000
- 0000
Coral 66 Language
Reference Manual

For mission-critical applications

WWW.XgCc.com

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FO

Render

http://www.w3.org/Style/XSL
http://www.renderx.com/

Coral 66 Language
Reference Manual

For mission-critical applications

Order Number: XGC-C66-RM-001120

XGC Software

Farnborough
UK
<WWW. XgC. conp

http://www.w3.org/Style/XSL
http://www.renderx.com/

Coral 66 Language Reference Manual: For mission-critical applications
by Ministry of Defence

Published November 2000

© 1970 Crown Copyright

© 1999, 2000 XGC Software
Acknowledgments

The information in this reference manual is based on the text of the HM SO publication Official Definition of Coral 66, first published in 1970
and reprinted with amendmentsin 1974. ISBN 0 11 470221 7.

Acknowledgments

This document was prepared using the DocBook XML system. Rendering to PDF format is by XEP from RenderX.

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table of Contents

Prefacé ki

L Related Document3 ki
P Reader's Comments ki
B Prefaceto the 1974 Editiod] kil

ntroductior] [l
L1 Specia-Purpose Lanquages [l
B
B

L4 Implementatio] B

[The Coral 66 Progranj B

P.1_Oblectd B
B2 Progren] H

Soping

BI _Block Structurd fj

http://www.w3.org/Style/XSL
http://www.renderx.com/

Coral 66 Language Reference Manual

B.2__Clashing of Name$ H
B3 Globas H
|

B.5__Restrictions Connected with Scopind 8

Referenceto Datd [L]]

B Numeric Typed [
B2 Simple Reference |14
B3~ Array Referenced [i9
B4 Packed Daig [L3
B41 Table Declaratiod] [4
B4.2 _ TableElement Declaration] [14
K43 Example of a Table Declaration]
B4.4 _Referenceto Tables and Table Element§ [17
B.5 _ Storage Allocatio] [L7
B.6.1 _Presetting of Simple References and Array$
B.6.2 Presefting of Table3 fid
A7 Preservation of Value$
B8 Overlay Declarationg

Chapter 5 Place References—Switche P3
= %

B.1 _Simple Expression3 Pj
P4
B.1.2 _Word-Logid
b.1.3 _Evaluation of Expressiong

B.2_Conditional Expressions B1
B.21_Condition3 B1

M@

Assgnments B4
I7.2 Goto Statements B3
[:3__Procedure Statements
.4 Answer Statements
I7 5 Code Statements Bg
Compound Statement$ Bg

ME

.8 Dummy Statement3 [B7

|

Render

http://www.w3.org/Style/XSL
http://www.renderx.com/

Coral 66 Language Reference Manual

[7.9

Conditional Statements B7

10 For Statements

101 For-dlementswith STER
[.10.2 For-elements with WHILH

Procedures f]

B.1

Answer Specificatio] B4

B.2

Procedure Headind |3

B.3

Parameter Specificatio] g

B3.1 Vaue Parameters B3

B.32 Data Reference Parametery B3

B.33__ Place Parameter 4

B.3.4__Procedure Parametersg

B.35__ Non-Standard Parameter Specificatio] [4

B.4

The Procedure Body 7

[Communicatorg {9

p.1

COMMON Communicator A9

p.2

LIBRARY Communicatorg

B.3

EXTERNAL Communicatorg B

p.4

ABSOLUTE Communicatorg B

Names and Constant§ 51

0.1__Identifierg B
10.2__Number§ b3

fl0.3 Literal Constanty E3
B3

[Text Processind B3

f1.1 Commeni P4

.11 Comment Sentenced B9
1.2 Bracketed Commen| 5§
{13~ END Commeni

fi1.2" Macro Facility

121 String Replacemeni
122 Parameters of Macro3
123" Nesting of Macrog B4
124 Ddetion and Redefinition of Macrog 57
125 Syntax of Comment and Macrod |9

Render

Vii

http://www.w3.org/Style/XSL
http://www.renderx.com/

Coral 66 Language Reference Manual

Byntax Summary 59

R ppendix B List of Language Symbol§ [71]

A ppendixa Levels of Implementatio] 73

ADD 5 Implementation-Defined Characteristics 79

D.1__Language Profiled [7§
D.1.1_ Officia Definition Profild [73
D.1.2__The XGC Profild [7q
D.1.3__The Custom Profild [
D.2_Implementation Detail$ [77

Format of Code Satements

E.I__Format of Code Statements B

E.2__Constraints for Operand$ B4
E21 _Simple Constraints
E.22__Multiple Alternative Constraintg
E.23_Constraint Modifier Characters
E.24__M68000 Constraints Bg

[ndeX PJ

APP

VI

http://www.w3.org/Style/XSL
http://www.renderx.com/

List of Tables

B.1I _Parameters of Procedured {3
D.1__Encoded TypeinaForma Pai [79

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FO

Py

Render

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preface

This document describes the programming language supported by the XGC family
of Coral 66 compilers. The text of this document is based on the 1974 edition of
Official Definition of Coral 66, published by HM SO, London. Thetext includesdetails
of the options and extensionsthat X GC Coral 66 offersa ong with additional examples.

1. Related Documents

Getting Started with Coral 66, which offers examples and advice for the new user.

The Coral 66 User's Guide, in three volumes, which describes the commands and
options used to run the toolset.

The XGC Libraries, which documents the library functions available with the XGC
compilers.

2. Reader's Comments

We welcome any comments and suggestions you have on this and other XGC user
manuals. Y ou can send your comments in the following ways:

* Internet electronic mail: feaders.comments@xgc.con

Xi

readers.comments@xgc.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Preface

Please include the following information along with your comments:

» Thefull title of the book and the order number. (The order number is printed on
the title page of this book.)

e The section numbers and page numbers of the information on which you are
commenting.

» Theversion of the software that you are using.

Technical support enquiries should be directed to the X GC web sitd
[http://www.xgc.com/].

3. Preface to the 1974 Edition

Coral 66 is a general-purpose programming language based on Algol 60, with some
featuresfrom Coral 64 and Jovial, and some from Fortran. It was originally designed
in1966 by I. F. Currieand M. Griffiths of the Royal Radar Establishment in response
to the need for acompiler on afixed-point computer in acontrol environment. In such
fields of application, some debasement of high-level languageidealsis acceptableif,
inreturn, thereisaworthwhile gain in speed of compilation with minimal equipment
and in efficiency of object code. The need for alanguage which takes these
requirements into account, even though it may not be fully machine independent, is
widely feltinindustrial and military work. We have therefore formalized the definition
of Coral 66, taking advantage of experience gained in the use of the language. Under
the auspices of the Inter-Establishment Committee for Computer Applications, we
have had technical advice from staff of the Royal Naval Scientific Service, the Royal
Armament Research and Development Establishment, the Royal Radar Establishment,
the Defence ADP Training Centre, from serving officers of all three servicesand from
interested sections of industry, to whom all acknowledgments are due.

The present definition is an inter-service standard for military programming, and has
also been widely adopted for civil purposesin the British control and automation
industry. Such civil usage is supported by RRE and the National Computing Centre
in Manchester, on behalf of the Department of Industry. The NCC has agreed to
provide information services and training facilities, and enquiries about Coral 66 for
industrial application should be directed to that organization.

Royal Radar Establishment P. M. Woodward
Malvern P. R. Wetheral
Worcs. B. Gorman

June, 1974

X

http://www.xgc.com/
http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 1

| ntroduction

It isvirtually impossible to design a standard language such that programs will run
with equal efficiency in all types of computer and in any applications. Much of the
design of Coral 66 reflects this difficulty. For example, the language permits the use
of non-standard code statementsfor any parts of aprogram whereit may beimportant
to exploit particular hardware facilities. A special featureis scaled fixed-point for use
in small fixed-point machines; the floating point facilities of the language can be
omitted where hardware limitations make the use of floating-point arithmetic
uneconomical. Other features also may be dropped without reducing the power of the
language to an unacceptably low standard. Some reduced levels of implementation
are suggested in JAppendix C, Levels of Implementatior] [73] to this definition.

1.1. Special-Purpose Languages

A clear distinction must be made between general-purpose languages for use by skilled
programmers, and more limited languages designed to incorporate the inbuilt
assumptions of specialized applications or to make direct computer access practical
for the non-specialist user. Coral 66 belongs to the first category. Languagesin this
classare suitablefor writing compilersand interpretersaswell asfor direct application.
Specid-purpose languages can therefore be implemented by means of softwarewritten
in Cora 66, backed up as required with suites of specialized macros or procedures.
Itislargely for thisreason that the facilities for using the procedures have been kept

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 1. Introduction

as general as possible. The main differences between Coral 66 procedures and those
of Algol 60 lie in the replacement of the Algol 60 dynamic name parameter by the
more efficient location or reference parameter used in Fortran, and the requirement
to declare recursive procedures explicitly as such, againin theinterest of object-code
efficiency.

1.2. Real Time

Thetheory and structure of programming real-time computer applications has not yet
advanced to such a point that a particular choice of language facilitiesisinevitable.
Further, the design of real-timelanguageis handicapped by the lack of agreed standard
software interfaces for applications programmers or compiler writers. This does not
imply that real-time programs cannot yet be written in ahigh-level language. The use
of Coral 66 in real-time applicationsimplies the presence of a supervisory system for
the control of communications, which may have been designed independently of the
compiler. The programmer's control over external events, and the computer'sreaction
to them, is expressed by the use of procedures or macros which communicate with
the outside world indirectly through the agency of the supervisory software. No fixed
conventions are laid down for the names or action of such calls on the supervisor.

1.3. Syntax

The widespread use of syntax-driven methods of compilation lends increasing
importance to the syntax methods of language description. The present definition
takes the form of a commentary on the syntax of Coral 66, and therefore starts with
broad structure, working downwards to finer detail. For reasons of legibility, the
customary Backus notation has been dropped in favour of a system relying on
typographical layout. Each syntax rule has on its | eft-hand side a class name, such as
Statement. Such names appear in lower case without spaces, and with aninitial capital
letter. On the right-hand side of arule are found the various alternative expansions
for the class. The alternatives are printed each on anew line. Whereasingle alternative
spreads over more than one line of print, the continuation lines are inset in relation
to the starting position of the aternatives. Each alternative expansion consists of a
seguence of items separated by spaces. The items themselves are either further class
names or terminal symbols such asBEGIN. The classnameVoidisused for an empty
class. For example, atypical pair of rules might be

Specimen ::=
ALPHA Sign
BETA Sign

Sign ::=
+

RS}

http://www.w3.org/Style/XSL
http://www.renderx.com/

1.4. Implementation

Void

Examples of legal specimens are ALPHA+ and BETA. The equal signisused to
separate the left-hand side from the right, except after itsfirst appearancein arule.

1.4. Implementation

Considerations of software engineering have been allowed to influence the design of
Coral 66, principally to ensure the possibility of rapid compilation, loading and
execution. Conceptually, Coral 66 compilation is a one-pass process. The insistence
that identifiers are fully declared or specified before use simplifies the compiler by
ensuring al relevant information isavailable when required. The syntax of thelanguage
is transformable into one-track predictive form, which enables fast syntax analyzers
with no backtracking to be employed. Features which require elaborate hardware in
the object machine for efficient program execution, for example dynamic storage
allocation, are not included in the language. Unless run in a special diagnostic mode,
aCoral 66 compiler isnot expected to generate run-time checks on subscript bounds.
No run-time checking of procedure entriesis necessary. The arrangementsfor separate
compilation of program segments are designed to minimize load-time overheads, but
the specification of theinterface between aCoral 66 compiler and the loader is outside
the scope of the present document.

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FO

=

Render

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 2

The Coral 66 Program

A digtinction is made between symbols and characters. Characters, standing only for
themselves, may beused in stringsor asliteral constants. Apart from such occurrences,
aprogram may be regarded as a sequence of symbols, each visibly representable by
aunique character or combination of characters. The symbols of the language are
defined (seeAppendix B, List of Language Symbold[71]), but the characters are not.
For the purpose of the language definition, words in upper case |etters are treated as
single symbols. Lower case letters are reserved for use in identifiers, which may also
include digitsin non-leading positions. Except where they are used as strings, layout
characters are ignored by a Coral 66 compiler.

2.1. Objects

A program is made up of symbols (such as BEGIN, =, 4) and arbitrary identifiers
which, by declaration, specification or setting acquire the status of single symbals.
Identifiers are names referring to objects which are classified as

e data (numbers, arrays of numbers, tables)
» places (labels and switches)

» procedures (functions and processes)

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 2. The Coral 66 Program

2.2. Program

A program need not be compiled in one unit, but may be divided into segments for
separate compilation. To make it possible to refer to chosen objects in different
segments, the name and types of such objects are written outside the program segments
in communicators. Objects fully defined within the program are rendered accessible
to all segments by their mentionin a COMMON communicator (see Bection 3.3]
and see Bection 9.1, “COMMON Communicators[49]). Objects
whose full definition lies outside the program, for example library procedures, can
be made accessible to all segments by mention in forms of communicator whose
definition will beimplementation-dependent. A Coral 66 program will thus comprise

name of program
optional communicators
named segments

in some appropriate sequence. Each program segment isin the form of a block (see
Chapter 3, Scopind [7]). The language definition does not specify how the program
or its segments shall be named or how the segments are to be separated or terminated,
but when the whole program is compiled together, a typical form might be:

nane of program
COWDN etc ;
segment name 1
BEGN ... END
segnment name 2
BEGN ... END
FI'NI SH

The program starts running from the beginning of a segment, the choice of which will
depend upon a convention or mechanism outside the definition of the language.

