Init-Type	28
Int	28
Intpt	28
Integer	28
Integer-Power	29
Jump	29
Label	29
Lang	30
Left	30
Line	30
Localise	30
Locate	31
Mod	31
Monitor	31
Mul	31
Negate	32
Next-Alt	32
Not	32
Null-Set	32
On	33
Or	33
Pop	33
Quotient	33
Real	34
Real-Power	34
Reference	34
Remainder	34
Resolve <flag>	35
Return	35
Return-False	35
Return-Reference	35
Return-True	35
Return-Value	36
Right	36
Round	36
Select	37
Set-Format	37
Signal	37
Size-Of	37
Stack	38
Stack-Condition	38
Stack-In	38
Stack-Unsigned-Condition	39
Start	39
Stop	39
String	39
Sub	40
SubA	40
Switch-Jump	40
Switch-Label	40
Swop	41
Test-Boolean	41
Test-In	41
Test-Nil	41
Test-Range	42
Trunc	42
Variable-Call	42
Xor	42
Appendix 1.	Encoding	43
Appendix 2.	Instructions which set the condition code	44
Appendix 3.	Instructions which test the condition code	45

[bookmark: _Toc465792142]Philosophy
I-code is an intermediate code used to provide an interface between the machine-independent and machine-dependent sections of a compiler.

Most intermediate codes in use today describe the execution of an abstract machine which performs the desired computation. For example, the intermediate code for a statement of the form: X = Y+Z would describe the operations of the abstract machine which would compute the value of Y+Z and assign it to X. Using this sort of code, the machine-dependent section of the compiler has to map the abstract machine onto the real target machine.

I-code uses a fundamentally different model. It describes the execution of an abstract compiler which generates target code to perform the desired computation; it does not describe an abstract machine which will perform that computation. It is vital to understand that it does not describe the function of the program directly but describes it indirectly via the abstract compiler. It is this indirection which gives I-code the power to be machine-independent without sacrificing efficiency in the executable programs which it can be used to generate.

There are two important corollaries of this. Firstly, the structures and operations associated with the abstract compiler need have no counterparts in the object program. For example, the target machine need have no hardware or software stack and neither need it have a true condition code. Secondly the code assumes that the operations it describes will be performed by the abstract compiler in the order specified with no omissions. In particular, the control transfer instructions do not transfer control in the abstract compiler but indicate changes of control flow in the program which is being compiled. This also does not mean that any of the operations need have counterparts in the object program nor that the order of the generated code need correspond to the order of the I-code.

For example, the Algol-60 statement: A := if B then C else D; could not be encoded in the seemingly obvious way:
Stack A
Stack B; Test-Boolean; BF 1
Stack C; Forward 2
Label 1
Stack D
Label 2
Assign-Value
as this would assign D to C, the last two objects stacked prior to the Assign-Value instruction and leave A on the stack.

Encode instead as:
Stack B; Test-Boolean; BF 1
Stack A; Stack C; Assign-Value; Forward 2
Label 1
Stack A; Stack D; Assign-Value
Label 2
This is similar to that generated from the code fragment: if B then A := C else A := D;

[bookmark: _Toc465792143]Definitions

	byte-order
	All multi-byte values are specified with the least-significant byte first.

	Unsigned
	A natural binary number.

	Signed
	A 2's complement binary number.

	
	A one-byte unsigned number.

	<integer>
	A four-byte signed integer number.

	<label>
	An unsigned 16-bit value used to identify a simple label.

	<n>
	An unsigned 16-bit number.

	<string>
	A byte-counted string constant.

	<real>
	A real constant in a textual encoding.

	<tag>
	An unsigned 16-bit value used to identify a tag (descriptor).

	condition-code
	A conceptual flag which is set at run-time by the instructions listed in Appendix 2.

This flag need not exist in the target machine but is defined in order to simplify the definitions of certain instructions.

The values which this flag may take are: equal, less than, greater than, true, false
This setting only remains valid for the duration of the next instruction which must be one of the instructions listed in Appendix 3.

	Integer
	A general integer value, including subranges of integers.

	Labels
	I-code distinguishes two sorts of label.

1 – Simple Labels: have the property that they are only jumped to in one direction, that is, all references to an instance of a simple label are either all forward or all backward. This means that the same denotation may be used for many simple labels. For example, the following is valid:
Forward 1 >-----+
... |
Label 1 <-----+
...
Forward 1 >-----+
... |
Label 1 <-----+
...
Label 1 <-----+
... |
Backward 1 >-----+
All uses of a particular simple label must be in the same block as the definition of that label.
Simple labels are encoded as two-byte unsigned integers although code generators may assume that their values are within a fairly small range.
(1 .. 50 is common.)

2. General Labels - have none of the restrictions of simple labels. They are identified by tags and will be defined automatically if necessary when they are first used. General labels are referenced by the instructions:
Jump <tag>
Locate <tag>
Stack <tag>

	Real
	A floating-point value, either single or double precision.

	SOS
	The second-top item on the stack.

	Stack
	A first-in, last-out structure used to imply the operands required by various I-code instructions.
The first item which can be removed from the stack is called TOS and the item which can be removed after TOS is called SOS.

	Tags
	Tags are definitions of objects which are to be manipulated by the compiler. These definitions are created in a nested fashion; all tags defined in a block are deleted when the end of that block is reached.
On definition the machine-independent description of the object is converted into the appropriate machine-dependent description of the actual object to be used. Within this document the term 'tag' is used to describe both this descriptor and the unsigned sixteen-bit integer used as an index value to select it from the collection of all tags.
Apart from the resolution of forward references to procedures, tags are never altered.
When a copy of a tag value is pushed onto the stack the value becomes known as a descriptor. Descriptors may be modified.

	tag list
	A tag list is an ordered sequence of tag definitions used to describe either the parameters required by a procedure or the fields of a record. Components of a tag list are referred to either explicitly by their position in the list (see SELECT) or implicitly by sequence starting with the first to be specified (see Assign-Parameter).

	TOS
	The top item on the stack.

	list flag
	An internal flag which is set during the processing of explicit lists of tag definitions. Its only purpose is to prevent certain nested list structures.

[bookmark: _Toc465792144]Conventions

1. It is assumed that the reader is familiar with the IMP language and its terminology.

2. Whenever a pointer-variable is used in the context of a value the value of the data item pointed to will be used.

3. In general, diagnostic checks are implied rather than explicitly specified.

4. Items on the stack are intended to be 'rules for generating' values or references rather than the values or references themselves. For simplicity the descriptions of instructions will often refer to items as if they contain values or references.

5. By convention tag index values will often be replaced in examples by the identifier which is assumed to have been associated with the tag in question.

For example, given 'DEFINE 57,Fred......' then 'Stack 57' could be written 'Stack Fred'

6. The term 'error' is used to indicate a condition discovered by the code-generator which should terminate the compilation with a suitable error message.

[bookmark: _Toc465792145]Instructions

	Instruction:
	[bookmark: _Toc465792146]Absolute
	
	

	Effect:
	TOS is replaced by the absolute value of TOS.

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is not integer or real.

