begin library A0, A1, A5, A12, A15; comment Haavie INTEGRATOR. ALGORITHM 257, Robert N. Kubik, CACM 8 (1965) 381; real a, b, eps, y, answer, two pi, pi, half pi; integer m max; real procedure haaviequadrature(x, a, b, eps, integrand, m); value a, b, eps, m; integer m; real integrand, x, a, b, eps; comment This algorithm performs numerical integration of definite integrals using an equidistant sampling of the function and repeated halving of the sampling interval. Each halving allows the calculation of a trapezium and a tangent formula on a finer grid, but also the calculation of several higher order formulas which are defined implicitly. The two families of approximate solutions will normally bracket the value of the integral and from these convergence is tested on each of the several orders of approximation. The algorithm is based on a private communication from F. Haavie of the Institutt for Atom-energi Kjeller Research Establishment, Norway. A Fortran version is in use on the Philco-2000. ...; begin real h, endpts, sumt, sumu, d; integer i, j, k, n; real array t, u, tprev, uprev[1:m]; x := a; endpts := integrand; x := b; endpts := 0.5 × (integrand + endpts); sumt := 0.0; i := n := 1; h := b - a; ESTIMATE: t[1] := h × (endpts + sumt); sumu := 0.0; comment t[1] = h×(0.5×f[0]+f[1]+f[2]+...+0.5×f[2 ^ (i-1)]); x := a - h/2.0; for j := 1 step 1 until n do begin y := y + h; sumu := sumu + integrand; end u[1] := h × sumu; k := 1; comment u[1] = h×(f[1/2]+f[3/2]+...f[(2 ^ i-1)/2], k corresponds to approximate solution with truncation error term of order 2k; TEST: if abs(t[k]-u[k]) <= eps or k = m then begin haaviequadrature := 0.5 × (t[k] + u[k]); goto EXIT end if k ± i then begin d := 2 ^ (2×k); t[k+1] := (d × t[k] - tprev[k]) / (d - 1.0); tprev[k] := t[k]; u[k+1] := (d × u[k] - uprev[k]) / (d - 1.0); uprev[k] := u[k]; comment This implicit formulation of the higher-order integration formulas is given in [ROMBERG, W. ...]; k := k + 1; goto TEST end h := h / 2.0; sumt := sumt + sumu; tprev[k] := t[k]; uprev[k] := u[k]; i := i + 1; n := 2 × n; goto ESTIMATE; EXIT: end haaviequadrature; comment Following is a driver program to test haaviequadrature; writetext(30, {This$is$the$Haavie$quadrature$program.{cc}}); two pi := 6.283185307179588; pi := two pi / 2; half pi := pi / 2; open(30); m max := 20; writetext(30, {{c}mmax$=}); write(30, format({nddc}), m max); eps := 0.0000000001; writetext(30, {{c}epsilon$=}); write(30, format({-d.dddddddddddc}), eps); comment basic accuracy tests; answer := haaviequadrature(y, 0, 1, eps, y, m max); writetext(30, {{c}integral(0, 1, x)$=$$$$$$$$$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1/2) × 2); newline(30, 1); answer := haaviequadrature(y, 0, 1, eps, y^2, m max); writetext(30, {{c}integral(0, 1, x$sqr)$=$$$$$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1/3) × 3); newline(30, 1); answer := haaviequadrature(y, 0, 1, eps, y^9, m max); writetext(30, {{c}integral(0, 1, x$to$9)$=$$$$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1/10) × 10); newline(30, 1); answer := haaviequadrature(y, 0, 1, eps, exp(y), m max); writetext(30, {{c}integral(0, 1, exp(x))$=$$$$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1.718281828459)/1.718281828459); newline(30, 1); answer := haaviequadrature(y, 1, 2.718281828459045, eps, ln(y), m max); writetext(30, {{c}integral(1, e, ln(x))$=$$$$$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1)); newline(30, 1); answer := haaviequadrature(y, 0, 1, eps, arctan(y), m