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 3

Scoping

A named object can be brought into existence for part of aprogram and may have no
existence elsewhere (but see[Section 4.7, “ Preservation of Values][20]). The part of
the program inwhichit isdeclared to exist isknown asits scope. One effect of scoping
istoincreasethefreedom of choosing namesfor objectswhose scopes do not overlap.
The other effect is economy of computer storage space. The scope of an object is
settled by the block structure as described below.

3.1. Block Sructure

A block is a statement consisting, internally, of a sequence of declarations followed
by asequence of statements punctuated by semi-colonsand all bracketed by aBEGIN
and END. Formally,

Block ::=
BEGIN Declist ; Statementlist END

Declist ::=
Dec
Dec ; Declist

Dec ::=
Datadec

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 3. Scoping

Overlaydec
Switchdec
Proceduredec

Datadec ::=
Numberdec
Arraydec
Tabledec

The declarations have the purpose of fully classifying new objects and providing them
with names (identifiers). As a statement can be itself a block merely by having the
right form, blocks may be nested to an arbitrary depth. Except for global objects (see
Bection 3.3, “GlobalsT[8]), the scope of an object isthe block in which it is declared,
and within this block the object is said to be local. The scope penetratesinner blocks,
where the object is said to be non-local.

3.2. Clashing of Names

If two objects have the same name and their scopes overlap, the clash of definitions
could giveriseto ambiguity. Typicaly, aclash occurs when an inner block is opened
and alocal object is declared to have the same name as a non-local object which
already exists. In this situation, the non-local object continues to exist through the
inner block (e.g. avariable maintainsitsvalue), but becomestemporarily inaccessible.
Thelocal meaning of the identifier always takes precedence.

3.3. Globals

A program consists of a number of segments, each of which may be described as an
outermost block, asthereisno format block surrounding the segments. In addition to
objects that are local to inner blocks or outermost blocks, global objects may be
defined. Such objects may be used in any segment, astheir scopeisthe entire program.
To become glaobal, an object must be named in a communicator written outside the
segments. For some types of object, such as COMMON data references, this takes
the form of adeclaration (and isthe only declaration required). Other types of object,
specifically COMMON labels, COMMON switchesand COMMON procedures, must
be fully defined within a segment. This means that COMMON labels must be set,
and COMMON switches and procedures must be declared, in one of the outermost
blocks of the program. Such objects are merely "specified" in the COMMON
communicator, as described in [Section 9.1, “COMMON Communicators][49], and
aretreated aslocal in every outermost block of the program. Global objects declared
outside the segments are treated as non-local. With these rules of locality, questions
of clashing are resolved in accordance with Bection 3.2, “ Clashing of Names[8].

http://www.w3.org/Style/XSL
http://www.renderx.com/

3.4. Labels

3.4. Labels

Any statement may be labeled by writing in front of it an identifier and a colon. The
scope of the label isthe smallest block embracing the statement which is labeled,
extending from BEGIN to END. Thus labels can be used before they have been set.
It also follows that the only means of entering an inner block is through its BEGIN.
It is possible to jump into an outermost block from a different segment by the use of
aCOMMON label (or switch or procedure).

3.5. Restrictions Connected with Scoping

No identifier other than alabel may be used before it has been declared or specified.
Specification means that the type of object to which an identifier refers has been
given, but not necessarily thefull definition of the object (seefSection 9.1, “COMMON
CommunicatorsT[49]). Typically, a procedure identifier is specified as referring to
acertain type of procedure with certain types of parameters by the heading of the
procedure declaration, but the procedure is not fully defined until the end of the
declaration as awhole. As an example of this, assume that two proceduresf and g
aredeclared in succession after the beginning of the segment. Then the body of g may
call on itself or on the procedure f, but the body of f may not call on the procedure g
unless g has been specified ina COMMON communicator. If aprocedureis defined
in amanner which isdirectly or indirectly callsitself, that procedureis said to be
recursive and must be explicitly declared as such.

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-F

Render

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4

Reference to Data

4.1. Numeric Types

There are three types of number, floating-point, fixed-point and integer. Except in
certain part-word table-elements (see [Section 4.4.2.2, “Part-Word Tablg
Elements][15]), all three types are signed. Numeric type isindicated by the word
FLOATING or INTEGER or by the word FIXED followed by the scaling constants
which must be given numerically, e.g.

FI XED(13, 5)

This specifies five fractional bits and a minimum of 13 bits to represent the number
asawhole, including the fractional bits and sign. The number of fractional bits may
be negative, zero, or positive, and may cause the binary point to fall outside the
significant field of the number. It isassumed throughout this definition that a number
is confined within a single computer word. If, in any implementation, a different
system is adopted, e.g. two words for a floating point number, a systematically
modified interpretation of the language definition will be necessary. The syntax for
numeric typeis

11

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Reference to Data

Numbertype ::=
FLOATING
FIXED Scale
INTEGER

Scale::= (Totalbits, Fractionbits)
Totalbits ::= Integer

Fractionbits ::= Signedinteger

4.2. Smple References

The simplest objects of data are single numbers of floating, fixed-point or integer
types. Identifiers may refer to such objects if suitably declared, e.g.

INTEGER i, |, k;
FI XED(13,5) X, V;

and the declarations may optionally include assignment of initial values. Thisisknown
as presetting and is described in [Section 4.6, “ Presetting”|[18]. The syntax for a
number declarationis

Numberdec ::=
Numbertype Idlist Presetlist

Idlist ::=
Id
Id, Idlist

4.3. Array References

An array reference isrestricted to a one or two dimensiona set of numbersall of the
same type (including scale for fixed-point). An array is represented by an identifier,
suitably declared with, for each dimension, alower and upper index bound in the
form of a pair of integer constants, e.g.

FI XED(13,5) ARRAY b[0: 19] ;
FLOATI NG ARRAY c[1:3, 1:3];

The lower bound must never exceed the corresponding upper bound. If more than
onearray isrequired with the same numeric type, and the same dimensions and bounds,
alist of array identifiers separated by commas may replace the singleidentifiers shown

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4. Packed Data

in the above examples. Arrays with the same numeric type but different bounds or
dimensions may also be included in a composite declaration as shown below.

I NTEGER ARRAY p, q, r[1:3], s[1:4], t, u[l:2, 1:3];

Anarray identifier refersto an array initsentirety, but itsusein statementsis confined
to the communication of array referencesto aprocedure. Elsewhere, an array identifier
must be indexed so that it refersto asingle array element. The index, in the form of
an arithmetic expression enclosed in square brackets after the array identifier, is
evaluated to an integer as described in[Section 6.1.3, ~ Evaluation of Expressions][30]
The syntax rulesfor array declaration, which include apresetting facility (Section 4.6.]
[Presetting of Simple References and ArraysT[18]), are:

L

Arraydec ::=
Numbertype ARRAY Arraylist Presetlist

Arraylist ;=
Arrayitem
Arrayitem , Arraylist

Arrayitem ::=
Idlist [Sizelist]

Sizelist ::=
Dimension
Dimension , Dimension

Dimension ::=
Lowerbound : Upperbound

Lowerbound ::=
Signedinteger

Upperbound ::=
Signedinteger

4.4. Packed Data

There are two systems for referring to packed data, onein which as unnamed field is
selected from any computer word which holds data (see Section 6.1.1.2.2]
[Part-Words][28]), and one in which the data format is declared in advance. In the
latter system, with which this section is concerned, the format is replicated to form a
table. A group of nwordsis arbitrarily partitioned into bit-fields (with no fields
crossing aword boundary), and the same partitioning is applied to as many such

13

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Reference to Data

groups (m say) asarerequired. Thetotal data-spacefor atableisthusnm words. Each
group isknown as atable-entry. The fields are named, so that a combination of field
identifier and entry index selects datafrom all or part of one computer word, known
as atable-element. The elementsin atable may occupy overlapping fields, and need
not together fill al the available space in the entry.

4.4.1. Table Declaration

A table declaration serves two purposes. Thefirst isto provide the table with an
identifier, and to associate thisidentifier with an all ocation of word-storage sufficient
for the width and number of entries specified. For example

TABLE april [3, 30]

is the beginning of a declaration for the table "april" with 30 entries each 3 words
wide, requiring an allocation of 90 wordsin all. The second purpose of the declaration
is to specify the structure of an entry by declaring the elements contained within it,
as defined in Bection 4.4.2, “ T able-Element Declaration”[[14] below. Data-packing
isimplementation dependent, and the exampleswill befound to assume aword length
of 24 bits. The syntax for atable declaration is

Tabledec ::=
TABLE Id [Width, Length]
[Elementdeclist Elementpresetlist] Presetlist

Elementdeclist ::=
Elementdec
Elementdec ; Elementdeclist

Width ::= Integer

Length ::= Integer

Details of the two presetting mechanisms are given in [Section 4.6.2, “ Presetting of|
ables’[[19].

4.4.2. Table-Element Declaration

A table element declaration associates an element name with anumeric type and with
aparticular field of each and every entry in the table. The field may be whole or part
of acomputer word, and the form of a declaration differs accordingly. The syntax for
an element declaration, more fully developed in [Section 4.4.2.2, “Part-Word Table
ElementsTT18], is

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4.2. Table-Element Declaration

Elementdec ::=
Id Numbertype Wordposition
Id Partwordtype Wordposition , Bitposition

Wordposition ::= Signedinteger
Bitposition ::= Integer

Word-position and bit-position are numbered from zero upward, and the least
significant digits of aword occupies bit-position zero. Normally, table-elements will
be located so that they fall within the declared width of the table, but a Coral 66
compiler does not check the limits. To improve program legibility, it is suggested
that the word BIT be permitted as an alternative to the commain the above text. The
meaning of Bitposition is given in see[Section 4.4.2.2, “ Part-Word Tablg

[15].

4.4.2.1. Whole-Word Table-e ements

Asshown in the syntax of the previous section, theform of declaration for whole-word
table-elementsis

Id Numbertype Wordposition

For example,

tickets | NTEGER 0

declaresapseudo-array of e ements named "tickets'. (True array elementsarelocated
consecutively in store, see[Section 4.5, “ Storage Allocation[[17].) Each element
refersto a (signed) integer occupying aword-position zero in an entry. Similarly,

wei ght FI XED(16,-4) 1

locates "weight" in word-position 1 with a significance of 16 bits, stopping 4 bits
short of the binary point. Floating-point elements are similarly permitted.

4.4.2.2. Part-Word Table Elements

Elementswhich occupy fields narrower than acomputer word (and only such elements)
are declared in forms such as

rain UNSIGNED(4, 2) 2,0;
humi dity UNSI GNED(6, 6) 2, 8;
tenperature (10,2) 2,14;

15

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Reference to Data

for fixed-point elements. The fixed-point scaling is given in brackets (total bits and
fraction bits), followed by the word- and bit-position of the field within the entry.
Word-position is the word-position within which the field islocated, and bit-position
isthe bit at the least significant end of the field. Theword UNSIGNED increases the
capacity of the field for positive numbers at the expense of eliminating negative
numbers. For example, (4,2) alowsnumbersfrom-2.0to 1.75whilst UNSIGNED(4,2)
allows them from 0.0 to 3.75. If the scale contains only asingle integer, e.g.

sunshi ne UNSI GNED(4) 2, 4;

the number in brackets represents the total number of bits for a part-word integer.
Though (4,0) and (4) have essentially the same significance, thefact that (4,0) indicates
fixed-point type and (4) indicates an integer, should be borne in mind when such
references are used in expressions. The syntax of Partwordtype, for substitution in
the syntax of [Section 4.4.2, “ T able-Element Declaration’][14], is

Partwordtype ::=
Elementscale
UNSIGNED Elementscale

Elementscale ::=
(Totalbits, Fractionbits)
(Totalbits)

Therulesfor Totalbitsand Fractionbits areinSection 4.1, “Numeric Types][11]. The
number of fraction bits may be negative, zero, or positive, and it is for the binary
point to lie outside the declared field.

4.4.3. Example of a Table Declaration

TABLE april [3, 30]
[tickets |INTEGER O;
wei ght FI XED(16, -4) 1;
rain UNSIGNED(4, 2) 2, O;
sunshine UNSI GNED (4) 2, 4;
humi dity UNSIGNED(6, 6) 2, 8;
temperature (10, 2) 2, 14]

It should be noted that all the numbers used to describe and locate fields must be
constants.

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4.4. Reference to Tables and Table Elements

4.4.4, Referenceto Tablesand Table Elements

A table element is selected by indexing itsfield identifier. To continue from the
example in Bection 4.4.3_“Example of a Table Declaration”[[16], the rain for april
6th would be written rain[5], for it should be noted than an entry always has the
conventional lower bound of zero. In use, the names of table-elements are always
indexed. On the other hand, atable identifier such as"april" may stand on its own
when atable reference is passed to a procedure. The use of an index with a
table-identifier does not (other than accidentally) select an entry of thetable. It selects
a computer word from the table data regarded as a conventional array of single
computer words, with lower index bound zero. Thus the implied bounds of the array
"april" are 0 : 89. A word so selected istreated as a signed integer, from which it
follows that april[6] in the example would be equivalent to tickets[2]. A table name
isnormally indexed only for the purpose of running through the table systematically,
for example to set all data to zero, or to form a base for overlaying (see[Bection 4.8]
[Overlay Dedarations[20]).