	Example:
	X = |Y+Z|
Stack X; Stack Y; Stack Z; Add; Absolute; Assign-Value

	Instruction:
	[bookmark: _Toc465792147]Access
	‘a’
	ACCESS

	Effect:
	TOS is used as the final index into SOS. TOS is removed from the stack leaving SOS as the new TOS.

	Notes:
	This instruction is used to process the final dimension of an N dimensional array. See Index for the previous dimensions.

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS does not describe an array.

	Example:
	A(j) = 0
Stack A; Stack j; Access; Byte 0; Assign-Value

	Instruction:
	[bookmark: _Toc465792148]Add
	‘+’
	ADD

	Effect:
	TOS and SOS are removed from the stack and a new item describing the sum of their values, SOS + TOS, is stacked.
Integer values will be converted into floating-point if one operand is integer and the other is real.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS (or SOS) is neither integer nor real type.

	Example:
	A = B + C
Stack A; Stack B; Stack C; Add; Assign-Value

	Instruction:
	[bookmark: _Toc465792149]Address
	
	

	Effect:
	TOS is replaced by the address of the object it describes.

	Notes:
	Commonly the type of an address will be indistinguishable from integer.

	Error:
	1. The stack is empty.
2. TOS does not have an address.

	Example:
	P = Addr(Q)
Stack P; Stack Q; Address; Assign-Value

	Instruction:
	[bookmark: _Toc465792150]Adjust
	
	

	Effect:
	The address of SOS is adjusted forwards or backwards by TOS items of the same size as SOS. This may be thought of as an array accessing instruction where SOS defines the zero'th element.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer.
3. SOS does not reference a data object.

	Example:
	N == N[X]
Stack N; Stack N; Stack X; Adjust; Assign-Reference

	Instruction:
	[bookmark: _Toc465792151]Alias <string>
	‘G’
	ALIAS

	Effect:
	<string> is noted as the current alias.

	Notes:
	See 'Begin' and 'Define'

	Error:
	None

	Example:
	external integer Thing alias "SS$THING"
Alias "SS$THING"; Define THING..........

	Instruction:
	[bookmark: _Toc465792152]Alt-Start
	
	

	Effect:
	This instruction marks the start of an alternative sequence of tag definitions.

	Notes:
	The instructions Alt-Start and Alt-Finish are brackets and must be properly nested.

	Error:
	1. List flag is not set.

	Example:
	recordformat F(integer X, (integer Y or real Z))
Define F.......
Start
 Define X.....
 Alt-Start
 Define Y.....
 Next-Alt
 Define Z.....
 Alt-Finish
Finish

	Instruction:
	[bookmark: _Toc465792153]Alt-Finish
	
	

	Effect:
	This instruction marks the end of a list of alternatives.

	Notes:
	Alt-Start and Alt-Finish must be properly nested.

	Error:
	1. List flag is not set.
2. There has been no unmatched Alt-Start instruction.

	Example:
	recordformat F(integer X, (integer Y or real Z))
Define F.......
Start
 Define X.....
 Alt-Start
 Define Y.....
 Next-Alt
 Define Z.....
 Alt-Finish
Finish

	Instruction:
	[bookmark: _Toc465792154]And
	‘&’
	AND

	Effect:
	TOS and SOS are removed from the stack and the logical AND of their values, SOS & TOS, is stacked.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.

	Example:
	A = B & C
Stack A; Stack B; Stack C; And; Assign-Value

	Instruction:
	[bookmark: _Toc465792155]Assign-Parameter
	‘p’
	ASSPAR

	Effect:
	TOS is passed as the next parameter to SOS. TOS is removed from the stack leaving SOS as the new TOS.

	Notes:
	Parameters must be specified in the order of the definition of the parameter list. If the parameter list is empty the occurrence of this instruction implies that the procedure has a variable number of parameters and so the parameters are to be passed in a C-like manner; this also requires that the procedure be called using the Variable-Call instruction.

	Error:
	1. The stack contains less than two items.
2. SOS is not a procedure descriptor.
3. TOS is unsuitable for this parameter.

	Example:
	J = Calc(1, K)
Stack J; Stack Calc
Byte 1; Assign-Parameter
Stack K; Assign-Parameter
Call

	Instruction:
	[bookmark: _Toc465792156]Assign-Value
	‘S’
	ASSVAL

	Effect:
	The value of TOS is assigned to the data item referenced by SOS. Both TOS and SOS are removed from the stack.

	Notes:
	Integer values will be converted to real if necessary.

	Error:
	1. The stack contains less than two items.

	Example:
	A = B+C
Stack A; Stack B; Stack C; Add; Assign-Value

	Instruction:
	[bookmark: _Toc465792157]Assign-Reference
	‘Z’
	ASSREF

	Effect:
	The pointer variable referenced by SOS is made to point at the variable referenced by TOS. Both TOS and SOS are removed from the stack.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. SOS is not a reference to a pointer variable.
3. TOS is not a reference to a variable.
4. The types of TOS and SOS are different.

	Example:
	P == Q
Stack P; Stack Q; Assign-Reference

	Instruction:
	[bookmark: _Toc465792158]Backward <label>
	‘B’
	REPEAT

	Effect:
	Control is to be transferred unconditionally to <label> at run-time.

	Notes:
	

	Error:
	1. <label> is currently undefined.

	Example:
	X=X+1 while A(X) = 0
Label 16
Stack A; Stack X; Access
Byte 0; Compare-Values; BNE 17
Stack X; Stack X; Byte 1; Add; Assign-Value
Backward 16
Label 17

	Instruction:
	[bookmark: _Toc465792159]Begin
	‘H’
	BEGIN

	Effect:
	An anonymous procedure is defined here and called once. A new block is entered.
If an alias has been noted (see Alias) that string will be used for identifying the block in diagnostic information leaving no alias noted.

	Notes:
	The sequence "Begin End" may always be replaced by a sequence of the form:
Define X......; Start; Finish; End; Stack X; Call
where X is a suitable unique tag.

	Error:
	None

	Example:
	begin; Newline; end
Begin
Stack Newline; Call
End

	Instruction:
	[bookmark: _Toc465792160]BEQ <label>
	‘=’
	JE

	Effect:
	When execution of the object program reaches this point, control is to be transferred to the given simple label if the condition code is set 'equal', otherwise control is to pass onto the next instruction.

	Notes:
	

	Error:
	1. The previous instruction did not set the condition-code.
2. <label> does not get defined by a LABEL instruction before the end of the current block.

	Example:
	IF x <> y THEN p = q;
Stack x; Stack y; Compare-Values; BEQ 12
Stack p; Stack q; Assign-Value
Label 12

	Instruction:
	[bookmark: _Toc465792161]BF <label>
	‘K’
	JZ

	Effect:
	When execution of the object program reaches this point, control is to be transferred to the given simple label if the condition code is set 'false', otherwise control is to pass onto the next instruction.

	Notes:
	<label> must refer to a simple label which must be defined somewhere after the BF instruction, that is BF can only specify a forward jump (although the object program may use a backward jump).

	Error:
	1. The previous instruction did not set the condition-code.
2. <label> does not get defined by a LABEL instruction before the end of the current block.

