
Coral 66 Language
Reference Manual

For mission-critical applications

www.xgc.com
XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Coral 66 Language
Reference Manual
For mission-critical applications

Order Number: XGC-C66-RM-001120

XGC Software

Farnborough
UK
<www.xgc.com>

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Coral 66 Language Reference Manual: For mission-critical applications
by Ministry of Defence

Published November 2000
© 1970 Crown Copyright
© 1999, 2000 XGC Software

Acknowledgments

The information in this reference manual is based on the text of the HMSO publication Official Definition of Coral 66, first published in 1970
and reprinted with amendments in 1974. ISBN 0 11 470221 7.

Acknowledgments

This document was prepared using the DocBook XML system. Rendering to PDF format is by XEP from RenderX.

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table of Contents

Preface xi
1 Related Documents xi
2 Reader's Comments xi
3 Preface to the 1974 Edition xii

Introduction 1Chapter 1

1.1 Special-Purpose Languages 1
1.2 Real Time 2
1.3 Syntax 2
1.4 Implementation 3

The Coral 66 Program 5Chapter 2

2.1 Objects 5
2.2 Program 6

Scoping 7Chapter 3

3.1 Block Structure 7

vXSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

3.2 Clashing of Names 8
3.3 Globals 8
3.4 Labels 9
3.5 Restrictions Connected with Scoping 9

Reference to Data 11Chapter 4

4.1 Numeric Types 11
4.2 Simple References 12
4.3 Array References 12
4.4 Packed Data 13

4.4.1 Table Declaration 14
4.4.2 Table-Element Declaration 14
4.4.3 Example of a Table Declaration 16
4.4.4 Reference to Tables and Table Elements 17

4.5 Storage Allocation 17
4.6 Presetting 18

4.6.1 Presetting of Simple References and Arrays 18
4.6.2 Presetting of Tables 19

4.7 Preservation of Values 20
4.8 Overlay Declarations 20

Place References–Switches 23Chapter 5

Expressions 25Chapter 6

6.1 Simple Expressions 25
6.1.1 Primaries 26
6.1.2 Word-Logic 29
6.1.3 Evaluation of Expressions 30

6.2 Conditional Expressions 31
6.2.1 Conditions 31

Statements 33Chapter 7

7.1 Assignments 34
7.2 Goto Statements 35
7.3 Procedure Statements 35
7.4 Answer Statements 36
7.5 Code Statements 36
7.6 Compound Statements 36
7.7 Blocks 37
7.8 Dummy Statements 37

vi

Coral 66 Language Reference Manual

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

7.9 Conditional Statements 37
7.10 For Statements 38

7.10.1 For-elements with STEP 38
7.10.2 For-elements with WHILE 39

Procedures 41Chapter 8

8.1 Answer Specification 42
8.2 Procedure Heading 42
8.3 Parameter Specification 42

8.3.1 Value Parameters 43
8.3.2 Data Reference Parameters 43
8.3.3 Place Parameters 44
8.3.4 Procedure Parameters 45
8.3.5 Non-Standard Parameter Specification 46

8.4 The Procedure Body 47

Communicators 49Chapter 9

9.1 COMMON Communicators 49
9.2 LIBRARY Communicators 50
9.3 EXTERNAL Communicators 50
9.4 ABSOLUTE Communicators 50

Names and Constants 51Chapter 10

10.1 Identifiers 51
10.2 Numbers 52
10.3 Literal Constants 53
10.4 Strings 53

Text Processing 55Chapter 11

11.1 Comment 55
11.1.1 Comment Sentences 55
11.1.2 Bracketed Comment 55
11.1.3 END Comment 56

11.2 Macro Facility 56
11.2.1 String Replacement 56
11.2.2 Parameters of Macros 56
11.2.3 Nesting of Macros 57
11.2.4 Deletion and Redefinition of Macros 57
11.2.5 Syntax of Comment and Macros 58

Coral 66 Language Reference Manual

viiXSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax Summary 59Appendix A

List of Language Symbols 71Appendix B

Levels of Implementation 73Appendix C

Implementation-Defined Characteristics 75Appendix D

D.1 Language Profiles 75
D.1.1 Official Definition Profile 75
D.1.2 The XGC Profile 76
D.1.3 The Custom Profile 76