4.5. Sorage Allocation
Computer storage space for datais allocated automatically at compiletime, one word
for each simple reference, one for each array element, and as many as are declared

for each table entry. In any one composite declaration, a Coral 66 compiler isexplicitly
required to perform allocation serialy. For example, the declarations

I NTEGER a, b, c;

I NTEGER p, q;

will make the locations of a, b, c become n, n+1, n+2 respectively, and those of p, q
become m, m+1 where n and m are undefined and unrelated. In two-dimensional
arrays, the second index is stepped first: the declaration

I NTEGER ARRAY a[1:2], b[1:2, 1:.2];

will locate the el ements

a[1], a[2], b[1,1], b[1,2], b[2 1], b[2 2]

in consecutive ascending locations.

17

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Reference to Data

4.6. Presetting

Certain objects of data may be initialized when the program is loaded into store by
theinclusion of a presetting clause in the data declaration. Presetting is not dynamic,
and preset values which are altered by program are not reset unless the program or
segment isreloaded. An object isnot eligiblefor presetting if it is declared anywhere
within

1. thebody of arecursive procedure, or

2. aninner block of the program, or

3. aninner block of aprocedure body.

Procedure bodies do not count as blocks for the purposes of (b). For example, the

integer i is eligible for presetting in a segment which begins as follows:

BEG N PROCEDURE f;
BEG N PROCEDURE g;
BEG N | NTEGER i ;

4.6.1. Presetting of Simple References and Arrays

The preset constants are listed at the end of the declaration after an assignment symbol,
and are allocated in the order defined in Bection 4.5_“ Storage Allocation[[17]. As
examples,

INTEGER a, b, ¢ : =1, 2, 3;
I NTEGER ARRAY k[1:2, 1:2] := 11, 12, 21, 22

If desired for legibility, round brackets may be used to group items of the Presetlist,
but such brackets areignored by the compiler. The number of constantsin the Presetlist
must not exceed, but may be |less than, the number of words declared, and presetting
ceaseswhen the Presetlist is exhausted. In special cases (seefSection 4.7, “ Preservatior]
bf VauesT[20]), the preset assignment symbol may be the only part of the Presetlist
which is present. The syntax is

Presetlist ::=
:= Constantlist
Void

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.6.2. Presetting of Tables

Constantlist ::=
Group
Group , Constantlist

Group ::=
Constant
(Constantlist)
Void

The main purpose of the final void will be seen in [Section 4.6.2, “ Presetting of
[[19]. For the expansion of Constant, see Section 10.2, “Numbers[52].

4.6.2. Presetting of Tables

There aretwo alternative mechanisms. If theinternal structure of atableiscompletely
disregarded, the table can be treated as an ordinary one-dimensional array of whole
computer words (see[Section 4.4.4, “ Reference to Tables and Table Elements’[[17]),
and preset as such (see[Section 4.6.1, “ Presetting of Simple References and
Arrays’|[18]). Alternatively the table elements may be preset after their declaration
list, as shown at Elementpresetlist in the syntax of [Section 4.4.1, “ Tablg
Declaration][14]. For example

TABLE gears [1, 3]

[teethl UNSIGNED (6) O0,0;
teeth2 UNSIGNED (6) O, 6;
ratio UNSIGNED (11,5) 0, 12;
arc UNSIGNED (5,5) 0,12
PRESET (57, 19, 3.0,), (50, 25, 2.0,), (45, 30, 1.5,)]

For table-element presetting, the word PRESET is used instead of the assignment
symbol of Bection 4.6.1, “ Presetting of Simple References and Arrays][18]. Each
entry of thetableispreset in succession asagroup of elements, taken in order of their
declaration. Voidsin thelist imply an absence of assignment. This may be necessary
to avoid duplication when fields overlap, asdo "ratio" and "arc" in the above example.
AsinBection4.6.1, “ Presetting of Simple Referencesand ArraysT[18], brackets used
for grouping constants in the list of presets are ignored by the compiler. The syntax
is

Elementpresetlist ::=
PRESET Constantlist
Void

The previous example could, with equal effect but less convenience, be expressed in
theform

19

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Reference to Data

TABLE gears [1, 3]

[teethl UNSIGNED (6) O0,0;
teeth2 UNSIGNED (6) O, 6;
ratio UNSIGNED (11,5) 0, 12;
arc UNSIGNED (5,5) 0,12]
= OCTAL(1402371), OCTA L(1003162), OCTAL(603655)

4.7. Preservation of Values

Objects of data may have no existence outside the scope of their declarations. The
values to which local identifiers refer must in general be assumed undefined when a
block isfirst entered and whenever it is subsequently re-entered. Thisis due to the
fact that a block-structured language is designed for automatic overlaying of data.
Local working space may therefore have been used for other purposes between one
entry to ablock and the next. In Coral 66 thisis not invariably the case. When adata
declaration contains a Presetlist as permitted by the rule givenin

| Presetting”| [18], the values of all the objects named in that declaration will remain
undisturbed between successive entries to the block or procedure body, like "own"
variablesin Algol 60. It is sufficient that a preset assignment symbol appears at then
end of the declaration, even though the list of preset constantsis void.

4.8. Overlay Declarations

Overlaying may befound desirablewhen COMMON dataisrequired in some segments
and not in others, asit enables global data space to be re-used for other purposes.
However, indiscriminate use of overlaying should be avoided, asit can lead to
confusion and obscurity. The facility causes apparently different data referencesto
refer simultaneously to the same objects of data, i.e. as alternative namesfor the same
storage locations. To form an overlay declaration, an ordinary data declaration is
preceded by a phrase of the form

OVERLAY Base WTH

where Base is a data reference which has previously been covered by a declaration
in the same COMMON communicator or in the same segment. The base may be a
simple reference, on-dimensional array reference or atable reference treated as a
one-dimensional array of whole words. If the array or table identifier is not indexed,
it refers to the location of its zero'th element (which may be conceptual). Storage
allocated by the overlay declaration starts from the base, proceeds seriadly (asin
Bection 4.5, “ Storage Allocation][[17]) and will not be overlaid by succeeding

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.8. Overlay Declarations

declarations unlessthese are themsel ves overlay declarations. The syntax of an overlay
declaration is

Overlaydec ::=
OVERLAY Base WITH Datadec

Base::=
(1d)
Id [Signedinteger]

21

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FQ

NJ

Render

2

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 5

Place
Refer ences—-Switches

Place references refer to positions of program statements, and the simplest position
market if thelabel (seeBection 3.4, “LabelsT[9]). A switchisapreset and unalterable
array of labels, which must be within scope at the switch declaration. Any use of the
indexed switch name refers to the corresponding label. For example, the switch
declaration

SWTCHs :=4a, b, ¢
causes g 1] to refer to the label a, §2] to b and §3] to ¢. The syntax rules are

Switchdec ::=
SWITCH Switch := Labellist

Labdllist ::=

Label

Label , Labellist
Switch ::=1d

Label ::=1d

23

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FQ

N

Render

4

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 6 EXpI' OnS

The term expression is reserved for arithmetic expressions. Coral 66 has no
designational expressions of Algol 60 type. Asthere are no Boolean variables and no
bracketed Boolean expressions (see[Section 6.2.1, “ Conditions'][31]), the expressions
after IF are known as conditions. The syntax for expressionsis

Expression ::=
Unconditionalexpression
Conditionalexpression

Unconditionalexpression ::=
Simpleexpression
String

Strings are defined in Bection 10.4, “ Strings[53].

6.1. Smple Expressions

Arithmetic is performed with the monadic and dyadic adding operators + and -, and
with the dyadic multiplying operators* (multiply) and/ (divide). The plusand minus
operators work on terms, which are combinations of factorsjoined by multiplication
or division. There is no exponentiation operator. The syntax for simple expression
begins as follows

25

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 6. Expressions

Simpleexpression ::=
Term
Addoperator Term
Simpleexpression Addoperator Term

Term::=

Factor
Term Multoperator Factor

Addoperator ::=
+

Multoperator ::=
*

/

6.1.1. Primaries

Primaries are the basic operands in expressions. For example in the analysis of the
expression

X+y*(a+h -4

we discover three terms, the primary x, thetermy * (a+ b) and the primary 4. The
middle term is the product of two factors, the primary y and the primary (a+ b). To
complete the analysis, all expressions from within brackets are similarly analyzed
until no further reduction is possible an no expression brackets remain. When an
expression contains no word-logical operators (see Section 6.1.1.2, “ Typed
Primaries[[27]), a factor must be a primary, which may or may not be of a defined
type. Thus,

Factor ::=
Primary
Booleanword

Primary ::=
Untypedprimary
Typedprimary
6.1.1.1. Untyped Primaries

Untyped primaries are those operands which cannot be classed asinteger, floating-point
or fixed-point (of known scale) without reference to their context. For example, the

http://www.w3.org/Style/XSL
http://www.renderx.com/

6.1.1. Primaries

number 3.1416 may be represented, with varying degrees of accuracy, in may different
ways within a computer word. The same appliesto an expression, whose type is
determined by context (seeBection 6.1.3, “ Evaluation of Expressions][30]).

Untypedprimary ::=
Redl
(Expression)

A "real" (see[Bection 10.2, “Numbers[52]) is an unsigned numerical constant
containing adecimal or octal point or a tens exponent.

6.1.1.2. Typed Primaries
Typed primaries are classified as follows

Typedprimary ::=
Wordreference
Partword
LOCATION (Wordreference)
Numbertype (Expression)
Procedurecall
Integer

6.1.1.2.1. Word References

A ssimplereference, or areference to an array element or whole-word table-element,
has atype defined in its declaration. Such references may be described as word
references because they refer to items of data for which whole computer words are
set aside. A further kind of word reference, the anonymous reference, takes the form

[I'ndex]

where the index is any expression evaluated to an integer to give the actual location
of acomputer word. An anonymous reference possesses all the properties of an
identified reference, except that it lacks an identifier. Just asavariablei, declared as
INTEGER i, may be used in an expression to refer to the contents of the computer
word allocated to i, so the use of an anonymous reference in an expression will refer
to the contents of the address defined by Index. Such contents are taken to be of
numeric type INTEGER, irrespective of any type declaration which may have been
associated with that word with some other type. See also
[Cocations][28]. The syntax for aword referenceis

Wordreference ::=
Id
Id [Index]

27

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 6. Expressions

Id [Index , Index]
[]

Index ::=
Expression

6.1.1.2.2. Part-Words

Any single item of packed data may act as atyped primary. Such an item is either
1. areferenceto apart-word table-element, or

2. aspecified field of any typed primary.

In case (), the type is defined in the table declaration. In case (b), the desired field
is selected by a prefix of the form

BITS[Totalbits , Bitposition]

in front of the primary to be operated upon. The result of thisoperationisa positive1
integer value of width Totalbits and in units of the bit at Bitposition. The value will
in genera be implementation-dependent, even though the operand must be typed, as
no conventions are laid down for the internal representation of floating-point or
fixed-point items of data. In all cases, however, the numeric type resulting from the
application if BITSisINTEGER. The syntax for a part-word, which should be
distinguished from that of apart-word reference (seefSection 7.1, “Assignments[34]),
is

Partword ::=
Id [Index]
BITS[Totalbits, Bitposition] Typedprimary

6.1.1.2.3. L ocations

The computer location of any word reference is obtainable by the location operator
which iswritten in the form

LOCATI ON(Wor dref erence)

and has the value of type INTEGER. It may be notesthat if i and j refer to integers,

[LOCATION()] isequivaent toi, and LOCATION([j]) isequivalenttoj. The
reasoning isasfollows. LOCATION(i) isthe address of the computer word allocated

Yt is assumed that Totalbits will not be set equal to the full word length

http://www.w3.org/Style/XSL
http://www.renderx.com/

6.1.2. Word-Logic

toi. Enclosure in square brackets forms an entity equivalent to an identifier standing
for thisaddress, which by hypothesisisi. Similarly, [23] isequivalent to an identifier
for the address 23, and LOCATION([23]) is the address for which thisfictitious
identifier stands, which is 23 by hypothesis.

6.1.1.2.4. Explicit Type-Changing
A typed primary may have its type changed, and an untyped primary may be typed,

by enclosure within round brackets preceded by a specific Numbertype as described
in Bection 6.1.3, “Evaluation of Expressions][30].

6.1.1.2.5. Functions

The call of atyped procedure (see [Chapter 8, Procedureq[41]) may be treated as a
function and used as a primary in any expression. For the syntax of a procedure call,
See[Bection 7.3, “Procedure Statements[[35].

6.1.1.2.6. Integers

Aninteger used in any expression (see[Section 10.2, “Numbers[52]) can be assumed
to have the numeric type INTEGER before any necessary type-changes are enforced
by context.