max); writetext(30, {{c}integral(1, e, arctan(x))$=$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-0.438824573117)/0.438824573117); newline(30, 1); comment Following tests are from Kruseman-Aretz; answer := haaviequadrature(y, 0, half pi, eps, cos(y), m max); writetext(30, {{c}integral(0, pi/2, cos(x))$=$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1)); newline(30, 1); answer := haaviequadrature(y, 0, 4.3, eps, exp(-y×y), m max); writetext(30, {{c}integral(0, 4.3, exp(-x$times$x))$=$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-0.886226924395)/0.886226924395); newline(30, 1); answer := haaviequadrature(y, 1, 10, eps, ln(y), m max); writetext(30, {{c}integral(1, 10, ln(x))$=$$$$$$$$$$$$$$$$$$}); write(30, format({-dd.dddddddddd}), answer); writetext(30, {:$$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-14.02585092994)/14.02585092994); newline(30, 1); answer := haaviequadrature(y, 0, 20, eps, sqrt(y)/(exp(y-4)+1), m max); writetext(30, {{c}integral(0, 20, sqrt(x)/(exp(x-4)+1))$=$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-5.77072601204)/5.77072601204); newline(30, 1); comment Following additional tests; answer := haaviequadrature(y, 1, 2, eps, exp(y), m max); writetext(30, {{c}integral(1, 2, exp(x))$=$$$$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-4.670774270472)/4.670774270472); newline(30, 1); answer := haaviequadrature(y, 0, half pi / 2, eps, sin(y), m max); writetext(30, {{c}integral(0, pi/4, sin(x))$=$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-0.29289321881)/0.29289321881); newline(30, 1); answer := haaviequadrature(y, half pi / 2, half pi, eps, sin(y), 16); writetext(30, {{c}integral(pi/4, pi/2, sin(x))$=$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-0.707106781186)/0.707106781186); newline(30, 1); answer := haaviequadrature(y, 0, half pi, eps, sin(y), m max); writetext(30, {{c}integral(0, pi/2, sin(x))$=$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1)); newline(30, 1); answer := haaviequadrature(y, half pi, pi, eps, sin(y), m max); writetext(30, {{c}integral(pi/2, pi, sin(x))$=$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1)); newline(30, 1); answer := haaviequadrature(y, 0, pi, eps, sin(y), m max); writetext(30, {{c}integral(0, pi, sin(x))$=$$$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-2)/2); newline(30, 1); answer := haaviequadrature(y, 0, two pi, eps, sin(y), m max); writetext(30, {{c}integral(0, 2pi, sin(x))$=$$$$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-0)); newline(30, 1); answer := haaviequadrature(y,0,1,eps,1/(1+y×y),m max); writetext(30, {{c}integral(0, 1, 1/(1+x$times$x))$=$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-0.78539816339)/0.78539816339); newline(30, 1); answer := haaviequadrature(y,eps,1,eps,(y ^ (-y)),m max); writetext(30, {{c}integral(eps, 1, x$to$(-x))$=$$$$$$$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-1.29128599706)/1.29128599706); newline(30, 1); answer := haaviequadrature(y,0,1,eps,ln(1+y)/(1 + y^2),m max); writetext(30, {{c}integral(0, 1, ln(1+x)/(1 + x$sqr))$=$$$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-0.272198261288)/0.272198261288); newline(30, 1); answer := haaviequadrature(y,0,1,eps,(y+y)/(1+y×y),m max); writetext(30, {{c}integral(0, 1, (x+x)/(1+x$times$x))$=$$$$$$}); write(30, format({-d.ddddddddddd}), answer); writetext(30, {:$RELATIVE$ERROR:$}); write(30, format({-d.dddddddddddº+dd}), (answer-0.693147180559)/0.693147180559); newline(30, 1); FINISH: newline(30, 1); end |