D.2 Implementation Details 77

Format of Code Statements 81Appendix E

E.1 Format of Code Statements 81
E.2 Constraints for Operands 84

E.2.1 Simple Constraints 84
E.2.2 Multiple Alternative Constraints 88
E.2.3 Constraint Modifier Characters 88
E.2.4 M68000 Constraints 89

Index 91

viii

Coral 66 Language Reference Manual

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

List of Tables
8.1 Parameters of Procedures 43
D.1 Encoded Type in a Formal Pair 79

ixXSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

xXSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preface

This document describes the programming language supported by the XGC family
of Coral 66 compilers. The text of this document is based on the 1974 edition of
Official Definition of Coral 66, published by HMSO, London. The text includes details
of the options and extensions that XGC Coral 66 offers along with additional examples.

1. Related Documents

Getting Started with Coral 66, which offers examples and advice for the new user.

The Coral 66 User's Guide, in three volumes, which describes the commands and
options used to run the toolset.

The XGC Libraries, which documents the library functions available with the XGC
compilers.

2. Reader's Comments

We welcome any comments and suggestions you have on this and other XGC user
manuals. You can send your comments in the following ways:

• Internet electronic mail: readers.comments@xgc.com

xiXSL•FO
RenderX

readers.comments@xgc.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is printed on
the title page of this book.)

• The section numbers and page numbers of the information on which you are
commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC web site
[http://www.xgc.com/].

3. Preface to the 1974 Edition

Coral 66 is a general-purpose programming language based on Algol 60, with some
features from Coral 64 and Jovial, and some from Fortran. It was originally designed
in 1966 by I. F. Currie and M. Griffiths of the Royal Radar Establishment in response
to the need for a compiler on a fixed-point computer in a control environment. In such
fields of application, some debasement of high-level language ideals is acceptable if,
in return, there is a worthwhile gain in speed of compilation with minimal equipment
and in efficiency of object code. The need for a language which takes these
requirements into account, even though it may not be fully machine independent, is
widely felt in industrial and military work. We have therefore formalized the definition
of Coral 66, taking advantage of experience gained in the use of the language. Under
the auspices of the Inter-Establishment Committee for Computer Applications, we
have had technical advice from staff of the Royal Naval Scientific Service, the Royal
Armament Research and Development Establishment, the Royal Radar Establishment,
the Defence ADP Training Centre, from serving officers of all three services and from
interested sections of industry, to whom all acknowledgments are due.

The present definition is an inter-service standard for military programming, and has
also been widely adopted for civil purposes in the British control and automation
industry. Such civil usage is supported by RRE and the National Computing Centre
in Manchester, on behalf of the Department of Industry. The NCC has agreed to
provide information services and training facilities, and enquiries about Coral 66 for
industrial application should be directed to that organization.

P. M. WoodwardRoyal Radar Establishment

P. R. WetherallMalvern

B. GormanWorcs.

June, 1974

xii

Preface

XSL•FO
RenderX

http://www.xgc.com/
http://www.w3.org/Style/XSL
http://www.renderx.com/

IntroductionChapter 1

It is virtually impossible to design a standard language such that programs will run
with equal efficiency in all types of computer and in any applications. Much of the
design of Coral 66 reflects this difficulty. For example, the language permits the use
of non-standard code statements for any parts of a program where it may be important
to exploit particular hardware facilities. A special feature is scaled fixed-point for use
in small fixed-point machines; the floating point facilities of the language can be
omitted where hardware limitations make the use of floating-point arithmetic
uneconomical. Other features also may be dropped without reducing the power of the
language to an unacceptably low standard. Some reduced levels of implementation
are suggested in Appendix C, Levels of Implementation [73] to this definition.

1.1. Special-Purpose Languages

A clear distinction must be made between general-purpose languages for use by skilled
programmers, and more limited languages designed to incorporate the inbuilt
assumptions of specialized applications or to make direct computer access practical
for the non-specialist user. Coral 66 belongs to the first category. Languages in this
class are suitable for writing compilers and interpreters as well as for direct application.
Special-purpose languages can therefore be implemented by means of software written
in Coral 66, backed up as required with suites of specialized macros or procedures.
It is largely for this reason that the facilities for using the procedures have been kept

1XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

as general as possible. The main differences between Coral 66 procedures and those
of Algol 60 lie in the replacement of the Algol 60 dynamic name parameter by the
more efficient location or reference parameter used in Fortran, and the requirement
to declare recursive procedures explicitly as such, again in the interest of object-code
efficiency.