6.1.2. Word-L ogic

Threedyadic logical operators are defined for use between typed primaries. The effect
of these operators is implementation-dependent to the extent that the
word-representation of datais not defined by the language. The ith bit of the result
isagiven logical function of theith bits of the two operands, and the result asawhole
has the numeric type INTEGER. To avoid confusion with Boolean operatorsin
conditions (see[Section 6.2.1, “Conditions[31]), a different terminology is used.
The operators are

DI FFER UNI ON NASK

01 01 01
0/0 1 0/0 1 0/0 0
110 111 10 1

DIFFER isrecognizable as "not equivalent”, UNION as "inclusive or" and MASK
as "and". The operators are shown in order of increasing tightness of binding. As
bracketed expressions are untyped, the use of bracketsto overcome binding priorities
entails explicit integer scaling. For example

29

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 6. Expressions

a MASK | NTEGER(b UNION ¢)

The formal syntax continued from [Section 6.1.1, “Primaries’[[26]), is

Booleanword ::=
Booleanword?2
Booleanword4 DIFFER Booleanword5

Booleanword?2 ::=
Booleanword3
Booleanword5 UNION Booleanword6

Booleanword3 ::=
Booleanwordé MASK Typedprimary

Booleanword4 ::=
Booleanword
Typedprimary

Booleanword5 ::=
Booleanword?2

Typedprimary

Booleanwordb6 ::=
Booleanword3
Typedprimary

6.1.3. Evaluation of Expressions

Expressions are used in assignment statements, as value parameters of procedures
and as integer indexes, all of which contexts determine the numeric type finally
required. Coral 66 expressions are automatically evaluated to this type, but in the
process of calculation, datamay be subjected by the compiler to variousintermediate
transformations. Although an algorithm for eval uating expressions does not form part
of the officia definition of the language, all syntactically outermost termsin an
expression will be evaluated to the required numeric type before the adding operators
areapplied. Inthe simplest cases, thisrule ensures predictable results, though it should
be particularly noted that rounding-off errors will not be minimal, and overflow may
occur. If an expression is enclosed in round brackets, its terms are not " outermost”,
the rule no longer applies, and the algorithm for the particular compiler determines
the sequence of events. The programmer canimpose any desired system of evaluation
by the use of Numbertype(Expression), whichisatyped primary (seeBection 6.1.1.2)
[Typed Primaries[27]), any occurrence of which behaves like avariable, ref (say),
declared as

30

http://www.w3.org/Style/XSL
http://www.renderx.com/

6.2. Conditional Expressions

Nunbertype ref;

and assigned a value by

ref := Expression

beforeit isused. For example, if i and j areinteger references and x isafloating-point
reference, the assignment statement

X =i -

causesi and j to be converted to floating-point before the subtraction, whilst

X = INTEGER(i - j)

causes subtraction of integers before conversion to floating point. Although the order
of evaluation of expression isundefined, the following rule concerning functions will
apply. Vaue parameters of afunction are necessarily evaluated before the function
itself is computed, so that the order of evaluation of sin(cos(expn)) will be expn, cos,
sin. Apart from this type of reversal, functions occurring in asimple expression will
be evaluated in the order in which they appear when the expression is read from left
to right, regardless of brackets.

6.2. Conditional Expressions
A conditional expression has the form
Conditionalexpression ::=
IF Condition
THEN Expression
EL SE Expression

with the usual interpretation.

6.2.1. Conditions

A condition is made up of arithmetic comparisons connected by Boolean operators
OR and AND, of which AND isthe more tightly binding. The permitted arithmetic
comparisons are less than, less than or equal to, equal to, greater than or equal to,
greater than, and not equal to. The syntax rules are

31

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 6. Expressions

Condition ::=
Condition OR Subcondition
Subcondition

Subcondition ::=
Subcondition AND Comparison
Comparison

Comparison ::=
Simpleexpression Comparator Simpleexpression

Comparator ::=

The Boolean operators have their usual meanings, the OR being inclusive. Conditions
are evaluated from left to right only as far as is necessary to determine their truth or
falsity.

32

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 7 Satemnts

Statement ::=
Labdl : Statement
Simpl estatement
Conditionalstatement
Forstatement

Simplestatement ::=
Assignmentstatement
Gotostatement
Procedurecall
Answerstatement
Codestatement
Compoundstatement
Block
Dummystatement

Statements are normally executed in the order in which they were written, except that
agoto statement may interrupt this sequence without return, and aconditiona statement
may cause certain statements to be skipped.

33

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 7. Statements

7.1. Assignments

The left-hand side of an assignment statement is always a data reference, and the
right-hand side an expression for procuring a numerical value. The result of the
assignment is that the left-hand side refers to the new value until thisis changed by
further assignment, or until the value is lost because the reference goes out of scope
(but seeSection 4.7, “ Preservation of Values][20]). The expression on theright hand
side is evaluated to the numeric type of the reference, with automatic scaling and
rounding as necessary. The left-hand side may be aword reference as defined in
Bection 6.1.1.2.1_ “Word References[27] or it may be a part-word reference, i.e. a
part-word table-element or some selected field of aword reference. When assignment
is made to a part-word reference, the remaining bits of the word are unaltered. As
examples of assignment,

[LOCATION(i) + 1] := 3.8

has the effect of placing the integer 4 in the location succeeding that allocated to i,
and

BITS[2,6]x := 3

has the effect of placing the binary digits 11 in bits 7 and 6 of the word allocated to
X. Thislast assignment statement istreated in asimilar manner to an assignment which
has on its |eft-hand side an unsigned integer table-element. The statement

BITS[1, 23] [LOCATION(i) + 1] := 1

would in a 24-bit machine, force the sign bit in the indicated location to one. The
syntax of the assignment statement is

Assignmentstatement ::=
Variable := Expression

Variable ::=
Wordreference
Partwordreference

Partwordreference ::=
Id [Index]
BITS[Totalbits, Bitposition] Wordreference

Thereis no form of multiple assignment statement.

34

http://www.w3.org/Style/XSL
http://www.renderx.com/

7.2. Goto Statements

7.2. Goto Satements

The goto statement causes the next statement for execution to be the one having the
given label. The label may be written explicitly after GOTO, or may be referenced
by means of a switch whose index must lie within the range 1 to n where n isthe
number of labels in the switch declaration. See also Section 3.4, “LabelST[9] and
Chapter 5, Place References-Switcheq[23]. The syntax is

Gotostatement ::=
GOTO Destination

Destination ::=
L abel
Switch [Index]

7.3. Procedure Satements

A procedureidentifier, followed in parentheses by alist of actual parameters (if any),
is known generally as aprocedure call. If the procedure possesses avalue, it may be
used as aprimary in an expression, but whether it possesses avalue or not, it may
also stand alone as a statement. This causes

1. theformal parametersin the procedure declaration to be replaced by the actuals
in a manner which depends on the formal parameter specifications (see
Bection 8.3, “ Parameter Specification”{[42]).

2. the procedure body to be executed before the statement dynamically following
the procedure statement is obeyed.

The syntax for aprocedure cal is

Procedurecall ::=
Id
Id (Actualist)

Actuallist ::=
Actual
Actual , Actualist

Actual ::=
Expression
Wordreference
Destination
Name

35

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 7. Statements

Name::=
Id

The purposes of the four types of actual parameter are defined in
[Parameter Specification[[42].

7.4. Answer Satements

An answer statement isused only within aprocedure body, and isthe means by which
avalueisgivento the procedure. It causes an expression to be evaluated to the numeric
type of the procedure, followed by automatic exit from the procedure body. The syntax
is

Answerstatement ::=
ANSWER Expression

7.5. Code Satements

Any sequence of code instructions enclosed in CODE BEGIN and END may be used
asaCoral 66 statement and it is recommended that code statements provide for the
inclusion of nested Coral text. The form of the code is not defined; it may be the
assembly code for a particular computer, or it may be at a higher level enabling
available compiler features to be exploited. The code should, above all, enable the
Coral programmer to exploit al the available hardware facilities of the computer. For
communication between code and other statements, it must be possible to use any
identifier of the program within the code statement, provided such identifiersarein
scope. In some implementations, a code statement may be said to possess a value.
The"statement” may then be used asa primary in an expression, like acall of atyped
procedure. Though not prohibited, thisis not a standard feature of Coral 66, and may
not be extended to other forms of statement. The syntax for a code statement is

Codestatement ::=
CODE BEGIN Codesequence END

Codesequence ::=
defined in a particular implementation

7.6. Compound Satements

A compound statement i s a sequence of statement grouped to form asingle statement,
for use where the syntactic structure of the language demands. Compound statements
are transparent to scopes. It is therefore permitted to go to alabel which is set inside
acompound statement. The syntax is

36

http://www.w3.org/Style/XSL
http://www.renderx.com/

7.7. Blocks

Compoundstatement ::=
BEGIN Statementlist END

Statementlist ::=
Statement
Statement ; Statementlist

7.7. Blocks

See[Chapter 3, Scopind[7].

7.8. Dummy Statements
A dummy statement is a void whose execution has no effect. For example, adummy
statement follows the colon in
; | abel: END
The syntax rule is

Dummystatement ::=
void

7.9. Conditional Satements
The two forms of conditiona statement are

Conditional statement ::=
IF Condition THEN Consequence
IF Condition THEN Consequence EL SE Alternative

Consequence .=
Simpl estatement
Label : Consequence

Alternative ::=
Statement

If the condition is true, the consequence is obeyed. If the condition isfalse and ELSE
is present, the alternative is obeyed. If the condition isfalse and no EL SE is present,
the conditional statement has no effect beyond evaluation of the condition.

37

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 7. Statements

7.10. For Satements

The for-statement provides a means of executing repeatedly a given statement, the
"controlled statement", for different values of a chosen variable, which may (or may
not) occur within the controlled statement. A typical form of for-statement is

FORi := 1 STEP 1 UNTIL 4,
6 STEP 2 UNTIL 10,
15 STEP 5 UNTIL 30
DO St at enent

Other forms are exemplified by

FORi :=1, 2, 4, 7, 15 DO Statenent

which is salf-explanatory, and

FORi :=i + 1 WILE x <y DO Statenent

In the latter example, the clause i + 1 WHILE x <y" counts as a single for-element
and could be used as one element in alist of for-elements (the "for-list"). As each
for-element is exhausted, the next element in the list is taken. The syntax is

Forstatement ::=
FOR Wordreference := Forlist DO Statement

Forlist ::=
Forelement
Forelement , Forlist

Forelement ::=
Expression
Expression WHILE Condition
Expression STEP Expression UNTIL Expression

The controlled variable is aword reference, i.e. either an anonymous reference or a
declared word reference.

7.10.1. For-elementswith STEP

L et the element be denoted by

38

http://www.w3.org/Style/XSL
http://www.renderx.com/

7.10.2. For-elements with WHILE

el STEP el UNTIL e3

In contrast to Algol 60, the expressions are evaluated only once. Let their values be
denoted by v1, v2 and v3 respectively. Then

1. vlisassigned tothe control variable,

2. vliscompared withv3. If (v1-v3) * v2 >0, then the for-element is exhausted,
otherwise

3. thecontrolled statement is executed,

4. thevaueof v1isset from the controlled variable, then incremented by v2 and
the cycle is repeated from (a).

7.10.2. For-édlementswith WHILE

L et the element be denoted by

el WH LE Condition

Then the sequence of operationis

1. elisevauated and assigned to the control variable,

2. thecondition istested. If false, the for-statement is exhausted, otherwise

3. thecontrolled statement is executed and the cycle repeated from (i).

Unlike those in [Section 7.10.1, “ For-elements with STEP’[[38], the expression el
and those occurring in the condition are evaluated repeatedly.

39

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FO

=

0

Render

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 8

Procedures

A procedure is abody of program, written out once only, named with an identifier,
and available for execution anywhere within the scope of the identifier. There are
three methods of communication between a procedure and its program environment.

a. Thebody may use formal parameters, of types specified in the heading of the
procedure declaration and represented by identifierslocal to the body. When the
procedureis called, the formal parameters are replaced by actual parameters, in
one-to-one correspondence.

b. Thebody may use non-local identifiers whose scopes embrace the body. Such
identifiers are also accessible outside the procedure.

c. Ananswer statement within the procedure body may compute asingle value for
the procedure, making its call suitable for use as afunction in an expression. A
procedure which possesses avalue is known as a typed procedure.

The syntax for aprocedure declaration is

Proceduredec ::=
Answerspec PROCEDURE Procedureheading ; Statement
Answerspec RECURSIVE Procedureheading ; Statement

41

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 8. Procedures

The second of the above aternativesis the form of a declaration used for recursive
procedures (see Bection 3.5, “ Restrictions Connected with Scoping[[9]). The
statement following the procedure heading is the procedure body, which contains an
answer statement (see Bection 7.4, “Answer Statements[36]) unless the answer
specification isvoid (seefSection 8.1, “Answer Specification”|[42]), and istreated as
ablock whether or not it includes any local declarations (see [Section 8.4, “ The
Procedure Body[[47]).

8.1. Answer Specification

The value of atyped procedureis given by an answer statement (see
[Answer Statements[36]) in its body; and its numeric type is specified at the front
of the procedure declaration. An untyped procedure has no answer statement, possesses
no value, and has no answer specification in front of the word PROCEDURE.