	Example:
	if B then P := Q;
Stack B; Test-Boolean; BF 12
Stack P; Stack Q; Assign-Value
Label 12

	Instruction:
	[bookmark: _Toc465792162]BGE <label>
	‘)’
	JGE

	Effect:
	When execution of the object program reaches this point control is to be transferred to the given simple label if the condition code is set 'greater than' or 'equal' , otherwise control is to pass onto the next instruction.

	Notes:
	<label> must refer to a simple label which must be defined somewhere after the BGE instruction, that is BGE can only specify a forward jump (although the object program may use a backward jump).

	Error:
	1. The previous instruction did not set the condition-code.
2. <label> does not get defined by a LABEL instruction before the end of the current block.

	Example:
	if X < Y then P = Q
Stack X; Stack Y; Compare-Values; BGE 12
Stack P; Stack Q; Assign-Value
Label 12

	Instruction:
	[bookmark: _Toc465792163]BGT <label>
	‘>’
	JG

	Effect:
	When execution of the object program reaches this point, control is to be transferred to the given simple label if the condition code is set 'greater than', otherwise control is to pass onto the next instruction.

	Notes:
	<label> must refer to a simple label which must be defined somewhere after the BGT instruction, that is BGT can only specify a forward jump (although the object program may use a backward jump).

	Error:
	1. The previous instruction did not set the condition-code.
2. <label> does not get defined by a LABEL instruction before the end of the current block.

	Example:
	if X <= Y then P = Q
Stack X; Stack Y; Compare-Values; BGT 12
Stack P; Stack Q; Assign-Value
Label 12

	Instruction:
	[bookmark: _Toc465792164]BLE <label>
	‘(‘
	JLE

	Effect:
	When execution of the object program reaches this point, control is to be transferred to the given simple label if the condition code is set 'less than' or 'equal', otherwise control is to pass onto the next instruction.

	Notes:
	<label> must refer to a simple label which must be defined somewhere after the BLE instruction, that is BLE can only specify a forward jump (although the object program may use a backward jump).

	Error:
	1. The previous instruction did not set the condition-code.
2. <label> does not get defined by a LABEL instruction before the end of the current block.

	Example:
	if X > Y then P = Q
Stack X; Stack Y; Compare-Values; BLE 12
Stack P; Stack Q; Assign-Value
Label 12

	Instruction:
	[bookmark: _Toc465792165]BLT <label>
	‘<’
	JL

	Effect:
	When execution of the object program reaches this point control is to be transferred to the given simple label if the condition code is not set 'equal', otherwise control is to pass onto the next instruction.

	Notes:
	<label> must refer to a simple label which must be defined somewhere after the BLT instruction, that is BLT can only specify a forward jump (although the object program may use a backward jump).

	Error:
	1. The previous instruction did not set the condition-code.
2. <label> does not get defined by a LABEL instruction before the end of the current block.

	Example:
	if X >= Y then P = Q
Stack X; Stack Y; Compare-Values; BLT 12
Stack P; Stack Q; Assign-Value
Label 12

	Instruction:
	[bookmark: _Toc465792166]BNE <label>
	‘#’
	JNE

	Effect:
	When execution of the object program reaches this point control is to be transferred to the given simple label if the condition code is not set 'equal', otherwise control is to pass onto the next instruction.

	Notes:
	<label> must refer to a simple label which must be defined somewhere after the BNE instruction, that is BNE can only specify a forward jump (although the object program may use a backward jump).

	Error:
	1. The previous instruction did not set the condition-code.
2. <label> does not get defined by a LABEL instruction before the end of the current block.

	Example:
	if X = Y then P = Q
Stack X; Stack Y; Compare-Values; BNE 12
Stack P; Stack Q; Assign-Value
Label 12

	Instruction:
	[bookmark: _Toc465792167]Bounds
	‘b’
	BOUNDS

	Effect:
	The value of TOS is noted as 'upper-bound' and the value of SOS is noted as 'lower-bound'. TOS and SOS are removed from the stack.

	Notes:
	This instruction is used as a preliminary to defining switch vectors and own, const and external arrays.

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.
4. The value of TOS is less than the value of SOS.

	Example:
	switch Sw(-3:3)
Byte 3; Negate
Byte 3; Bounds
Define Sw.......

	Instruction:
	[bookmark: _Toc465792168]BT <label>
	‘t’
	JNZ

	Effect:
	When execution of the object program reaches this point, control is to be transferred to the given simple label if the condition code is set 'true', otherwise control is to pass onto the next instruction.

	Notes:
	<label> must refer to a simple label which must be defined somewhere after the BT instruction, that is BT can only specify a forward jump (although the object program may use a backward jump).

	Error:
	1. The previous instruction did not set the condition-code.
2. <label> does not get defined by a LABEL instruction before the end of the current block.

	Example:
	if not B then P := Q
Stack B; Test-Boolean; BT 12
Stack P; Stack Q; Assign-Value
Label 12

	Instruction:
	[bookmark: _Toc465792169]Byte
	
	

	Effect:
	The unsigned byte value is stacked.

	Notes:
	This is a compact form for the Integer instruction when small values are to be stacked.

	Error:
	None

	Example:
	X = 200
Stack X; Byte 200; Assign-Value

	Instruction:
	[bookmark: _Toc465792170]Call
	[bookmark: _Toc465792171]‘E’
	[bookmark: _Toc465792172]CALL

	Effect:
	The procedure described by TOS is called. If TOS is a procedure which returns a result TOS is replaced by that result, otherwise TOS is removed from the stack.

	Notes:
	Predicates do not return a result but set the condition-code.

	Error:
	1. The stack is empty.
2. TOS does not describe a procedure.
3. There has not been the same number of parameters assigned using Assign-Parameter as is specified by the parameter list.

	Example:
	Newlines(4)
Stack Newlines; Byte 4; Assign-Parameter; Call

	Instruction:
	[bookmark: _Toc465792173]Compare-References
	
	

	Effect:
	The address of SOS is compared to the address of TOS and the condition-code is set appropriately. TOS and SOS are then removed from the stack.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not a reference for a data object.
3. SOS is not a reference for a data object.

	Example:
	integername M; integer N; if N == M then Newline
Stack N; Stack M; Compare-References; BNE 14
Stack Newline; Call
Label 14

	Instruction:
	[bookmark: _Toc465792174]Compare-Repeated-Values
	
	

	Effect:
	SOS is compared to TOS and the condition-code is set appropriately. SOS is then removed from the stack leaving TOS

	Notes:
	The types of both TOS and SOS must be one of the following:
 Integer, Real, String, Record, Set
 Integer values will be converted to real if one operand is real.

	Error:
	1. The stack contains less than two items.
2. The types of TOS and SOS are incompatible.

	Example:
	if 1 <= X <= 12 then X = 0
Byte 1; Stack X; Compare-Repeated-Values; BGT 15
Byte 12; Compare-Values; BGT 15
Stack X; Byte 0; Assign-Values
Label 15

	Instruction:
	[bookmark: _Toc465792175]Compare-Unsigned-Values
	
	

	Effect:
	SOS is compared against TOS with the values being interpreted as unsigned values. The condition-code is set accordingly and TOS and SOS are removed from the stack.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.