1.2. Real Time

The theory and structure of programming real-time computer applications has not yet
advanced to such a point that a particular choice of language facilities is inevitable.
Further, the design of real-time language is handicapped by the lack of agreed standard
software interfaces for applications programmers or compiler writers. This does not
imply that real-time programs cannot yet be written in a high-level language. The use
of Coral 66 in real-time applications implies the presence of a supervisory system for
the control of communications, which may have been designed independently of the
compiler. The programmer's control over external events, and the computer's reaction
to them, is expressed by the use of procedures or macros which communicate with
the outside world indirectly through the agency of the supervisory software. No fixed
conventions are laid down for the names or action of such calls on the supervisor.

1.3. Syntax

The widespread use of syntax-driven methods of compilation lends increasing
importance to the syntax methods of language description. The present definition
takes the form of a commentary on the syntax of Coral 66, and therefore starts with
broad structure, working downwards to finer detail. For reasons of legibility, the
customary Backus notation has been dropped in favour of a system relying on
typographical layout. Each syntax rule has on its left-hand side a class name, such as
Statement. Such names appear in lower case without spaces, and with an initial capital
letter. On the right-hand side of a rule are found the various alternative expansions
for the class. The alternatives are printed each on a new line. Where a single alternative
spreads over more than one line of print, the continuation lines are inset in relation
to the starting position of the alternatives. Each alternative expansion consists of a
sequence of items separated by spaces. The items themselves are either further class
names or terminal symbols such as BEGIN. The class name Void is used for an empty
class. For example, a typical pair of rules might be

Specimen ::=
 ALPHA Sign
 BETA Sign

Sign ::=
 +

2

Chapter 1. Introduction

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

 -
 Void

Examples of legal specimens are ALPHA+ and BETA. The equal sign is used to
separate the left-hand side from the right, except after its first appearance in a rule.

1.4. Implementation

Considerations of software engineering have been allowed to influence the design of
Coral 66, principally to ensure the possibility of rapid compilation, loading and
execution. Conceptually, Coral 66 compilation is a one-pass process. The insistence
that identifiers are fully declared or specified before use simplifies the compiler by
ensuring all relevant information is available when required. The syntax of the language
is transformable into one-track predictive form, which enables fast syntax analyzers
with no backtracking to be employed. Features which require elaborate hardware in
the object machine for efficient program execution, for example dynamic storage
allocation, are not included in the language. Unless run in a special diagnostic mode,
a Coral 66 compiler is not expected to generate run-time checks on subscript bounds.
No run-time checking of procedure entries is necessary. The arrangements for separate
compilation of program segments are designed to minimize load-time overheads, but
the specification of the interface between a Coral 66 compiler and the loader is outside
the scope of the present document.

1.4. Implementation

3XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

The Coral 66 ProgramChapter 2

A distinction is made between symbols and characters. Characters, standing only for
themselves, may be used in strings or as literal constants. Apart from such occurrences,
a program may be regarded as a sequence of symbols, each visibly representable by
a unique character or combination of characters. The symbols of the language are
defined (see Appendix B, List of Language Symbols [71]), but the characters are not.
For the purpose of the language definition, words in upper case letters are treated as
single symbols. Lower case letters are reserved for use in identifiers, which may also
include digits in non-leading positions. Except where they are used as strings, layout
characters are ignored by a Coral 66 compiler.

2.1. Objects

A program is made up of symbols (such as BEGIN, =, 4) and arbitrary identifiers
which, by declaration, specification or setting acquire the status of single symbols.
Identifiers are names referring to objects which are classified as

• data (numbers, arrays of numbers, tables)

• places (labels and switches)

• procedures (functions and processes)

5XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

2.2. Program

A program need not be compiled in one unit, but may be divided into segments for
separate compilation. To make it possible to refer to chosen objects in different
segments, the name and types of such objects are written outside the program segments
in communicators. Objects fully defined within the program are rendered accessible
to all segments by their mention in a COMMON communicator (see Section 3.3,
“Globals” [8] and see Section 9.1, “COMMON Communicators” [49]). Objects
whose full definition lies outside the program, for example library procedures, can
be made accessible to all segments by mention in forms of communicator whose
definition will be implementation-dependent. A Coral 66 program will thus comprise

name of program
optional communicators
named segments

in some appropriate sequence. Each program segment is in the form of a block (see
Chapter 3, Scoping [7]). The language definition does not specify how the program
or its segments shall be named or how the segments are to be separated or terminated,
but when the whole program is compiled together, a typical form might be:

name of program
COMMON etc ;
segment name 1
BEGIN ... END
segment name 2
BEGIN ... END
FINISH

The program starts running from the beginning of a segment, the choice of which will
depend upon a convention or mechanism outside the definition of the language.

6

Chapter 2. The Coral 66 Program

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

ScopingChapter 3

A named object can be brought into existence for part of a program and may have no
existence elsewhere (but see Section 4.7, “Preservation of Values” [20]). The part of
the program in which it is declared to exist is known as its scope. One effect of scoping
is to increase the freedom of choosing names for objects whose scopes do not overlap.
The other effect is economy of computer storage space. The scope of an object is
settled by the block structure as described below.

3.1. Block Structure

A block is a statement consisting, internally, of a sequence of declarations followed
by a sequence of statements punctuated by semi-colons and all bracketed by a BEGIN
and END. Formally,

Block ::=
 BEGIN Declist ; Statementlist END

Declist ::=
 Dec
 Dec ; Declist

Dec ::=
 Datadec

7XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

 Overlaydec
 Switchdec
 Proceduredec

Datadec ::=
 Numberdec
 Arraydec
 Tabledec

The declarations have the purpose of fully classifying new objects and providing them
with names (identifiers). As a statement can be itself a block merely by having the
right form, blocks may be nested to an arbitrary depth. Except for global objects (see
Section 3.3, “Globals” [8]), the scope of an object is the block in which it is declared,
and within this block the object is said to be local. The scope penetrates inner blocks,
where the object is said to be non-local.

3.2. Clashing of Names

If two objects have the same name and their scopes overlap, the clash of definitions
could give rise to ambiguity. Typically, a clash occurs when an inner block is opened
and a local object is declared to have the same name as a non-local object which
already exists. In this situation, the non-local object continues to exist through the
inner block (e.g. a variable maintains its value), but becomes temporarily inaccessible.
The local meaning of the identifier always takes precedence.

3.3. Globals

A program consists of a number of segments, each of which may be described as an
outermost block, as there is no format block surrounding the segments. In addition to
objects that are local to inner blocks or outermost blocks, global objects may be
defined. Such objects may be used in any segment, as their scope is the entire program.
To become global, an object must be named in a communicator written outside the
segments. For some types of object, such as COMMON data references, this takes
the form of a declaration (and is the only declaration required). Other types of object,
specifically COMMON labels, COMMON switches and COMMON procedures, must
be fully defined within a segment. This means that COMMON labels must be set,
and COMMON switches and procedures must be declared, in one of the outermost
blocks of the program. Such objects are merely "specified" in the COMMON
communicator, as described in Section 9.1, “COMMON Communicators” [49], and
are treated as local in every outermost block of the program. Global objects declared
outside the segments are treated as non-local. With these rules of locality, questions
of clashing are resolved in accordance with Section 3.2, “Clashing of Names” [8].

8

Chapter 3. Scoping

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

3.4. Labels

Any statement may be labeled by writing in front of it an identifier and a colon. The
scope of the label is the smallest block embracing the statement which is labeled,
extending from BEGIN to END. Thus labels can be used before they have been set.
It also follows that the only means of entering an inner block is through its BEGIN.
It is possible to jump into an outermost block from a different segment by the use of
a COMMON label (or switch or procedure).

3.5. Restrictions Connected with Scoping

No identifier other than a label may be used before it has been declared or specified.
Specification means that the type of object to which an identifier refers has been
given, but not necessarily the full definition of the object (see Section 9.1, “COMMON
Communicators” [49]). Typically, a procedure identifier is specified as referring to
a certain type of procedure with certain types of parameters by the heading of the
procedure declaration, but the procedure is not fully defined until the end of the
declaration as a whole. As an example of this, assume that two procedures f and g
are declared in succession after the beginning of the segment. Then the body of g may
call on itself or on the procedure f, but the body of f may not call on the procedure g
unless g has been specified in a COMMON communicator. If a procedure is defined
in a manner which is directly or indirectly calls itself, that procedure is said to be
recursive and must be explicitly declared as such.