Answerspec ::=
Numbertype
Void

8.2. Procedure Heading

The procedure heading gives the procedure its name. It also describes and lists any
identifiers used as formal parametersin the body. On acall of the procedure, the
compiler sets up a correspondence between the actual parametersin the call and the
formal parameters specified in the procedure heading. The syntax of the heading is

Procedureheading ::=
Id
Id (Parameterspeclist)

Parameterspeclist ::=
Parameterspec
Parameterspec ; Parameterspeclist

8.3. Parameter Jpecification

Any object can be passed to a procedure by means of a parameter, whether it be an
object of data, a place in the program, or a process to be executed. For datathere are
two distinct levels of communication, numerical values (for input to the procedure)
and data references (for input or output). [Table 8.1, “ Parameters of Procedures][43]
lists al the types of object which can be passed, the syntactic form of specification,
and the corresponding form of the actual parameter which must be supplied in the
call. The equivalent syntax rules are:

42

http://www.w3.org/Style/XSL
http://www.renderx.com/

8.3.1. Value Parameters

Parameterspec ::=
Specifier Idlist
Tablespec
Procedurespec

Specifier ::=
VALUE Numbertype
LOCATION Numbertype
Numbertype ARRAY
LABEL
SWITCH

Table 8.1. Parametersof Procedures

Object Formal Specification Actual Parameter
numerical value VALUENumbertypel d® Expression
location of dataword || OCATIONNumbertypel d® Wordreference
name of array NumbertypeARRAY Id? Id

name of table Tablespec” Id

place in program LABELId? Destination

name of switch SWITCHId? Id

name of procedure Procedurespec® Id

&Composite specification of similar parameters has Idlist in place of Id
Psee Bection 8.3.2.3. " Table Parametersi[44
“see Bection 8.3.4, - Procedure Parameters][45]

8.3.1. Value Parameters

Theformal parameter istreated asthough declared in the procedure body; upon entry
to the procedure, the actual expression is evaluated to the type specified (including
scaling if the numeric type is FIXED), and the value is forthwith assigned to the
formal parameter. Theformal parameter may subsequently be used for working space
in the body; if the actual parameter isavariable, its value will be unaffected by
assignments to the formal parameter.

8.3.2. Data Refer ence Parameters

Location, array and table parameters are all examples of data references. Upon entry
to the procedure, these formals are made to refer to the same computer locations as
those to which the actual parameters already refer. Operations upon such formal

43

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 8. Procedures

parameters within the procedure body are therefore operations on actual parameters.
For example, the values of the actual parameters may be atered by assignmentswithin
the procedure.

8.3.2.1. Word Location Parameters

The actual parameter must be aword reference, i.e. asimple datareference, an array
element, an index table identifier, awhole-word table-element or an anonymous
reference. Index expressions are evaluated on entry to the procedure as part of the
process of obtaining the location of the actual parameter. The numeric type of the
actual parameter must agree exactly with the formal specification. Part-word
references, such as table elements are not allowed as word location parameters. An
example of a procedure heading and a possible call of the same procedure is

headi ng
cal

f (VALUE | NTEGER n; LOCATI ON | NTEGER m)
f(LOCATION(uli]), [i])
8.3.2.2. Array Parameters

Asin an array declaration, the specified numeric type appliesto all the elements of
the array named. The numeric type of the actual array name must agree with this
formal specification. By indexing within the body, the procedure can refer to any
element of the actua array.

8.3.2.3. Table Parameters

The specification of atable parameter isidentical inform to atable declarati on except
that presetting is not allowed. The syntax rule is

Tablespec ::=
TABLE Id [Width, Length] [Elementdeclist]

Theelement declaration list need include only such fields as are used in the procedure
body.

8.3.3. Place Parameters

8.3.3.1. Labd Parameters

The actual parameter must be a destination, i.e. alabel or a switch element. In the
latter case, the index is evaluated once upon entry to the procedure. The actual
parameter must be in scope at the call, even if it isout of scope where the formal
parameter is used in the procedure body.

7

http://www.w3.org/Style/XSL
http://www.renderx.com/

8.3.4. Procedure Parameters

8.3.3.2. Switch Parameters

The actual parameter is a switch identifier. By indexing within the procedure body,
the procedure can refer to any of theindividual labels which form the elements of the
switch.

8.3.4. Procedure Parameters

Within the body of aprocedure, it may be necessary to execute an unknown procedure,
i.e. aprocedure whose nameisto be supplied as an actual parameter. The features of
the unknown procedure must be formally specified in the heading of the procedure
withinwhichitiscalled. Asan example, supposethat aprocedure g has been declared
as

FI XED(24, 2) PROCEDURE g (VALUE INTEGER i, |;
| NTEGER ARRAY a); Statenent

and further suppose that a procedure g has aformal parameter f for which it may be
required to substitute g. A declaration of g, illustrating the necessary specification
(italicized for clarity) might be

PROCEDURE g (LABEL b; FI XED(24, 1) PROCEDURE f (VALUE | NTEGER,
VALUE | NTEGER, | NTEGER ARRAY)); Statenent

A typical call of g would be g (Iab, g). At theinner level of parameter specification,
no formal identifiers are required, no composite specifications are allowed (asfor i
and j in g) and the specifications are separated by commas. To pursue the example
to adeeper level of nesting, suppose that a procedure c66 has a parameter p for which
it may be required to substitute g. A declaration of ¢66 might then be

PROCEDURE ¢66 (PROCEDURE p(LABEL, FI XED(24,2) PROCEDURE;
SWTCH s); Statenent

A typical call of c66 would be c66 (g, sw). At the level of specification shownin
italicsin the latter example, no further parameter specifications are required. The
syntax rules for a procedure specification are

Procedurespec ::=
Answerspec PROCEDURE Procparamlist

45

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 8. Procedures

Procparamlist ::=
Procparameter
Procparameter , Procparamlist

Procparameter ::=
Id
Id (Typelist)

Typelist ::=
Type
Type, Typdlist

Type::=
Specifier
TABLE
Answerspec PROCEDURE

8.3.5. Non-Standard Parameter Specification

The need to specify numeric type for formal value and location parameters places an
undesirable constraint on the designer of input and output procedures. For such
procedures it is desirable that the procedure should adapt itself to the numeric type
and scale of the actual parameters. The following extension of the syntax for
Parameterspec (see [Section 8.3, “ Parameter Specification][42]) is regarded as an
acceptable device in Coral 66 implementations:

Parameterspec ::=
VALUE Formalpairlist
LOCATION Formalpairlist
Specifier Idlist
etc

Formalpairlist ::=
Formalpair
Formalpair , Formalpairlist

Formalpair ::=
Id:1d

At thecall of the procedure, each formal pair correspondsto asingle actual parameter.
Thefirst identifier is used within the procedure body, with numeric type integer, as
areference to the value of, or as the location of, the actual parameter. The compiler
arranges that the second identifier passes the numeric type and scale of the actual
parameter, represented in the form of an integer by some implementati on-dependent
convention. For example, the declaration of an output procedure might begin

46

http://www.w3.org/Style/XSL
http://www.renderx.com/

8.4. The Procedure Body

PROCEDURE out (VALUE u:v)

If X isavariable of numeric type FIXED(24,12), the procedure statement out(x) would
take account of this known scale.

8.4. The Procedure Body

For purposes of scoping, a procedure declaration may be regarded as a block as the
place where it appears on the program sheet (even though this might be an illegal
position). Everything except the body of the procedure can be disregarded, and the
formal parameters treated as though declared within the body, labels included.
Identifiers which are non-local to the procedure body are those in scope at the place
of the procedure declaration, subject to the restrictions given in
[Restrictions Connected with Scoping’[[9]. Actual parameters must, of course, be
in scope at the procedure call. For example, the block:

BEG N | NTEGER i ;
| NTEGER PROCEDURE p; ANSVER i ;
i =0
BEG N | NTEGER i ;
i =2
print (p);
END
END

has the effect of printing O.

47

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FO

=

Render

8

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 9

Communicators

The segments of a program may communicate with each other through COMMON
(seeSection 9.1, “COMMON Communicators[49] below), and with objects external
to the program by means of communicators such as LIBRARY, EXTERNAL or
ABSOLUTE, as defined in particular implementations.

9.1. COMMON Communicators

Global objects declared within a program (see[Section 3.3, “GlobalsT[8]) are
communicated to al segments through a COMMON communicator. This consists of
alist of COMMON items separated by semi-colonsall within round bracketsfollowing
the word COMMON. Such items are of three kinds, corresponding to division of
objects into data, places and procedures. A COMMON dataitem is a declaration of
theidentifierslisted withiniit, exactly asin [Chapter 4, Referenceto Datg[11], storage
being allocated as in Bection 4.5, “ Storage Allocation[[17], presets an overlays as
in Bection 4.6_“Presetting’[[18] and [Section 4.8, “Overlay Declarations’[[20].
Communication of places and procedures takes the form of specification, asin the
equivalent parameters of a procedure declaration (Section 8.3.3, “ Placg
Parameters[44] and ion 8.3.4, “ Procedure Parameters'|[45]). For each identifier
specified in a COMMON communicator, there must correspond an appropriate
declaration (or for labelsasetting) in one and only one outermost block of the program.
The syntax is

49

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 9. Communicators

Commoncommunicator ::=
COMMON (Commonitemlist)

Commonitemlist ::=
Commonitem
Commonitem ; Commonitemlist

Commonitem ::=
Datadec
Overlaydec
Placespec
Procedurespec
Void

Placespec ::=
LABEL Idlist
SWITCH Idlist

9.2. LIBRARY Communicators

To make provision for the use of library procedures (and possibly also datareferences
used by such procedures), programs may include LIBRARY communicators. These
should begin with the word LIBRARY and be styled to conform with the rest of the
language. The relative importance attached to COMMON and LIBRARY as means

of inter-segment communication borders on the questions of implementation which

falls outside the scope of the present language definition.

9.3. EXTERNAL Communicators

It may be desirable to refer to an object external to a Coral 66 program by means of
an identifier. Provided the loader permits, this may be achieved by an EXTERNAL
communicator similar in form to a COMMON communicator.

9.4. ABSOLUTE Communicators

Coral 66 programs may refer to objects having absol ute addresses in the computer
by use of ABSOLUTE communicators, which associate an identifier with a
specification of the "absolute” object, including its address. The form recommended
isthat of a COMMON communicator, except that each identifier to be associated
with an absolute | ocation takes the syntactic form Id / Integer.

50

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 10

Names and Constants

10.1. Identifiers

Identifiersare used for naming objects of data, |abelsand switches, procedures, macros
and their formal parameters. An identifier consists of an arbitrary sequence of lower
case |etters and digits, starting with aletter. It carries no information in itsform, e.g.
single-letter identifiers are not reserved for special purposes. It may be of any length,
though it is permissible for compilersto disregard all but the first twelve printing
characters. Aslayout charactersareignored, spaces may be used in identifierswithout
acting as terminators.

Id ::=
Letter Letterdigitstring
Letterdigitstring ::=
Letter Letterdigitstring
Digit Letterdigitstring
Void
Letter :=abcdefghijklmnopqgrstuvwxyz

Digit::=0123456789

51

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 10. Names and Constants

An obvious liberty istaken with the layout of alternativesin the above rules.

10.2. Numbers

Numerical constants appearing in other sections of this definition are of the following
types:

1. Constantsfor presetting, optionally signed.

2. Integersand realsas primariesin expressions. A sign attached to a primary
belongs syntactically to the expression and not to the number.

3. Integersand signed integers used in declarations or specifications, typicaly for
defining fixed scales, bit-fields and array bounds.

The syntactic classification is as follows:

Constant ::=
Number
Addoperator Number

Number ::=
Real
Integer

Signedinteger ::=
Integer
Addoperator Integer

Red ::=
Digitlist . Digitlist
Digitlist 1 Signedinteger
10 Signedinteger
Digitlist . Digitlist 1o Signedinteger
OCTAL (Octallist . Octallist)
Integer ::=
Digitlist
OCTAL (Octallist)
LITERAL (printing character)

The further expansions are

52

http://www.w3.org/Style/XSL
http://www.renderx.com/

10.3. Literal Constants

Digitlist ::=
Digit
Digit Digitlist
Octallist ::=
Octaldigit
Octaldigit Octalist

Octaldigit::=01234567

where 0 to 7 are alternatives.

10.3. Literal Constants

A printing character is assumed to have a unique integer representation within the
computer, dependent on some hardware or software convention. The integer value
may be referred to within the program by the LITERAL operator. For example,

LI TERAL (a)

has an integer value uniquely representative of "a"'. The form isincluded within the
syntax of integer (Section 10.2, “Numbers’|[52]). The printing characters will be
implementation-dependent, but it must be assumed that the set includes one 26-letter
alphabet and a set of 10 digits (seejAppendix B, List of Language Symbolq[71]).
Layout characters are not acceptable as argumentsto LITERAL.

10.4. Srings

A string is any succession of characters (printing or layout) enclosed in quotation
marks (string quotes). Assuming that the hardware representations of the opening and
closing quote symbols are distinguishabl e, occurrence of such marks must be properly
paired within the string (but seejAppendix B, List of Language ol4[71]). A string
is classed as an unconditional expression (Chapter 6, Expressiond[25]), and its value
isitslocation, but it may not be used asaL OCATION parameter. Procedures capable
of selecting individual characters from a string should be designed so that characters
are represented by the same integers values as are defined for literal constants.

String ;=
" sequence of characters with quotes matched "

53

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FOp

Render

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 11

Text Processing

11.1. Comment

A program may be annotated by the insertion of textual matter which isignored by
the compiler.