	Example:
	if U1 < U2 then U2 = 0
Stack U1; Stack U2; Compare-Unsigned-Values; Bge 31
Stack U2; Byte 0; Assign-Value
Label 31

	Instruction:
	[bookmark: _Toc465792176]Compare-Values
	
	

	Effect:
	SOS is compared to TOS and the condition-code is set appropriately. TOS and SOS are then removed from the stack.

	Notes:
	The types of both TOS and SOS must be one of the following:
 Integer, Real, String, Record, Set
 Integer values will be converted to real if necessary.
 The comparison is signed where integer values are concerned.

	Error:
	1. The stack contains less than two items.
2. The types of TOS and SOS are incompatible.

	Example:
	if S < "123" then X = 0
Stack S; String "123"; Compare-Values; BGE 13
Stack X; Byte 0; Assign-Values
Label 13

	Instruction:
	[bookmark: _Toc465792177]Complement
	
	

	Effect:
	TOS is replaced by the ones-complement of TOS.

	Notes:
	

	Error:
	1. The stack is empty
2. TOS is not an integer value.

	Example:
	P = \Q
Stack P; Stack Q; Complement; Assign-Value

	Instruction:
	[bookmark: _Toc465792178]Concat
	‘.’
	CONCAT

	Effect:
	TOS and SOS are removed from the stack and the string concatenation of their values, SOS.TOS, is stacked.

	Notes:
	

	Error:
	1. The stack contains less than two values.
2. TOS is not a string value.
3. SOS is not a string value.

	Example:
	S = T.U.V
Stack S; Stack T; Stack U; Concat; Stack V; Concat; Assign-Value

	Instruction:
	[bookmark: _Toc465792179]Control <n>
	
	CONTROL

	Effect:
	The value <n> is of the form p<<14+q. The value q is to be used by the p'th pass of the compiler in an implementation-specific manner.

	Notes:
	

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792180]Define <tag> [id] <a> <c>
	‘$’
	DEF

	Effect:
	A new tag value is created.

 <tag> defines the tag index which will be used to select the value.

 [id] specifies the actual identifier associated with the described object. It is a sequence of zero or more characters terminated by a comma. This identifier will be used for external linkage if necessary unless overridden by an Alias. [id] will also be used for run-time diagnostic information.

 <a> A two-byte value: <a> = T<<4+F where:
 T = 0 : void
 T = 1 : integer {qualified by }
 T = 2 : real {qualified by }
 T = 3 : string {maximum length }
 T = 4 : record {format }
 T = 5 : boolean
 T = 6 : set
 T = 7 : 8-bit-enumerated {format }
 T = 8 : 16-bit-enumerated {format }
 T = 9 : pointer
 T = 10 : char
 T = 11-15 : undefined {error}

 F = 0 : void
 F = 1 : simple {byte}
 F = 2 : indirect {bytename}
 F = 3 : general label
 F = 4 : recordformat
 F = 5 : undefined {error}
 F = 6 : switch
 F = 7 : routine
 F = 8 : function
 F = 9 : map
 F = 10 : predicate
 F = 11 : array {array}
 F = 12 : array indirect {arrayname}
 F = 13 : indirect array {namearray}
 F = 14 : indirect array indirect {namearrayname}
 F = 15 : undefined {error}

 If T is INTEGER takes the following meanings b=:

1, full range
2, range 0 .. 255
3, range -32768 .. 32767

If T is REAL takes the following meanings b=:

1, normal precision
4, double precision

If T is STRING gives the maximum length of the string.
 If T is RECORD gives the tag of the corresponding recordformat.
 If T is enumerated gives the tag of the dummy format used to identify the enumerated value identifiers.

<c> is a two-byte value: U<<5+I<<4+S<<3+X where:
U = 1 check the object for unassigned, U = 0 otherwise
I = 1 if the object is an indirect object, I = 0 otherwise
S = 1 if this is a spec, S = 0 otherwise
X = 0 :: automatic (stack) allocation
X = 1 :: own
X = 2 :: constant
X = 3 :: external
X = 4 :: system
X = 5 :: dynamic
X = 6 :: primitive
X = 7 :: permanent

An indirect object (I=1) differs from F=2 in that F=2 implies that the actual object created will be a pointer and will be dereferenced whenever used unless explicit action is taken (e.g. use of Assign-Reference).
If I=1 a pointer will be created (usually as an integer) and will be treated as an integer (or address) with no automatic dereferencing taking place.

	Notes:
	The tag values within a block should be dense and preferably consecutive. All tag values within a block must have values greater than the maximum tag value yet defined within the enclosing block.
Tag definitions remain valid until the end of the enclosing block.
The tag values used within a recordformat definition must all be zero; the fields of a record are selected by their position in the format, numbered starting from one.

x = illegal combination

	
	F

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	T
	0
	
	X
	
	
	X
	X
	
	
	X
	
	
	X
	
	X
	

	
	1
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	
	2
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	
	3
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	
	4
	X
	
	
	X
	
	X
	X
	X
	
	
	X
	
	
	
	

	
	5
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	
	6
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	
	7
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	
	8
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	
	9
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	
	10
	X
	
	
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792181]Define-Range <tag>
	
	

	Effect:
	The given tag is defined to be the integer range defined by lower-bound and upper-bound.

	Notes:
	

	Error:
	1. The two bounds have not been defined.

	Example:
	Var x:1..10; x := i;
Byte 1; Byte 10; Bounds; Define-Range 99.......; Define x........
…
Stack x; Stack i; Test-Range 99; Assign-Value

	Instruction:
	[bookmark: _Toc465792182]Diagnose <n>
	
	DIAG

	Effect:
	The value <n> is of the form p<<14+q. The value q is to be used by the p'th pass of the compiler in an implementation-specific manner.

	Notes:
	

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792183]Dimension <n><d>
	‘d’ (‘g’ in 386)
	DIM

	Effect:
	<d> pairs of integer values on the stack are used to define the bounds of the last <n> arrays to have been defined. Code is generated, if necessary, to allocate the arrays and the definitions are adjusted to reference the appropriate storage.

	Notes:
	The pairs of values are stacked in order of the declaration, that is, first dimension first.
 In each pair of values the lower bound is stacked before the upper bound.
 The last <n> tags must have had consecutive index values.

	Error:
	1. The stack contains less than 2*<d> items.
2. The last <n> definitions were not all arrays.

	Example:
	integerarray A, B, C(1:2, Low:4)
Define A......
Define B......
Define C......
Byte 1; Byte 2
Stack Low; Byte 4
Dimension 3 2

	Instruction:
	[bookmark: _Toc465792184]Div
	‘Q’
	DIVIDE

	Effect:
	TOS and SOS are removed from the stack and the real quotient, SOS / TOS, is stacked. Integer values will be converted into floating-point before the division is attempted.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is neither integer nor real type.
3. SOS is neither integer nor real type.

	Example:
	A = B / C
Stack A; Stack B; Stack C; Div; Assign-Value

	Instruction:
	[bookmark: _Toc465792185]Duplicate
	
	

	Effect:
	A copy of TOS is pushed onto the stack.

	Notes:
	After this instruction TOS and SOS are identical.

	Error:
	1. The stack is empty.