3.4. Labels

9XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

10XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Reference to DataChapter 4

4.1. Numeric Types

There are three types of number, floating-point, fixed-point and integer. Except in
certain part-word table-elements (see Section 4.4.2.2, “Part-Word Table
Elements” [15]), all three types are signed. Numeric type is indicated by the word
FLOATING or INTEGER or by the word FIXED followed by the scaling constants
which must be given numerically, e.g.

FIXED(13,5)

This specifies five fractional bits and a minimum of 13 bits to represent the number
as a whole, including the fractional bits and sign. The number of fractional bits may
be negative, zero, or positive, and may cause the binary point to fall outside the
significant field of the number. It is assumed throughout this definition that a number
is confined within a single computer word. If, in any implementation, a different
system is adopted, e.g. two words for a floating point number, a systematically
modified interpretation of the language definition will be necessary. The syntax for
numeric type is

11XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Numbertype ::=
 FLOATING
 FIXED Scale
 INTEGER

Scale ::= (Totalbits , Fractionbits)

Totalbits ::= Integer

Fractionbits ::= Signedinteger

4.2. Simple References

The simplest objects of data are single numbers of floating, fixed-point or integer
types. Identifiers may refer to such objects if suitably declared, e.g.

INTEGER i, j, k;
FIXED(13,5) x, y;

and the declarations may optionally include assignment of initial values. This is known
as presetting and is described in Section 4.6, “Presetting” [18]. The syntax for a
number declaration is

Numberdec ::=
 Numbertype Idlist Presetlist

Idlist ::=
 Id
 Id , Idlist

4.3. Array References

An array reference is restricted to a one or two dimensional set of numbers all of the
same type (including scale for fixed-point). An array is represented by an identifier,
suitably declared with, for each dimension, a lower and upper index bound in the
form of a pair of integer constants, e.g.

FIXED(13,5) ARRAY b[0:19];
FLOATING ARRAY c[1:3,1:3];

The lower bound must never exceed the corresponding upper bound. If more than
one array is required with the same numeric type, and the same dimensions and bounds,
a list of array identifiers separated by commas may replace the single identifiers shown

12

Chapter 4. Reference to Data

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

in the above examples. Arrays with the same numeric type but different bounds or
dimensions may also be included in a composite declaration as shown below.

INTEGER ARRAY p, q, r[1:3], s[1:4], t, u[1:2, 1:3];

An array identifier refers to an array in its entirety, but its use in statements is confined
to the communication of array references to a procedure. Elsewhere, an array identifier
must be indexed so that it refers to a single array element. The index, in the form of
an arithmetic expression enclosed in square brackets after the array identifier, is
evaluated to an integer as described in Section 6.1.3, “Evaluation of Expressions” [30].
The syntax rules for array declaration, which include a presetting facility (Section 4.6.1,
“Presetting of Simple References and Arrays” [18]), are:

Arraydec ::=
 Numbertype ARRAY Arraylist Presetlist

Arraylist ::=
 Arrayitem
 Arrayitem , Arraylist

Arrayitem ::=
 Idlist [Sizelist]

Sizelist ::=
 Dimension
 Dimension , Dimension

Dimension ::=
 Lowerbound : Upperbound

Lowerbound ::=
 Signedinteger

Upperbound ::=
 Signedinteger

4.4. Packed Data

There are two systems for referring to packed data, one in which as unnamed field is
selected from any computer word which holds data (see Section 6.1.1.2.2,
“Part-Words” [28]), and one in which the data format is declared in advance. In the
latter system, with which this section is concerned, the format is replicated to form a
table. A group of n words is arbitrarily partitioned into bit-fields (with no fields
crossing a word boundary), and the same partitioning is applied to as many such

4.4. Packed Data

13XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

groups (m say) as are required. The total data-space for a table is thus nm words. Each
group is known as a table-entry. The fields are named, so that a combination of field
identifier and entry index selects data from all or part of one computer word, known
as a table-element. The elements in a table may occupy overlapping fields, and need
not together fill all the available space in the entry.