11.1.1. Comment Sentences

A comment sentence may be written wherever adeclaration or statement can appear.
It consists of theword COMMENT followed by text and terminated by a semi-colon.
For obvious reasons, the text must not contain a semi-colon. The entire comment
sentence isignored by the compiler.

11.1.2. Bracketed Comment

Bracketed comment isany textual matter enclosed within round bracketsimmediately
after a semi-colon of the program. The text may contain brackets provided that they
arematched. Bracketed comment (including the brackets) isignored by the compiler.

55

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 11. Text Processing

11.1.3. END Comment

Annotation may be inserted after the word END provided that it takes the form of an
identifier only. The identifier isignored by the compiler.

11.2. Macro Facility

A Coral 66 compiler embodies a macro processor, which may be regarded asa
self-contained routine which processes the text of the Coral program before passing
it on to the compiler proper. Its function is to enable the programmer to define and
to use convenient macro names, in the form of identifiers, to stand in place of
cumbersome or obscure portions of text, typically code statements. Once a macro
name has been defined, the processor expands it in accordance with the definition
wherever it is subsequently used, until the definition is altered of canceled

(Bection 11.2.4, “Deletion and Redefinition of Macros][57]. However the macro
processor treats comments and character strings (seeSection 10.4, “ Strings’|[53]) as
indivisible entities, and does not expand any identifiers within these entities. No
character which could form part of an identifier may be written adjacent to the use
of amacro name or formal parameter, as this would inhibit the recognition of such
names. A macro definition may be written into the source program wherever a
declaration or statement could legally appear, and isremoved from it by action of the
Macro processor.

11.2.1. String Replacement

Inthe simplest use, amacro name stands for adefinite string of characters, the macro
body. For example, the (fictitious) code statement

CODE BEG N 123, 45,6 END

might be given the name "shift6". The macro definition would be written

DEFI NE shift6 " CODE BEG N 123,45,6 END " ;

The expansion, or body, can be any sequence of charactersin which the string quotes
arematched (but seefAppendix B, List of Language Symbol4[71]). Care must be taken
to include brackets, such as BEGIN and END, as part of the macro body wherever
there is the possibility that the context of the expansion may demand them.

11.2.2. Parameters of M acros

A macro may have parameters asin the following example,

56

http://www.w3.org/Style/XSL
http://www.renderx.com/

11.2.3. Nesting of Macros

DEFINE shift(n) " CODE BEG N 123,45,n END " ;

Subsequent occurrences of shift(6) would be expanded to the code statement in
Bection 11.2.1, “String Replacement’[[56]. A formal parameter, such as n above,
must bewritten asan identifier. An actual parameter (e.g. 6) isany string of characters
in which string quotes are matched, all round and square brackets are nested and
matched, and all occurrences of acommallie between round or square brackets. This
rule enables commas to be used for separating actual parameters. The number of
actual parameters must be the same asthe number of formals, which are al so separated
by commas.

11.2.3. Nesting of Macr os

A macro definition may embody definitions or uses of other macros to any depth.
When amacro isdefined, the body is kept but not expanded. When the macro isused,
it is as though the body were substituted into the program text, and it is during this
substitution that any other macros encountered are processed. The use of a macro
with parameters may be regarded as introducing virtual macros definitions for the
formal parameters before the macro body is substituted. Thus, to continue the example
from Bection 11.2.2, “Parameters of Macros][56], the occurrence of shift(6) is
equivaent to

DEFINENn " 6 " ;
CCDE BEG N 123, 45,n END

followed immediately by deletion of the virtual macro n. Throughout the scope of
the macro shift, theformal parameter n may not be defined asamacro name. A formal
parameter may not be used in any inner nested macro definition, neither in its body
nor asamacro name nor asaformal parameter. Furthermore, noidentifier in an actual
parameter string, or its subsequent expansions, may be the same as any formal
parameter of the calling macro.

11.2.4. Deletion and Redefinition of Macros

Macro definitions are valid from the point of definition until either the end of the
program text is reached of the macro name is redefined or deleted. The scope of a
macro is independent of the blocks structure of the program. To delete a macro the
command

DELETE Macronane ;

57

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 11. Text Processing

isused wherever adeclaration or statement could appear. Alternatively, amacro name
can be redefined. Macro definitions which have the same name are stacked, so that
the most recent is the one which applies when the nameis used. If aredefined macro
is deleted, it is the most recent definition which is deleted, and the previous oneis
reinstated. 'Recent’ and 'previous ' refer to the sequence as processed by the macro
processor.

11.2.5. Syntax of Comment and M acr os

Commentsentence ::=
COMMENT any sequence of characters not including a semi-colon ;

Bracketedcomment ::=
(any sequence of charactersin which round brackets are matched)

Endcomment ::=
Id

Macrodefinition ::=
DEFINE Macroname" Macrobody "
DEFINE Macroname (Idlist) " Macrobody " ;

Macroname ::=
Id

Macrobody ::=
any sequence of charactersin which string quotes are matched

Macrodeletion ::=
DELETE Macroname;

Macrocall ::=
Macroname
Macroname (Macrostringlist)

Macrostringlist ::=
Macrostring , Macrostringlist
Macrostring

Macrostring ::=
any sequence of charactersin which commas are
protected by round or square bracketsand in
which such brackets are properly matched and
nested

58

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix A

Syntax Summary

Actual ::=
Expressi on
\Wr dr ef erence
Destination
Nane

Actuallist ::=
Act ual
Actual ,Actuallist

Addoperator ::=
+

Alternative ::=
St at ement

Answerspec ::=
Nunber t ype
Voi d

59

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix A. Syntax Summary

Answerstatement ::=
ANSWER Expr essi on

Arraydec ::=
Nunbertype ARRAY Arraylist Presetli st

Arrayitem ::=
Idlist[Sizelist]

Arraylist ::=
Arrayitem
Arrayitem, Arrayli st

Assignmentstatement ::=
Vari abl e := Expressi on

Base::=

(1d)

I d[Signedinteger]
Bitposition ::= | nt eger
Block ::=

BEGIN Declist ; Statenentlist END

Booleanword ::=
Bool eanwor d2
Bool eanwor d4 DIFFER Bool eanwor d5

Booleanword?2 ::=
Bool eanwor d3
Bool eanwor d5 UNION Bool eanwor d6

Booleanword3 ::=
Bool eanwor d6 MASK Typedpri mary

Booleanword4 ::=
Bool eanwor d
Typedpri mary

Booleanword5 ::=
Bool eanwor d2
Typedpri mary

60

http://www.w3.org/Style/XSL
http://www.renderx.com/

Booleanword6 ::=
Bool eanwor d3
Typedpri mary

Bracketedcomment ::=
(any sequence of charactersin which round brackets are matched)

Codesequence ::=
defined in a particular implementation

Codestatement ::=
CODE BEGIN Codesequence END

Commentsentence ::=
COMMENT any sequence of characters not including a semi-colon ;

Commoncommunicator ::=
COMMON (Conmoni tenist)

Commonitem ::=
Dat adec
Overl aydec
Pl acespec
Procedur espec
Voi d

Commonitemlist ::=
Comoni tem
Conmoni t em; Commoni t en i st

Comparator ::=

Comparison ::=
Si npl eexpr essi on Conpar at or Si npl eexpr essi on

Compoundstatement ::=
BEGIN St atenent | i st END

61

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix A. Syntax Summary

Condition ::=
Condi tion OR Subcondi tion
Subcondi tion

Conditionalexpression ::=
IF Condi tion
THEN Expr essi on
EL SE Expr essi on

Conditional statement ::=
IF Condi ti on THEN Consequence
IF Condi ti on THEN Consequence ELSE Al ternative

Consequence ::=
Si npl est at enent
Label : Consequence

Constant ::=
Number
Addoper at or Number

Constantlist ::=
G oup
G oup, Constantli st

Datadec ::=
Nunber dec
Arraydec
Tabl edec

Dec::=
Dat adec
Overl aydec
Swi t chdec
Procedur edec

Declist ::=
Dec
Dec ; Decli st

Destination ::=
Label
Switch[Index]

Digit::=0123456789

62

http://www.w3.org/Style/XSL
http://www.renderx.com/

Digitlist ::=
Digit
Digit Digitlist

Dimension ::=
Lower bound : Upper bound

Dummystatement ::=
voi d

Elementdec ::=
| d Nunber t ype Wor dposi tion
| d Part wor dt ype Wor dposi tion, Bitposition

Elementdeclist ::=
El ement dec
El enent dec ; El ement decl i st

Elementpresetlist ::=
PRESET Const ant|i st
Voi d

Elementscale ::=
(Totalbits,Fractionbits)
(Totalbits)

Endcomment ::=
I d

Expression ::=
Uncondi ti onal expressi on
Condi ti onal expression

Factor ::=
Primary
Bool eanwor d

Forelement ::=
Expression
Expressi on WHILE Condi tion
Expressi on STEP Expressi on UNTIL Expressi on

Forlist ::=
For el enent
Forel enment , Forli st

63

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix A. Syntax Summary

Formalpair ::=
ld:Id

Formalpairlist ::=
For mal pai r
For mal pair , Formal pairlist

Forstatement ::=
FOR Wor dr ef erence :=Forli st DO St at enent

Fractionbits ::= Si gnedi nt eger

Gotostatement ::=
GOTO Destination

Group ::=
Const ant
(Constantlist)
Voi d
Id ::=
Letter Letterdigitstring
Idlist ::=
Id
[d,ldlist
Index ::=
Expressi on
Integer ::=
Digitlist

OCTAL (Cctallist)
LITERAL (printing character)

Label ::=1d
Labellist ::=

Label

Label , Label |i st
Length ::= I nt eger

Letter :=abcdefghijklmnopqrstuvwxyz

64

http://www.w3.org/Style/XSL
http://www.renderx.com/

Letterdigitstring ::=
Letter Letterdigitstring
Digit Letterdigitstring
Voi d

Lowerbound ::=
Si gnedi nt eger

Macrobody ::=

any sequence of charactersin which string quotes are matched

Macrocall ::=
Macr oname
Macroname (Macrostringlist)

Macrodefinition ::=
DEFINE Macr onane " Macr obody "
DEFINE Macronane (1dlist)" Macrobody " ;

Macrodeletion ::=
DELETE Macronane ;

Macroname ::=
Id

Macrostring ::=
any sequence of charactersin which commas are
protected by round or square bracketsand in
which such brackets are properly matched and
nested

Macrostringlist ::=
Macrostring, Macrostringli st
Macrostring

Multoperator ::=
*

/

Name:.=
I d

Number ::=
Real
I nt eger

65

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix A. Syntax Summary

Numberdec ::=
Numbertype I dl i st Preset!ist

Numbertype ::=
FLOATING
FIXED Scal e
INTEGER

Octaldigit::=01234567

Octallist ::=
Cctal digit
Cctaldigit Cctalist

Overlaydec ::=
OVERLAY Base WITH Dat adec

Parameterspec ::=
VALUE Formal pairlist
LOCATION For mal pai rli st
Specifier Idlist
etc

Parameterspec ::=
Specifier Idlist
Tabl espec
Procedur espec

Parameterspeclist ::=
Par anet er spec
Par anet er spec ; Par anet er specl i st

Partword ::=
ld[Index]
BITS[Total bits, Bitposition] Typedprimary

Partwordreference ::=
ld[Index]
BITS[Total bits,Bitposition]Wrdreference

Partwordtype ::=
El ement scal e
UNSIGNED El ement scal e

66

http://www.w3.org/Style/XSL
http://www.renderx.com/

Placespec ::=
LABEL Idlist
SWITCH I dl i st

Presetlist ::=
:=Constant|i st
Voi d

Primary ::=
Unt ypedpri mary
Typedpri mary

Procedurecall ::=
I d
ld(Actuallist)

Proceduredec ::=

Answer spec PROCEDURE Pr ocedur eheadi ng ; St at ement
Answer spec RECURSIVE Procedur eheadi ng ; St at ement

Procedureheading ::=
Id
| d (Paraneterspeclist)

Procedurespec ::=
Answer spec PROCEDURE Procpar ani i st

Procparameter ::=
Id
[d(Typelist)

Procparamlist ::=
Procpar anet er
Procparanet er , Procparant i st

Readl ::=
Digitlist .Digitlist
Digitlist 19Si gnedinteger
10 Si gnedi nt eger
Digitlist .Digitlist 19Signedinteger
OCTAL (Cctallist .Cctallist)

Scale::= (Total hits,Fractionbits)

67

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix A. Syntax Summary

Sign ::=
+

Voi d

Signedinteger ::=
I nt eger
Addoper at or | nt eger

Simpleexpression ::=
Term
Addoperat or Term
Si npl eexpr essi on Addoper at or Term

Simplestatement ::=
Assi gnnent st at ement
Got ost at enent
Procedurecal |
Answer st at enent
Codest at ement
Conpoundst at enent
Bl ock
Dunmyst at enent

Sizelist ::=
Di mensi on
Di nensi on , Di nensi on

Specifier ::=
VALUE Nunbert ype
LOCATION Nunbert ype
Nunbert ype ARRAY
LABEL
SWITCH

Specimen ::=
ALPHA Si gn
BETA Sign

Statement ::=
Label : St at ement
Si npl est at enent
Condi ti onal st at enent
For st at ement

63

http://www.w3.org/Style/XSL
http://www.renderx.com/

Statementlist ::=
St at ement
Statenment ; Statement!li st

String 1=
" sequence of characters with quotes matched "

Subcondition ::=
Subcondi ti on AND Conpari son
Conpari son

Switch::=1d

Switchdec ::=
SWITCH Swi t ch ;= Label | i st

Tabledec ::=
TABLEId[Wdth,Length]
[El enent decl i st El enentpresetlist] Presetlist

Tablespec ::=
TABLEId[Wdth, Length][El enentdeclist]

Term::=
Fact or
TermMul t oper at or Fact or

Totalbits ::= | nt eger

Type::=
Specifier
TABLE
Answer spec PROCEDURE

Typedprimary ::=
V\or dr ef erence
Par t wor d
LOCATION (Vordreference)
Nunbert ype (Expressi on)
Procedurecal |
I nt eger

Typelist ::=
Type
Type , Typel i st

69

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix A. Syntax Summary

Unconditionalexpression ::=
Si npl eexpressi on
String

Untypedprimary ::=
Real
(Expression)

Upperbound ::=
Si gnedi nt eger

Variable::=
\Wor dr ef er ence
Part wor dr ef er ence

Width ::= 1 nt eger
Wordposition ::= Si gnedi nt eger

Wordreference ::=
Id
ld[Index]
[d[1ndex, Index]

[]

70

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix B

List of Language Symbols

The following 45 keywords are specified in the Official Definition Appendix 2.