	Example:
	int A[10],x; A[x]++;
Stack A; Stack x; Adjust
 Duplicate
 Byte 1; Add; Assign-Value

	Instruction:
	[bookmark: _Toc465792186]End
	‘;’
	END

	Effect:
	This instruction marks the end of a block. All tags defined within the block are deleted (made undefined) and become available for re-use. If the block is a routine this instruction also implies a 'return' instruction.

	Notes:
	

	Error:
	1. The stack is not empty.

	Example:
	

	Instruction:
	[bookmark: _Toc465792187]End-Of-File
	
	

	Effect:
	The compilation is to be abandoned with an error message.

	Notes:
	This instruction is required at the end of an I-code file even though in correct programs it will never be executed. It is there to provide a check on the operation of the code-generator and to permit the code-generator to use a one-character look-ahead.

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792188]Eval
	
	

	Effect:
	The value described by TOS is protected against being altered as the side-effect of alterations to any variables which make up that value.

	Notes:
	Commonly this instruction loads the value of TOS into a machine register.

	Error:
	1. The stack is empty.

	Example:
	a = b + c++
Stack a; Stack b; Stack c; Add; Eval
Stack c; Stack c; Byte 1; Add; Assign-Value
Assign-Value

	Instruction:
	[bookmark: _Toc465792189]Eval-Addr
	
	

	Effect:
	The address of the object described by TOS is protected against alteration.

	Notes:
	Commonly this instruction loads the address of the object referred to be TOS into a machine register.

	Error:
	1. The stack is empty.
2. TOS is not a reference.

	Example:
	int *p; *p++ = 10;
Stack p; Eval-Addr; Stack p; Duplicate
Byte 1; Adjust; Assign-Value
Byte 10; Assign-Value

	Instruction:
	[bookmark: _Toc465792190]Finish
	
	FINISH

	Effect:
	This instruction marks the end of a list of tag definitions corresponding to either a parameter list or a recordformat definition. List flag is cleared and the tag list is processed in any ways necessary.
If the tag list is associated with a procedure spec or a recordformat this instruction also marks the 'end' of the associated 'block'.

	Notes:
	The list of definitions may be empty.

	Error:
	1. List flag is clear.
2. There has been an unmatched Alt-Start.

	Example:
	routine Test(integer j,k)
Define Test.........
Start
Define j......
Define k......
Finish

recordformat F(integer P or real R)
Define F..........
Start
Define P......
Next-Alt
Define R......
Finish

	Instruction:
	[bookmark: _Toc465792191]Float
	
	

	Effect:
	The value described by TOS is converted into a real value if necessary.

	Notes:
	If TOS is already a real this operation is a no-op.

	Error:
	1. The stack is empty.
2. TOS is neither integer nor real.

	Example:
	

	Instruction:
	[bookmark: _Toc465792192]For <label>
	‘f’
	FOR

	Effect:
	This instruction marks the start of a FOR statement.
<label> is the label to be jumped to on repeat and <label+1> is the label to be jumped to on an exit.

	Notes:
	The corresponding repeat will be the next instruction of the form:
Backward <label>.
<label+1> should only be defined explicitly if the loop contains an explicit exit instruction.

	Error:
	1. The stack contains less than four items.
2. The top three items on the stack are not integer values.
3. The fourth item on the stack is not a reference to an integer variable.
4. No Backward <label> instruction occurs before the end of the current block.

	Example:
	A(j) = 0 for J = 1, 1, N
Stack J; Byte 1; Byte 1; Stack N
For 40
Stack A; Stack J; Access
Byte 0; Assign-Value
Backward 40

	Instruction:
	[bookmark: _Toc465792193]Forward <label>
	‘F’
	GOTO

	Effect:
	Control is transferred forward unconditionally to <label>

	Notes:
	

	Error:
	1. <label> does not get defined by a Label instruction before the end of the current block.

	Example:
	if X=0 then Y=1 else Y=2
Stack X; Byte 0; Compare-Values; BNE 20
Stack Y; Byte 1; Assign-Value
Forward 21
Label 20
Stack Y; Byte 2; Assign-Value
Label 21

	Instruction:
	[bookmark: _Toc465792194]Include <string>
	‘q’
	

	Effect:
	This instruction marks the start (or end) of the code generated from source contained in an include file.
 If <string> is null it marks the end of an include file.

	Notes:
	

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792195]Index
	‘i’
	INDEX

	Effect:
	TOS is used as the next index into SOS. TOS is removed from the stack leaving SOS as the new TOS.

	Notes:
	This instruction is used to process the first N-1 dimensions of an N dimensional array. See Access for the final dimension.

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an array descriptor.

	Example:
	

	Instruction:
	[bookmark: _Toc465792196]Init <n>
	‘A’
	INIT

	Effect:
	<n> copies of the init-value are added to the list of values associated with the init-variable. The init-value is either the default value (unassigned) if the stack is empty, the value of TOS (possibly converted to real) if TOS is a constant, or the address of TOS if TOS is a variable. The init-variable is the last static object to have been defined using Define.

	Notes:
	

	Error:
	1. TOS, if it exists, is not of the same type as the init-variable.

	Example:
	ownintegerarray A(1:5) = 1(3), 4, 99
Byte 1; Byte 5; Bounds
Define A.......
Byte 1; Init 3
Byte 4; Init 1
Byte 99; Init 1

owninteger P = -1
Byte 1; Negate
Define P......
Init 1

	Instruction:
	[bookmark: _Toc465792197]Init-Type <n>
	
	

	Effect:
	The type of the init-variable (see Init) is <n> for the purposes of subsequent 'Init' instructions. <n> encodes the type as in the type field of 'Define'.

	Notes:
	

	Error:
	1. <n> does not correspond to a valid type.

	Example:
	

	Instruction:
	[bookmark: _Toc465792198]Int
	
	

	Effect:
	TOS is replaced by Int(TOS), that is, the nearest integer to the value of TOS. The type of the new TOS is integer.

	Notes:
	See the IMP Library Definition for a discussion of the details of the INT function.

	Error:
	1. The stack is empty.
2. TOS is neither integer nor real.

	Example:
	I = Int(R+0.3)
Stack I; Stack R; Real <0.3>; Add
Int
Assign-Value

	Instruction:
	[bookmark: _Toc465792199]Intpt
	
	

	Effect:
	TOS is replaced by Intpt(TOS), that is, the integer part of TOS. The type of the new TOS is integer.

	Notes:
	See the IMP Library Definition for a discussion of the details of the INTPT function.

	Error:
	1. The stack is empty.
2. TOS is neither integer nor real value.

	Example:
	I = Intpt(R-S)
Stack I; Stack R; Stack S; Sub
Intpt
Assign-Value

	Instruction:
	[bookmark: _Toc465792200]Integer <integer>
	‘N’
	PUSHI

	Effect:
	The integer value <integer> is pushed into the stack and becomes the new TOS.

	Notes:
	The instruction 'Byte' is an abbreviation for this instruction when the value is in the range 0..255.

	Error:
	

	Example:
	X = 2500
Stack X; Integer 2500; Assign-value

	Instruction:
	[bookmark: _Toc465792201]Integer-Power
	‘X’
	IEXP

	Effect:
	TOS and SOS are removed from the stack and the value of SOS raised to the integer power of the value of TOS, SOS^^TOS, is stacked.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.