4.4.1. Table Declaration

A table declaration serves two purposes. The first is to provide the table with an
identifier, and to associate this identifier with an allocation of word-storage sufficient
for the width and number of entries specified. For example

TABLE april [3, 30]

is the beginning of a declaration for the table "april" with 30 entries each 3 words
wide, requiring an allocation of 90 words in all. The second purpose of the declaration
is to specify the structure of an entry by declaring the elements contained within it,
as defined in Section 4.4.2, “Table-Element Declaration” [14] below. Data-packing
is implementation dependent, and the examples will be found to assume a word length
of 24 bits. The syntax for a table declaration is

Tabledec ::=
 TABLE Id [Width , Length]
 [Elementdeclist Elementpresetlist] Presetlist

Elementdeclist ::=
 Elementdec
 Elementdec ; Elementdeclist

Width ::= Integer

Length ::= Integer

Details of the two presetting mechanisms are given in Section 4.6.2, “Presetting of
Tables” [19].

4.4.2. Table-Element Declaration

A table element declaration associates an element name with a numeric type and with
a particular field of each and every entry in the table. The field may be whole or part
of a computer word, and the form of a declaration differs accordingly. The syntax for
an element declaration, more fully developed in Section 4.4.2.2, “Part-Word Table
Elements” [15], is

14

Chapter 4. Reference to Data

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Elementdec ::=
 Id Numbertype Wordposition
 Id Partwordtype Wordposition , Bitposition

Wordposition ::= Signedinteger

Bitposition ::= Integer

Word-position and bit-position are numbered from zero upward, and the least
significant digits of a word occupies bit-position zero. Normally, table-elements will
be located so that they fall within the declared width of the table, but a Coral 66
compiler does not check the limits. To improve program legibility, it is suggested
that the word BIT be permitted as an alternative to the comma in the above text. The
meaning of Bitposition is given in see Section 4.4.2.2, “Part-Word Table
Elements” [15].

4.4.2.1. Whole-Word Table-elements

As shown in the syntax of the previous section, the form of declaration for whole-word
table-elements is

Id Numbertype Wordposition

For example,

tickets INTEGER 0

declares a pseudo-array of elements named "tickets". (True array elements are located
consecutively in store, see Section 4.5, “Storage Allocation” [17].) Each element
refers to a (signed) integer occupying a word-position zero in an entry. Similarly,

weight FIXED(16,-4) 1

locates "weight" in word-position 1 with a significance of 16 bits, stopping 4 bits
short of the binary point. Floating-point elements are similarly permitted.

4.4.2.2. Part-Word Table Elements

Elements which occupy fields narrower than a computer word (and only such elements)
are declared in forms such as

rain UNSIGNED(4, 2) 2,0;
humidity UNSIGNED(6,6) 2,8;
temperature (10,2) 2,14;

4.4.2. Table-Element Declaration

15XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

for fixed-point elements. The fixed-point scaling is given in brackets (total bits and
fraction bits), followed by the word- and bit-position of the field within the entry.
Word-position is the word-position within which the field is located, and bit-position
is the bit at the least significant end of the field. The word UNSIGNED increases the
capacity of the field for positive numbers at the expense of eliminating negative
numbers. For example, (4,2) allows numbers from -2.0 to 1.75 whilst UNSIGNED(4,2)
allows them from 0.0 to 3.75. If the scale contains only a single integer, e.g.

sunshine UNSIGNED(4) 2,4;

the number in brackets represents the total number of bits for a part-word integer.
Though (4,0) and (4) have essentially the same significance, the fact that (4,0) indicates
fixed-point type and (4) indicates an integer, should be borne in mind when such
references are used in expressions. The syntax of Partwordtype, for substitution in
the syntax of Section 4.4.2, “Table-Element Declaration” [14], is

Partwordtype ::=
 Elementscale
 UNSIGNED Elementscale

Elementscale ::=
 (Totalbits , Fractionbits)
 (Totalbits)

The rules for Totalbits and Fractionbits are in Section 4.1, “Numeric Types” [11].The
number of fraction bits may be negative, zero, or positive, and it is for the binary
point to lie outside the declared field.

