real procedure La(n, X); comment This procedure computes the Laguerre polynomial Ln(X) = exp(X) * (d^n/dX^n(exp(-X)) for any given real argument X, and any order, n, by the recursion formula below; integer n; real X; begin real a, b, c; integer i; a ≔ 1; b ≔ 1 - X; if n = 0 then c ≔ a else if n = 1 then c ≔ b else for i ≔ 1 step 1 until n - 1 do begin c ≔ (1 + 2 × i - X) × b - (i⭡2) × a; a ≔ b; b ≔ c end; La ≔ c end;