	Example:
	J = K^^3
Stack J; Stack K; Byte 3; Integer-Power
Assign-Value

	Instruction:
	[bookmark: _Toc465792202]Jump <tag>
	‘J’
	

	Effect:
	Control is transferred unconditionally to the general label <tag>.

	Notes:
	This control transfer may pass over block boundaries.

	Error:
	1. <tag> is defined but is not a general label.
2. <tag> is undefined but does not become defined in a suitable block before the end of the program. A suitable block is one which is either the same block as the Jump instruction or is a block which properly contains that instruction.

	Example:
	X = 1
Pos: Y = Y+1
->Pos if Y < 0
Stack X; Byte 1; Assign-Value
Locate Pos
Stack Y; Stack Y; Byte 1; Add; Assign-Value
Stack Y; Byte 0; Compare-Values
Bge 18
Jump Pos
Label 18

	Instruction:
	[bookmark: _Toc465792203]Label <label>
	‘L’
	LABEL

	Effect:
	The simple label <label> is defined to be here. If outstanding references to the label exist they are satisfied and the label ceases to be defined. This ensures that all references to this label are in the same direction.

	Notes:
	

	Error:
	

	Example:
	S = "**" if S = ""
Stack S; String "**"; Compare-Values
Bne 26
Stack S; String ""; Assign-Value
Label 26

	Instruction:
	[bookmark: _Toc465792204]Lang <flags>
	‘l’
	LANG

	Effect:
	The 16-bit parameter <flags>sets the language flags.

	Notes:
	

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792205]Left
	‘[‘
	LSH

	Effect:
	TOS and SOS are removed from the stack and the value of SOS logically shifted left by the value of TOS, SOS << TOS, is stacked.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.
4. The value of TOS is negative or greater than or equal to the number of bits in an integer.

	Example:
	A = B << C
Stack A; Stack B; Stack C; Left; Assign-Value

	Instruction:
	[bookmark: _Toc465792206]Line <n>
	‘O’
	LINE

	Effect:
	The current position is associated with the start of the code for source line <n>.

	Notes:
	

	Error:
	1. The stack is not empty.

	Example:
	X = 1
Y = 3; Z = 4
Line 1; Stack X; Byte 1; Assign-Value
Line 2; Stack Y; Byte 3; Assign-Value
Line 2; Stack Z; Byte 4; Assign-Value

	Instruction:
	[bookmark: _Toc465792207]Localise
	
	

	Effect:
	The area pointed at by <a> is copied into the local stack frame and <a> is updated to point at the new area.

	Notes:
	If the first byte of the new area is at X, <a> is updated to the address X-<c>.

	Error:
	1. The stack contains less than three items.
2. <a> is not a reference.
3. and <c> are not integer values.

	Example:
	

	Instruction:
	[bookmark: _Toc465792208]Locate <tag>
	‘:’
	LOCATE

	Effect:
	The tag is defined as a general label if necessary and made to reference the current position in the program.

	Notes:
	

	Error:
	1. <tag> is already defined.

	Example:
	X = 1
Pos: Y = Y+1
->Pos if Y < 0
Stack X; Byte 1; Assign-Value
Locate Pos
Stack Y; Stack Y; Byte 1; Add; Assign-Value
Stack Y; Byte 0; Compare-Values
Bge 18
Jump Pos
Label 18

	Instruction:
	[bookmark: _Toc465792209]Mod
	
	MOD

	Effect:
	TOS and SOS are removed from the stack and are replaced by the value 'SOS MOD TOS' where MOD is as defined in section 6.7.2.2 of the Pascal standard BS 6192:1982.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.

	Example:
	m := p MOD q;
Stack m; Stack p; Stack q; Mod
Assign-Value

	Instruction:
	[bookmark: _Toc465792210]Monitor
	‘m’
	MONITOR

	Effect:
	Plant code to execute the specific monitor action

	Notes:
	

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792211]Mul
	‘*’
	MUL

	Effect:
	TOS and SOS are removed from the stack and the value of SOS multiplied by the value of TOS, SOS * TOS, is stacked. Integer values will be converted into floating-point if one operand is integer and the other is real.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is neither integer nor real type.
3. SOS is neither integer nor real type.

	Example:
	A = B * C
Stack A; Stack B; Stack C; Mul; Assign-Value

	Instruction:
	[bookmark: _Toc465792212]Negate
	‘U’
	NEGATE

	Effect:
	The value in TOS is negated and left as TOS.

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is not an integer or real value.

	Example:
	A = -B
Stack A; Stack B
Negate; Assign-Value

	Instruction:
	[bookmark: _Toc465792213]Next-Alt
	
	

	Effect:
	This instruction marks the end of one alternative and the start of the next

	Notes:
	

	Error:
	1. List flag is not set.

	Example:
	recordformat F(integer X, (integer Y or real Z))
Define F.......
Start
Define X.....
Alt-Start
Define Y.....
Next-Alt
Define Z.....
Alt-Finish
Finish

	Instruction:
	[bookmark: _Toc465792214]Not
	‘\’
	NOT

	Effect:
	The value in TOS is logically inverted and left on TOS

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is not an integer or real value.

	Example:
	

	Instruction:
	[bookmark: _Toc465792215]Null-Set
	
	

	Effect:
	A descriptor of a null set is stacked.

	Notes:
	

	Error:
	

	Example:
	SetA := [];
Stack SetA; Null-Set; Assign-Value

	Instruction:
	[bookmark: _Toc465792216]On <n> <label>
	‘o’
	ON

	Effect:
	This instruction marks the start of an on event block.
<n> is a sixteen-bit set of flags where each trapped event is represented by a 1-bit, with the least-significant bit corresponding to event 0 and the most-significant bit event 15.

	Notes:
	<label> is the simple label which marks the end of the event block.

	Error:
	1. <n> does not have any bits set.
2. <label> is not defined before the end of the current block

	Example:
	on 9 start; return; finish
On 512 17
Return
Label 17

	Instruction:
	[bookmark: _Toc465792217]Or
	‘!’
	OR

	Effect:
	TOS and SOS are removed from the stack and the value of SOS logically ORed with the value of TOS, SOS ! TOS, is stacked.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.

	Example:
	A = B ! C
 Stack A; Stack B; Stack C; Or; Assign-Value

	Instruction:
	[bookmark: _Toc465792218]Pop
	
	

	Effect:
	TOS is removed from the stack.

	Notes:
	

	Error:
	1. The stack is empty.

	Example:
	X := Y := 0
Stack X; Duplicate
Stack Y; Duplicate
Byte 0; Assign-Value; Assign-Value
Pop

	Instruction:
	[bookmark: _Toc465792219]Quotient
	‘/’
	QUOT

	Effect:
	TOS and SOS are removed from the stack and the value of SOS integer-divided by the value of TOS, SOS // TOS, is stacked.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer.
3. SOS is not an integer.

	Example:
	A = B // C
Stack A; Stack B; Stack C; Quotient; Assign-Value

	Instruction:
	[bookmark: _Toc465792220]Real <real>
	‘D’
	PUSHR

	Effect:
	The real constant <real> is pushed onto the stack.