ABSOLUTE94 DIFFERG6.1.2 LABEL 8.3,9.1 SWITCH5, 8.3,9.1

AND 6.2.1 DO 7.10 LIBRARY 9.2 TABLE4.4.1
ANSWER 7.4 ELSE6.2,7.9 LITERAL 10.3 THEN 6.2, 7.9
ARRAY 4.3 END 3.1, 7.6 LOCATION 6.1.1.2,UNION 6.1.2
8.3
BEGIN 3.1, 7.6 EXTERNAL 93 MASK 6.1.2 UNSIGNED 4.4.2.2
BIT 44.2 FINISH 4.1 OCTAL 10.2 UNTIL 7.10.1
BITS6.1.1.2.2 FIXED 4.1 OR6.2.1 VALUE8.3
CODE 7.5 FLOATING 7.10 OVERLAY 4.8 WHILE 7.10.2
COMMENT 11.1.1 FOR PRESET 4.6.2 WITH 4.8
COMMON 9.1 GOTO 7.2 PROCEDURE 8
DEFINE11.2.1 IF6.2,7.9 RECURSIVE 8

DELETE 11.2.4 INTEGER 4.1 STEP7.10.1

The following keywords extend the official syntax.

BINARY FINISH PROGRAM SRA
CONSTANT HEX SEGMENT SRL
CORAL LONG SLL

71

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FQ

=T

Render

2

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix C

Levels of Implementation

The language requirements for a particular machine or particular classes of work, or
generaly for both, are not easily assessed. The richer the language, the larger the
compiler may become, and the more difficult it may be to compile into efficient
object-code. The balance between code efficiency and the human effort needed to
attainitisnot easy to strike. The objective of Coral 66 development has been to permit
latitude, not in details, where thereis little merit in diversity of expression, but in the
presence or absence of major features such as RECURSIVE procedures, which may
or may not be considered worth having. Other such major features are:

» TABLE facility

* FIXED numbers

* BITS, DIFFER, UNION and MASK
* FLOATING numbers

A full Coral 66 compiler handles all these features, but it would not normally be
expected that acompiler for an object machinelacking floating point hardware should
handle the FLOATING type of number. The use of additional features, not officially
within the Coral 66 language, and not clashing with the official definition or with
each other, may be approved for specific fields of defence work.

73

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FQ

=J

Render

4

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix D

| mplementation-Defined
Characteristics

The Cora 66 language allowsfor certain machine dependencesin acontrolled manner.
Each implementation must document all implementation-defined characteristics:

D.1. Language Profiles

Using compile time switches, the user may select one of several language profiles.
The profiles supported are:

» Official Definition Profile

+ XGC Profile

e Custom Profile

D.1.1. Official Definition Profile

This profile corresponds to the features of the official definition, and inlcudes all
features that are described as optional. That is, the profile includes:

* RECURSIVE procedures

75

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix D. Implementation-Defined Characteristics

TABLE facility

FIXED numbers

BITS, DIFFER, UNION and MASK
FLOATING numbers

COMMON Communicators
EXTERNAL Communicators
ABSOLUTE Communicators

CODE statements

D.1.2. The XGC Profile

Thisprofileincludesall thefeatures of the Official Definition Profile, and the following
extensions:

The BY TE Numbertype

BYTE arrays from the Blandford Extension
LONG Numbertypes

The LIBRARY communicator

BINARY Numbers

HEX Numbers

CONSTANT Declarations

Shift operators

ANSI C compatible strings

D.1.3. The Custom Profile

The custom profile is reserved for users who require the language features to be the
same as those of some other compiler. There is no default custom profile, and each
custom profile requires changes to the compiler to implement the necessary language
features.

76

http://www.w3.org/Style/XSL
http://www.renderx.com/

D.2. Implementation Details

D.2. Implementation Details

Numeric Types. See[Section 4.1, “Numeric TypesT[11].
XGC Coral supports 16, 32 and 64 bit integer types, 16, 32 and 64 bit fixed point
types, and 32 and 64 bit floating point types. Theimplementation defined keyword
LONGisusedtoform LONG INTEGER, LONG FIXED and LONG FLOATING.

Meaning of Word-position. See Section 4.4.2, “ T able-Element Declaration’[[14].
XGC Coral alows table elements to extend over more than one word.
Word-position always refers to the word in which the least significant bit is
located.

Format of Code Statements. See [Section 7.5, “ Code Statements’[[36].
In XGC Coral 66, a code statement follows the practice established for other
programming languages. Each line of the code statement is an assembly language
instruction, where the operands are references to Coral source objects. A full
description will be found in [Section 7.5, “ Code Statements’[[36].

Support for the COMMON Communicator. See[Section 9.1, “COMMON

CommunicatorsT[49].
COMMON Communicators are implemented as recommended. They are the
primary means by which program segments communicate. Where the source text
for aprogram is located across many files, it is usual for the COMMON
Communicators to have their own files, which are then compiled aong with the
program segments by giving the file name on the compiler command line. Note:
thereis no include feature in Coral 66.

Support for the LIBRARY Communicator. See [Section 9.2, “LIBRARY]

CommunicatorsT[50].
In XGC Coral, the library communicator is used to include a Coral source file
that contains an external communicator that defines the data and proceduresin
aprogram library. It istypically used with standard libraries (an I-O library for
example), but may be used with user-defined libraries too. The communicator is
written LIBRARY ("filename"). The convention isfor files used in thisway to
have the suffix ".h66" to indicate that they are Coral 66 files. For example, the
file for the math library is called "math.h66", and is included by the statement
LIBRARY ("math.h66").

Support for the EXTERNAL Communicator. See [Section 9.3, “EXTERNAL]
CommunicatorsT[50].
The EXTERNAL Communicator is supported as recommended. The formis
similar to that of the COMMON communicator, but using the keyword
EXTERNAL rather than COMMON. As an implementation-defined extension,
the syntactic form Id/ String is permitted so that linkage may be madeto external
symbolsthat are not acceptable as Coral identifiers.

77

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix D. Implementation-Defined Characteristics

Support for the ABSOLUTE Communicator. See [Section 9.4, “ABSOLUTH
CommunicatorsT[50].
ABSOLUTE Communicators are implemented as recommended. The syntactic
form Id / Integer gives the address of the object identified by Id. On a
byte-addressed computer, thisis a byte address.

Length of identifiers. See Bection 10.1, “Identifiers [51].
XGC Coral permitsidentifiers of any length up to the length of aline. A
compile-time option is provided to specify whether just thefirst twelve or all the
characters are significant.

Binary Numbers. See Bection 10.2, “Numbers][52].
Integers and floating point numbers may also be given in binary notation. The
implementation defined keyword BINARY isused asaprefix, asin thefollowing
example: BINARY (1.0001). Note: binary floating point numbers cannot have
an exponent.

Hexadecimal Numbers. See Section 10.2, “Numbers[52].
Integers and floating point numbers may also be given in hexadecimal notation.
The additional digits that represent values 10 to 15 are represented using the
letters'a to 'f', in lower case or in upper case. The implementation defined
keyword HEX isused asaprefix, asin thefollowing example: HEX (fff.8). Note:
neither the octal nor hexadecimal number formats permit an exponent.

Literal Constants. SeeBection 10.3, “Literal Constants[53].
The numeric representation of charactersin the LITERAL form, is determined
by the host computer, and is assumed to be 7-bit ASCII. Non-printing characters,
with the exception of the space character, are not accepted as literals. Note also
the only one character is permitted between the parentheses.

The layout of strings. See Bection 10.4, “StringsT[53].
Thefirst character of each string contains the length of the string. The maximum
length of astring is 255 characters.

The Macro Facility. SeefSection 11.2, “Macro Facility”]| [56].
Macros are supported as described in ion 11.2, “Macro Facility"{[56]. The
macro body may be written over as many lines as necessary, and thereisno limit
onitssize.

Support for formal pairs. See Section 8.3.5, “Non-Standard Paramete|
Bpecification[[46].
Formal pairsare supported as suggested in the Official Definition with the address
of the actual parameter passed asthefirst of the pair, and the encoded type of the
parameter passed as the second. The encoded type is represented as follows:

78

http://www.w3.org/Style/XSL
http://www.renderx.com/

D.2. Implementation Details

TableD.1. Encoded Typein a Formal Pair

Encoded Type M eaning
LITERAL (s) BYTE

LITERAL (i) INTEGER
LITERAL (1) LONG INTEGER
LITERAL (j) FIXED

LITERAL (q) LONG FIXED
LITERAL (f) FLOATING
LITERAL (d) LONG FLOATING

Constant Declarations. Thisis an XGC extension.
The keyword CONSTANT may be used to define acompile-time value that may
be later used where a constant value is required. The value may be the result of
an expression that includesliteral numbers and referencesto other constants. For
example:

CONSTANT Pi := 3.14159263589793;
CONSTANT Pi over 2 := Pi [2;

79

http://www.w3.org/Style/XSL
http://www.renderx.com/

KSL-FQ

[

0

Render

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix £ Format of Code
Satements

E.1. Format of Code Satements

In XGC Coral 66 the format of a code statement is:

CCDE BEG N instructions : output operands : input operands END

For example, hereis how to use the 68881's “fsinx” instruction:

CODE BEGN "fsinx 9,%" : "=f" (result) : "f" (angle) END

Here angl e isthe Coral expression for the input operand whiler esul t isthat of the
output operand. Each operand has" f " asits operand constraint, saying that afloating
point register isrequired. The=in=f indicatesthat the operand isan output; al output
operands' constraints must use =.

Each operand is described by an operand-constraint string followed by the Coral
expression in parentheses. A colon separates the assembler template from the first
output operand, and another separates the last output operand from the first input, if
any. Commas separate output operands and separate inputs. The total number of

81

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix E. Format of Code Statements

operands s limited to ten or to the maximum number of operands in any instruction
pattern in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then there must be two
consecutive colons surrounding the place where the output operands would go.

Output operand expressions must be locations; the compiler can check this. The
compiler cannot check whether the operands have data types that are reasonable for
the instruction being executed. It does not parse the assembler instruction template
and does not know what it means, or whether it is valid assembler input. Code
statements are most often used for machine instructions that the compiler itself does
not know exist. If the output expression cannot be directly addressed (for example,
itisabit field), your constraint must allow aregister. In that case, the compiler will
use the register as the output of the code statement, and then store that register into
the output location.

The output operands must be write-only; the compiler will assume that the valuesin
these operands before the instruction are dead and need not be generated. Code
statements do not support input-output or read-write operands. For this reason, the
constraint character +, which indicates such an operand, may not be used.

When the assembler instruction has a read-write operand, or an operand in which
only some of the bits are to be changed, you must logically split its function into two
separate operands, one input operand and one write-only output operand. The
connection between them is expressed by constraints which say they need to bein
the same location when the instruction executes. Y ou can use the same Coral
expression for both operands, or different expressions. For example, here we write
the (fictitious) conmbi ne instruction with bar asitsread-only source operand and f oo
asits read-write destination:

CODE BEG N "combine 9%, %" : "=r" (foo) : "0" (foo), "g" (bar) END

Theconstraint" 0" for operand 1 saysthat it must occupy the samelocation as operand
0. A digit in constraint is allowed only in an input operand, and it must refer to an
output operand.

Only adigit in the constraint can guarantee that one operand will bein the same place
as another. The mere fact that f 00 is the value of both operands is not enough to
guarantee that they will be in the same place in the generated assembler code. The
following would not work:

CODE BEG N "combine 9%, %" : "=r" (foo) : "r" (foo), "g" (bar) END

82

http://www.w3.org/Style/XSL
http://www.renderx.com/

E.1. Format of Code Statements

Various optimizations or reloading could cause operands 0 and 1 to be in different
registers; the compiler knows no reason not to do so. For exampl e, the compiler might
find a copy of the value of f 00 in oneregister and use it for operand 1, but generate
the output operand O in adifferent register (copying it afterward tof 0o's own address).
Of course, since the register for operand 1 is not even mentioned in the assembler
code, the result will not work, but the compiler can't tell that.