4.4.3. Example of a Table Declaration

TABLE april [3, 30]
 [tickets INTEGER 0;
 weight FIXED(16, -4) 1;
 rain UNSIGNED(4, 2) 2, 0;
 sunshine UNSIGNED (4) 2, 4;
 humidity UNSIGNED(6, 6) 2, 8;
 temperature (10, 2) 2, 14]

It should be noted that all the numbers used to describe and locate fields must be
constants.

16

Chapter 4. Reference to Data

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4.4. Reference to Tables and Table Elements

A table element is selected by indexing its field identifier. To continue from the
example in Section 4.4.3, “Example of a Table Declaration” [16], the rain for april
6th would be written rain[5], for it should be noted than an entry always has the
conventional lower bound of zero. In use, the names of table-elements are always
indexed. On the other hand, a table identifier such as "april" may stand on its own
when a table reference is passed to a procedure. The use of an index with a
table-identifier does not (other than accidentally) select an entry of the table. It selects
a computer word from the table data regarded as a conventional array of single
computer words, with lower index bound zero. Thus the implied bounds of the array
"april" are 0 : 89. A word so selected is treated as a signed integer, from which it
follows that april[6] in the example would be equivalent to tickets[2]. A table name
is normally indexed only for the purpose of running through the table systematically,
for example to set all data to zero, or to form a base for overlaying (see Section 4.8,
“Overlay Declarations” [20]).

4.5. Storage Allocation

Computer storage space for data is allocated automatically at compile time, one word
for each simple reference, one for each array element, and as many as are declared
for each table entry. In any one composite declaration, a Coral 66 compiler is explicitly
required to perform allocation serially. For example, the declarations

INTEGER a, b, c;
INTEGER p, q;

will make the locations of a, b, c become n, n+1, n+2 respectively, and those of p, q
become m, m+1 where n and m are undefined and unrelated. In two-dimensional
arrays, the second index is stepped first: the declaration

INTEGER ARRAY a[1:2], b[1:2, 1:2];

will locate the elements

a[1], a[2], b[1,1], b[1,2], b[2,1], b[2,2]

in consecutive ascending locations.

4.4.4. Reference to Tables and Table Elements

17XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.6. Presetting

Certain objects of data may be initialized when the program is loaded into store by
the inclusion of a presetting clause in the data declaration. Presetting is not dynamic,
and preset values which are altered by program are not reset unless the program or
segment is reloaded. An object is not eligible for presetting if it is declared anywhere
within

1. the body of a recursive procedure, or

2. an inner block of the program, or

3. an inner block of a procedure body.

Procedure bodies do not count as blocks for the purposes of (b). For example, the
integer i is eligible for presetting in a segment which begins as follows:

BEGIN PROCEDURE f;
 BEGIN PROCEDURE g;
 BEGIN INTEGER i;

4.6.1. Presetting of Simple References and Arrays

The preset constants are listed at the end of the declaration after an assignment symbol,
and are allocated in the order defined in Section 4.5, “Storage Allocation” [17]. As
examples,

INTEGER a, b, c := 1, 2, 3;
INTEGER ARRAY k[1:2, 1:2] := 11, 12, 21, 22

If desired for legibility, round brackets may be used to group items of the Presetlist,
but such brackets are ignored by the compiler. The number of constants in the Presetlist
must not exceed, but may be less than, the number of words declared, and presetting
ceases when the Presetlist is exhausted. In special cases (see Section 4.7, “Preservation
of Values” [20]), the preset assignment symbol may be the only part of the Presetlist
which is present. The syntax is

Presetlist ::=
 := Constantlist
 Void

18

Chapter 4. Reference to Data

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Constantlist ::=
 Group
 Group , Constantlist

Group ::=
 Constant
 (Constantlist)
 Void

The main purpose of the final void will be seen in Section 4.6.2, “Presetting of
Tables” [19]. For the expansion of Constant, see Section 10.2, “Numbers” [52].