	Notes:
	

	Error:
	

	Example:
	Z = -1.23
Stack Z; Real <1.23>; Negate
Assign-Value

	Instruction:
	[bookmark: _Toc465792221]Real-Power
	
	

	Effect:
	TOS and SOS are removed from the stack and the value of SOS raised to the integer power TOS, SOS^TOS, is stacked. The type of this value is real.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. SOS is neither an integer nor a real value.
3. TOS is not an integer value.

	Example:
	R = 12^X
Stack R; Byte 12; Stack X; Real-Power
Assign-Value

	Instruction:
	[bookmark: _Toc465792222]Reference <n>
	
	

	Effect:
	TOS is replaced by a reference to an object of type <n> at the address given by the original TOS.
The value of <n> is encoded in the same way as the type information, <a>, in the Define instruction.

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is not an integer (address) value.

	Example:
	P = Integer(Q)
Stack P; Stack Q; Reference 1
Assign-Value

	Instruction:
	[bookmark: _Toc465792223]Remainder
	
	

	Effect:
	TOS and SOS are removed from the stack and are replaced by the value REM(SOS, TOS). The exact definition of REM is given in the IMP Library Definition.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.

	Example:
	Digit = Rem(N, 10)
Stack Digit; Stack N; Byte 10; Remainder
Assign-Value

	Instruction:
	[bookmark: _Toc465792224]Resolve <flag>
	‘r’
	RESOLVE

	Effect:
	

	Notes:
	

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792225]Return
	‘R’
	RETURN

	Effect:
	A return sequence is generated to return control from the current block.

	Notes:
	

	Error:
	

	Example:
	return if X # 0
Stack X; Byte 0; Compare-Values
Beq 19
Return
Label 19

	Instruction:
	[bookmark: _Toc465792226]Return-False
	‘K’
	FALSE

	Effect:
	The current block returns false.

	Notes:
	This is usually accomplished by setting the true condition-code appropriately.

	Error:
	1. The current block is not a predicate.

	Example:
	false if Flag = 0
Stack Flag; Byte 0; Compare-values
Bne 42
Return-False
Label 42

	Instruction:
	[bookmark: _Toc465792227]Return-Reference
	‘M’
	MAP

	Effect:
	The address of the object referenced by TOS is returned as the result of the map.

	Notes:
	

	Error:
	1. The current block is not a map.
2. The stack is empty.
3. TOS is not a reference to a data object.

	Example:
	result == X
Stack X; Return-Reference

	Instruction:
	[bookmark: _Toc465792228]Return-True
	‘T’
	TRUE

	Effect:
	The current block returns true.

	Notes:
	This is usually accomplished by setting the true condition-code appropriately.

	Error:
	1. The current block is not a predicate.

	Example:
	true if Flag = 0
Stack Flag; Byte 0; Compare-values
Bne 42
Return-True
Label 42

	Instruction:
	[bookmark: _Toc465792229]Return-Value
	‘V’
	RESULT

	Effect:
	TOS is removed from the stack and returned as the result of the function defined by the current block.

	Notes:
	Integer values will be converted to real if necessary.

	Error:
	1. The stack is empty.
2. The current block is not a function.

	Example:
	result = "Hello"
String "Hello"
Return-Value

	Instruction:
	[bookmark: _Toc465792230]Right
	‘]’
	RSH

	Effect:
	TOS and SOS are removed from the stack and the value of SOS logically left shifted by the value of TOS, SOS >> TOS, is stacked.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.
4. The value of TOS is negative or greater than or equal to the number of bits in an integer.

	Example:
	A = B >> C
Stack A; Stack B; Stack C; Right; Assign-Value

	Instruction:
	[bookmark: _Toc465792231]Round
	
	

	Effect:
	TOS is replaced by the value ROUND(TOS) where ROUND is as defined in section 6.6.6.3 of the Pascal standard BS 6192:1982, with the extension that ROUND returns the value of its parameter if that value is already an integer.

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is neither integer nor real.

	Example:
	i := Round(r+0.1);
Stack i; Stack r; Real <0.1>; Add
Round; Assign-Value

	Instruction:
	[bookmark: _Toc465792232]Select <n>
	‘n’
	SELECT

	Effect:
	TOS is replaced by the <n>'th item in the format of TOS. Fields within records are numbered from 1; alternative markers have no effect on the numbering.

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is not a record.
3. The format of TOS does not contain at least <n> items.

	Example:
	recordformat F(integer P or record (F)name Q)
record (F) R
R_Q_P = 0
Stack R; Select 2; Select 1; Byte 0; Assign-Value

	Instruction:
	[bookmark: _Toc465792233]Set-Format <tag>
	‘^’
	

	Effect:
	TOS is converted to be a record of format <tag>. This never involves any instructions being executed in the object program.

	Notes:
	

	Error:
	1. <tag> is not a recordformat.
2. The stack is empty.
3. TOS is not a reference to a variable.

	Example:
	

	Instruction:
	[bookmark: _Toc465792234]Signal <n>
	‘e’
	EVENT

	Effect:
	The event <n>,SOS,TOS is signalled.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.

	Example:
	signal 1,2,3
Byte 3; Byte 2; Signal 1

	Instruction:
	[bookmark: _Toc465792235]Size-Of
	
	

	Effect:
	TOS is replaced by the integer value giving the number of bytes in the object referenced by the original TOS.

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is not a reference to a data object.

	Example:
	P = Sizeof(R)
Stack P; Stack R; Size-Of; Assign-Value

	Instruction:
	[bookmark: _Toc465792236]Stack <tag>
	‘@’
	PUSH

	Effect:
	The tag with index value <tag> is pushed onto the stack.

	Notes:
	

	Error:
	1. <tag> has not been defined.

	Example:
	A = B
Stack A; Stack B; Assign-Value

	Instruction:
	[bookmark: _Toc465792237]Stack-Condition
	
	

	Effect:
	The values of SOS and TOS are compared as in Compare-Values but instead of the condition-code being set, TOS and SOS are replaced by the constant 1 (true) or 0 (false) depending on whether the condition specified by is true or false. The values of are the encodings of the instructions:
 BEQ, BNE, BLT, BLE, BGT, BGE, BT, BF

	Notes:
	The comparison is signed when integers are concerned.

	Error:
	1. The stack contains less than two items.
2. TOS and SOS cannot be compared.
3. is not a valid condition.

	Example:
	B := (X=Y);
Stack B
Stack X; Stack Y; Stack-Condition BEQ
Assign-Value

	Instruction:
	[bookmark: _Toc465792238]Stack-In
	
	

	Effect:
	TOS and SOS are removed from the stack and are replaced by an integer value which is 1 (true) if SOS is IN the set TOS or 0 (false) if SOS is not IN the set TOS.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not a set.
3. SOS is not an integer.

	Example:
	B := (x IN s);
Stack B
Stack x; Stack s; Stack-In
Assign-Value

	Instruction:
	[bookmark: _Toc465792239]Stack-Unsigned-Condition
	
	

	Effect:
	The values of SOS and TOS are compared as in Compare-Unsigned-Values but instead of the condition-code being set TOS and SOS are replaced by the constant 1 (true) or 0 (false) depending on whether the condition specified by is true or false. The values of are the encodings of the instructions:
 BEQ, BNE, BLT, BLE, BGT, BGE, BT, BF

	Notes:
	The comparison is unsigned when integers are concerned.