Someinstructions clobber specific hard registers. To describethis, write athird colon
after the input operands, followed by the names of the clobbered hard registers (given
as strings). Here isarealistic example for the Vax:

CODE BEG N
"move3 %0, U, "
: COWENT no outputs ;
"g" (from, "g" (to), "g" (count)
"r0", tr1t, t"r2t, "r3", "r4", "r5" END

If you refer to aparticular hardware register from the assembler code, then you will
probably have to list the register after the third colon to tell the compiler that the
register's value is modified. In many assemblers, the register names begin with % to
produce one %in the assembler code, you must write %%6in the input.

If your assembler instruction can alter the condition code register, add cc to the list
of clobbered registers. the compiler on some machines represents the condition codes
as a specific hardware register; cc servesto name this register. On other machines,
the condition codeis handled differently, and specifying cc has no effect. But it is
valid no matter what the machine.

If your assembler instruction modifies memory in an unpredictable fashion, add
menory to the list of clobbered registers. Thiswill cause the compiler to not keep
memory values cached in registers across the assembler instruction.

Y ou can put multiple assembler instructions together in a single code statement,
separated either with newlines (written as\ n) or with semicolons. Theinput operands
are guaranteed not to use any of the clobbered registers, and neither will the output
operands' addresses, so you can read and write the clobbered registers as many times
asyou like. Here is an example of multipleinstructionsin atemplate; it assumes that
the subroutine _f 00 accepts argumentsin registers 9 and 10:

CODE BEG N "nmovl 9%9,r9;movl 9%, r10;call _foo"
: COWENT no outputs;
D "gt (from, "g" (to)
©"r9", "r10" END

83

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix E. Format of Code Statements

Unless an output operand has the & constraint modifier, the compiler may allocate it
in the same register as an unrelated input operand, on the assumption that the inputs
are consumed before the outputs are produced. This assumption may be false if the
assembler code actually consists of more than one instruction. In such a case, use &
for each output operand that may not overlap an input.

If you want to test the condition code produced by an assembl er instruction, you must
include a branch and alabel in the code statement, as follows:

CCDE BEG N
"clr 99;frob 9; beq Of; mov #1,9%9;0:"

g" (result)
© "g" (input) END

Speaking of labels, jumps from one code statement to another are not supported. The
compiler's optimizers do not know about these jumps, and therefore they cannot take
account of them when deciding how to optimize.

If a code statement has output operands, the compiler assumes for optimization
purposesthat the instruction has no side effects except to change the output operands.
This does not mean that instructions with a side effect cannot be used, but you must
be careful, because the compiler may eliminate them if the output operands aren't
used, or move them out of loops, or replace two with oneif they constitute acommon
subexpression. Also, if your instruction does have a side effect on a variable that
otherwise appears not to change, the old value of the variable may be reused later if
it happensto be found in aregister.

E.2. Constraints for Operands

Here are specific details on what constraint letters you can use with code statement
operands. Constraints can say whether an operand may bein aregister, and which
kinds of register; whether the operand can be a memory reference, and which kinds
of address; whether the operand may be an immediate constant, and which possible
values it may have. Constraints can also require two operands to match.

E.2.1. Smple Constraints

The simplest kind of constraint isastring full of letters, each of which describes one
kind of operand that is permitted. Here are the |etters that are allowed:

84

http://www.w3.org/Style/XSL
http://www.renderx.com/

E.2.1. Simple Constraints

“ my

W

“ \/n

A memory operand is alowed, with any kind of addressthat the target computer
supportsin general.

A memory operand is allowed, but only if the address is offsettable. This means
that adding a small integer (actually, the width in bytes of the operand, as
determined by its machine mode) may be added to the address and the result is
also avalid memory address.

For example, an address which is constant is offsettable; so is an address that is
the sum of aregister and a constant (aslong as aslightly larger constant is also
within the range of address-offsets supported by the machine); but an
auto-increment or auto-decrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending on the other
addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand, the
congtraint letter “0” isvalid only when accompanied by both “<” (if the target
machine has pre-decrement addressing) and “>" (if the target machine has
pre-increment addressing).

A memory operand that is not offsettable. In other words, anything that would
fit the “ni" constraint but not the “0” constraint.

A memory operand with auto-decrement addressing (either pre-decrement or
post-decrement) is allowed.

A memory operand with auto-increment addressing (either pre-increment or
post-increment) is allowed.

A register operand is allowed provided that it isin a general register.

85

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix E. Format of Code Statements

“d”,

wyn

[139s1)

ul ”
l

=

“ Fn

“Q,

wan

Han , “f ”) e

Other letters can be defined in machine-dependent fashion to stand for particular
classes of registers. “d”, “a” and “f ” are defined on the 68000/68020 to stand for
data, address and floating point registers.

Animmediateinteger operand (one with constant value) isallowed. Thisincludes
symbolic constants whose values will be known only at assembly time.

An immediate integer operand with aknown numeric valueis alowed. Many
systems cannot support assembly-time constants for operands less than aword
wide. Constraints for these operands should use “n” rather than “i ”.

“J7 K L P

Other lettersintherange | ” through “P” may be defined in amachine-dependent
fashion to permit immediate integer operands with explicit integer valuesin

specified ranges. For example, onthe 68000, “| ” isdefined to stand for therange
of values 1to 8. Thisistherange permitted asa shift count in the shift instructions.

Animmediate floating operand (expression codeconst _doubl e) isallowed, but
only if thetarget floating point format isthe same asthat of the host machine (on
which the compiler is running).

An immediate floating operand (expression code const _doubl €) is allowed.
“p

“G’ and “H’" may be defined in amachine-dependent fashion to permit immediate
floating operands in particular ranges of values.

An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an instruction allows a constant operand with a
value not known at compile time, it certainly must allow any known value. So
why use“s” instead of “i "? Sometimes it allows better code to be generated.

36

http://www.w3.org/Style/XSL
http://www.renderx.com/

E.2.1. Simple Constraints

o

w“y

“0",

[T l)

For example, on the 68000 in afullword instruction it is possible to use an
immediate operand; but if theimmediate value is between -128 and 127, better
code results from loading the value into a register and using the register. Thisis
because the load into the register can be done with a“noveq” instruction. We
arrange for this to happen by defining the letter “K” to mean "any integer outside
the range -128 to 127", and then specifying “Ks” in the operand constraints.

Any register, memory or immediateinteger operand isallowed, except for registers
that are not general registers.

Any operand whatsoever is allowed.
“17,2r, .9

An operand that matches the specified operand number isalowed. If adigitis
used together with letters within the same alternative, the digit should come last.

Thisis called amatching constraint and what it really meansisthat the assembler
has only a single operand that fills two roles which code statements di stinguish.
For exampl e, an add instruction uses two input operands and an output operand,
but in many computers an add instruction really has only two operands, one of
them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of the
operand that usesit in the constraint.

An operand that isavalid memory addressis allowed. Thisisfor "load address"
and "push address" instructions.

[T 1)

p” inthe constraint must be accompanied by addr ess_oper and asthe predicate
inthemat ch_oper and. This predicate interprets the mode specified in the

mat ch_oper and as the mode of the memory reference for which the address
would be valid.

87

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix E. Format of Code Statements

“Q’, “R", “S", “U”

Lettersin therange “ Q' through “U’ may be defined in a machine-dependent
fashion to stand for arbitrary operand types.

E.2.2. Multiple Alter native Constraints

Sometimes asingleinstruction has multiple alternative sets of possible operands. For
example, on the 68000, alogical-or instruction can combine register or animmediate
valueinto memory, or it can combine any kind of operand into aregister; but it cannot
combine one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be
described by aseries of |ettersfor each operand. The overall constraint for an operand
ismade from the | ettersfor this operand from thefirst aternative, acomma, the letters
for this operand from the second aternative, a comma, and so on until the last
alternative.

If all the operandsfit any one alternative, theinstruction isvalid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the
operands so that that alternative applies. The alternative requiring the least copying
is chosen. If two alternatives need the same amount of copying, the one that comes
first is chosen. These choices can be altered with the “?” and “! " characters:

?

Disparage dightly the alternative that the “?” appearsin, as a choice when no
alternative applies exactly. The compiler regardsthis alternative as one unit more
costly for each “?” that appearsinit.

Disparage severely the alternative that the “! ” appearsin. This alternative can
till be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

E.2.3. Constraint Modifier Characters
Here are constraint modifier characters.

W

Means that this operand iswrite-only for thisinstruction: the previous valueis
discarded and replaced by output data.

33

http://www.w3.org/Style/XSL
http://www.renderx.com/

E.2.4. M68000 Constraints

u+n

“ gy

“og

wym

Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to
know which operands are inputs to the instruction and which are outputs from
it. “=" identifiesan output; “+” identifies an operand that is both input and output;
all other operands are assumed to be input only.

Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands.
Therefore, this operand may not liein aregister that is used as an input operand
or as part of any memory address.

“&" applies only to the aternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires”&” while othersdo not.
See, for example, the “novdf " instruction of the 68000.

Aninput operand can betied to an earlyclobber operand if itsonly use asan input
occurs before the early result is written. Adding alternatives of this form often
allows GCC to produce better code when only some of the inputs can be affected
by the earlyclobber. See, for example, the “nul si 3" instruction of the ARM.

“&" does not obviate the need to write “=".

Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if that
is the cheapest way to make all operands fit the constraints.

Saysthat all following characters, up to the next comma, are to be ignored asa
constraint. They are significant only for choosing register preferences.

E.2.4. M68000 Constraints

These additional constraints apply to the M68000 family.

udn

A dataregister, %d0 to %d7

89

http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix E. Format of Code Statements

wan

An address register, %a0 to %a7

uf ”
A MC6888L floating point register, %fp0 to %fp7

90

http://www.w3.org/Style/XSL
http://www.renderx.com/

| ndex

Symbols

I in constraint,

#in constraint,

% in constraint,
& in constraint,
+ in constraint, B9

0in constraint, B7

< in constraint, B3

= in constraint, B4

> in constraint, B3

?in congtraint, B4

A

address constraints, B7

address operand, B7

anonymous reference, B4,

answer statement, B, BZ

array, [L4, 7, B4

assignment,
auto-increment/decrement addressing,

B

Bit numbering, fi4

bit position numbering, fl§
bit selection,

block, q

bound, [i3

C

Character, B, B3

clash, §

code,

code statement,
comment, 53

common, @, B, B9
communicator, §
compound statement,
condition, B

conditional statement, B7
constant, 52

congtants in congtraints,
constraint modifier characters,
constraint, matching, B

91

http://www.w3.org/Style/XSL
http://www.renderx.com/

Index

constraints,
code statements,

D

din constraint,

declaration, [

digitsin constraint, B4
dimension, [iZ

documentation (required of an
implementation), 73

dummy statement, B

E

E in constraint,
earlyclobber operand,
Element (table), i4
evaluation,
exclamation point,
exponent, P3

expression, P§

extensible congtraints,

F

Fin constraint,
factor, p§

field, fid, B7
fixed-point, f1
floating-point, 7]
for statement,
function,

G
G in constraint,
gin constraint, B4

Global, §
goto statement,
grammar

complete listing,
H

H in constraint,

I

i in constraint, g4

| in constraint, B4

identifier, B, B1

implementation, §

implementation defined
summary of characteristics, 7§

index, i, [7, B4

initiaization,

integer, L1, P9, b2

integer type, [L]

L

Label, B, B3, B8, B4

layout, B, B3, B3

length, 14

library, H,

literal, B, B3

load address instruction, B
local, [

location, [L7, B9, B4

logic, P9, B1

M

min constraint,

Mmacro,

matching constraint, B

memory references in constraints,
modifiers in constraints,

multiple alternative constraints,

N

nin constraint,
nesting, 1, B4
number, 4
numeric type, i
@)

oin constraint,
Object, §

offsettable address,
operand constraints
code statements,

92

http://www.w3.org/Style/XSL
http://www.renderx.com/

operator
arithmetic, P§
boolean, Bl
logical,

outermost block, §

overlay,

own,

P

pin constraint, B4
packing, i3
parameter, 42,
part-word, f[§,
part-word reference,
place, B, B4
presetting,
primary,
procedure, i
body, 7
call,
declaration, {1
parameters,
procedure statement,
program, B
push address instruction, B4

Q, in constraint,
question mark,

quote, 53, B4, [71
R

r in constraint,
Real, pd, b7

real time, @
recursion, B, 73

reference, [L1, p3

registersin congtraints,

S
sin constraint,
scale, [L]

scope, [,
segment, §

simple constraints,
specification, B, ¢4
statement, 33
answer,
block, [
code,
compound,
conditional, B4
dummy, B4
for,
goto,
procedure,
step,
storage, [
string, B, B3
switch, P3, B9, B4, 9
symbol, §
syntax, g
complete listing,

T

Table, [i3, B4
term, P§

token, 71
type, [
type-changing, B9, Bd, &4

V

V in constraint,
Valuecall, 3
variable,

void, B
void preset, fi9,

W

while,

width, i4

word position, fi4
word reference, P, B4

X

X in constraint, B

93

http://www.w3.org/Style/XSL
http://www.renderx.com/