	Error:
	1. The stack contains less than two items.
2. TOS and SOS cannot be compared.
3. is not a valid condition.

	Example:
	B := (Ux < Uy);
Stack B
Stack Ux; Stack Uy; Stack-Unsigned-Condition BLT
Assign-Value

	Instruction:
	[bookmark: _Toc465792240]Start
	
	START

	Effect:
	This instruction marks the start of a list of tags defining the parameters to a procedure or the components of a record. List flag is set.

	Notes:
	This instruction must always follow the definition of a procedure or recordformat tag. There must be a matching 'Finish' before the end of the block.

	Error:
	1. List flag is set.
2. The last instruction was not a 'Define' which introduced a procedure or recordformat.

	Example:
	routine Newline;; end
Define Newline.........
Start
Finish
......
End

	Instruction:
	[bookmark: _Toc465792241]Stop
	‘s’
	

	Effect:
	Generates code to stop the target program (not the compiler).

	Notes:
	

	Error:
	

	Example:
	

	Instruction:
	[bookmark: _Toc465792242]String <string>
	‘’’
	PUSHS

	Effect:
	The string constant <string> is pushed onto the stack.

	Notes:
	

	Error:
	

	Example:
	S = "Hello"
Stack S; String "Hello"; Assign-Value

	Instruction:
	[bookmark: _Toc465792243]Sub
	‘-‘
	SUB

	Effect:
	TOS and SOS are removed from the stack and the value of SOS minus the value of TOS, SOS - TOS, is stacked.
Integer values will be converted into floating-point if one operand is integer and the other is real.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is neither integer nor real type.
3. SOS is neither integer nor real type.

	Example:
	A = B - C
Stack A; Stack B; Stack C; Sub; Assign-Value

	Instruction:
	[bookmark: _Toc465792244]SubA
	‘q‘ - used for INCLUDE
	SUB

	Effect:
	Similar to Sub except generated code is for addresses

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is neither integer nor real type.
3. SOS is neither integer nor real type.

	Example:
	

	Instruction:
	[bookmark: _Toc465792245]Switch-Jump <tag>
	‘W’
	SJUMP

	Effect:
	TOS is used to index into the switch vector and control is then transferred to the selected label. TOS is removed from the stack.

	Notes:
	

	Error:
	1. The stack is empty.
2. <tag> is not a switch.

	Example:
	->Sw(J)
Stack J; Switch-Jump Sw

	Instruction:
	[bookmark: _Toc465792246]Switch-Label <tag>
	‘_’
	SLABEL

	Effect:
	The label selected from the switch vector is defined to be here. TOS is removed from the stack.

	Notes:
	

	Error:
	1. The stack is empty.
2. <tag> is not a switch in the current block.
3. TOS is not an integer value within the bounds of <tag>.

	Example:
	Sw(12):
Byte 12; Switch-Label Sw

	Instruction:
	[bookmark: _Toc465792247]Swop
	
	

	Effect:
	The top two items on the stack are reversed. That is, TOS becomes the new SOS, and SOS becomes the new TOS.

	Notes:
	

	Error:
	1. The stack contains less than two items.

	Example:
	X = Y
Stack Y; Stack X; Swop; Assign-Value

	Instruction:
	[bookmark: _Toc465792248]Test-Boolean
	
	

	Effect:
	The condition-code is set to 'false' or 'true' depending on whether TOS is 0 (false) or 1 (true). TOS is removed from the stack.

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is not a boolean value.

	Example:
	If B Then DoIt;
Stack B; Test-Boolean; BF 43
Stack DoIt; Call
Label 43

	Instruction:
	[bookmark: _Toc465792249]Test-In
	
	

	Effect:
	The value of SOS is tested for inclusion within the set TOS. The condition-code is set 'true' or 'false' accordingly. Both TOS and SOS are removed from the stack.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. SOS is not an integer value.
3. TOS is not a set value.

	Example:
	If NOT x IN s Then x := 0;
Stack x; Stack s; Test-In
Bt 31
Stack x; Byte 0; Assign-Value
Label 31

	Instruction:
	[bookmark: _Toc465792250]Test-Nil
	‘g’ (DIM in 386)
	

	Effect:
	A check is performed to ensure that TOS is not NIL. An event is signalled if it is, or if TOS points to a heap item which has been returned to the heap (disposed).

	Notes:
	This test can also perform an unassigned variable check.

	Error:
	1. The stack is empty.
2. TOS is not a pointer variable.

	Example:
	P^ := 0;
Stack P; Test-Nil
Reference <1>
Byte 0; Assign-Value

	Instruction:
	[bookmark: _Toc465792251]Test-Range <tag>
	
	

	Effect:
	The value of TOS is checked to be within the range defined by the tag. If the value is not in the range an event is signalled.

	Notes:
	The event is signalled at run-time.

	Error:
	1. The stack is empty.
2. TOS is not an integer value.
3. <tag> does not define a range.

	Example:
	Byteval := Bigval;
Stack Byteval
Stack Bigval; Test-Range Byterange
Assign-Value

	Instruction:
	[bookmark: _Toc465792252]Trunc
	
	

	Effect:
	TOS is replaced by the value TRUNC(TOS) where TRUNC is as defined in section 6.6.6.3 of the Pascal standard BS 6192:1982, with the extension that Trunc returns the value of its parameter if that value is already an integer.

	Notes:
	

	Error:
	1. The stack is empty.
2. TOS is neither integer nor real.

	Example:
	i := Trunc(r+0.1);
Stack i; Stack r; Real <0.1>; Add
Trunc; Assign-Value

	Instruction:
	[bookmark: _Toc465792253]Variable-Call
	
	

	Effect:
	The procedure described by TOS is called. This differs from 'Call' in that the procedure may have a variable number of parameters.

	Notes:
	This instruction is used to call 'C' procedures and its definition is as woolly as the definition of that language.

	Error:
	1. The stack is empty.
2. TOS is not a procedure descriptor.

	Example:
	try(1); try(1,2);
Stack try; Byte 1; Assign-Parameter; Variable-Call
Stack try; Byte 1; Assign-Parameter; Byte 2; Assign-Parameter; Variable-Call

	Instruction:
	[bookmark: _Toc465792254]Xor
	‘%’
	XOR

	Effect:
	TOS and SOS are removed from the stack and the value of SOS exclusively ORed with the value of TOS, SOS !! TOS, is stacked.

	Notes:
	

	Error:
	1. The stack contains less than two items.
2. TOS is not an integer value.
3. SOS is not an integer value.

	Example:
	A = B !! C
Stack A; Stack B; Stack C; Xor; Assign-Value

[bookmark: _Toc465792255]Encoding

[bookmark: _Toc465792256]Instructions which set the condition code

Call {predicate}
Compare-Values
Compare-Unsigned-Values
Compare-References
Compare-Repeated-Values
Test-Boolean
Test-In

[bookmark: _Toc465792257]Instructions which test the condition code

BEQ
BF
BGE
BGT
BLE
BLT
BNE
BT
Page 21 of 45