4.6.2. Presetting of Tables

There are two alternative mechanisms. If the internal structure of a table is completely
disregarded, the table can be treated as an ordinary one-dimensional array of whole
computer words (see Section 4.4.4, “Reference to Tables and Table Elements” [17]),
and preset as such (see Section 4.6.1, “Presetting of Simple References and
Arrays” [18]). Alternatively the table elements may be preset after their declaration
list, as shown at Elementpresetlist in the syntax of Section 4.4.1, “Table
Declaration” [14]. For example

TABLE gears [1,3]
 [teeth1 UNSIGNED (6) 0,0;
 teeth2 UNSIGNED (6) 0,6;
 ratio UNSIGNED (11,5) 0,12;
 arc UNSIGNED (5,5) 0,12
PRESET (57, 19, 3.0,), (50, 25, 2.0,), (45, 30, 1.5,)]

For table-element presetting, the word PRESET is used instead of the assignment
symbol of Section 4.6.1, “Presetting of Simple References and Arrays” [18]. Each
entry of the table is preset in succession as a group of elements, taken in order of their
declaration. Voids in the list imply an absence of assignment. This may be necessary
to avoid duplication when fields overlap, as do "ratio" and "arc" in the above example.
As in Section 4.6.1, “Presetting of Simple References and Arrays” [18], brackets used
for grouping constants in the list of presets are ignored by the compiler. The syntax
is

Elementpresetlist ::=
 PRESET Constantlist
 Void

The previous example could, with equal effect but less convenience, be expressed in
the form

4.6.2. Presetting of Tables

19XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

TABLE gears [1,3]
 [teeth1 UNSIGNED (6) 0,0;
 teeth2 UNSIGNED (6) 0,6;
 ratio UNSIGNED (11,5) 0,12;
 arc UNSIGNED (5,5) 0,12]
:= OCTAL(1402371), OCTAL(1003162), OCTAL(603655)

4.7. Preservation of Values

Objects of data may have no existence outside the scope of their declarations. The
values to which local identifiers refer must in general be assumed undefined when a
block is first entered and whenever it is subsequently re-entered. This is due to the
fact that a block-structured language is designed for automatic overlaying of data.
Local working space may therefore have been used for other purposes between one
entry to a block and the next. In Coral 66 this is not invariably the case. When a data
declaration contains a Presetlist as permitted by the rule given in Section 4.6,
“Presetting” [18], the values of all the objects named in that declaration will remain
undisturbed between successive entries to the block or procedure body, like "own"
variables in Algol 60. It is sufficient that a preset assignment symbol appears at then
end of the declaration, even though the list of preset constants is void.

4.8. Overlay Declarations

Overlaying may be found desirable when COMMON data is required in some segments
and not in others, as it enables global data space to be re-used for other purposes.
However, indiscriminate use of overlaying should be avoided, as it can lead to
confusion and obscurity. The facility causes apparently different data references to
refer simultaneously to the same objects of data, i.e. as alternative names for the same
storage locations. To form an overlay declaration, an ordinary data declaration is
preceded by a phrase of the form

OVERLAY Base WITH

where Base is a data reference which has previously been covered by a declaration
in the same COMMON communicator or in the same segment. The base may be a
simple reference, on-dimensional array reference or a table reference treated as a
one-dimensional array of whole words. If the array or table identifier is not indexed,
it refers to the location of its zero'th element (which may be conceptual). Storage
allocated by the overlay declaration starts from the base, proceeds serially (as in
Section 4.5, “Storage Allocation” [17]) and will not be overlaid by succeeding

20

Chapter 4. Reference to Data

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

declarations unless these are themselves overlay declarations. The syntax of an overlay
declaration is

Overlaydec ::=
 OVERLAY Base WITH Datadec

Base ::=
 (Id)
 Id [Signedinteger]

4.8. Overlay Declarations

21XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

22XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Place
References–Switches

Chapter 5

Place references refer to positions of program statements, and the simplest position
market if the label (see Section 3.4, “Labels” [9]). A switch is a preset and unalterable
array of labels, which must be within scope at the switch declaration. Any use of the
indexed switch name refers to the corresponding label. For example, the switch
declaration

SWITCH s := a, b, c

causes s[1] to refer to the label a, s[2] to b and s[3] to c. The syntax rules are

Switchdec ::=
 SWITCH Switch := Labellist

Labellist ::=
 Label
 Label , Labellist

Switch ::= Id

Label ::= Id

23XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

24XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

ExpressionsChapter 6

The term expression is reserved for arithmetic expressions. Coral 66 has no
designational expressions of Algol 60 type. As there are no Boolean variables and no
bracketed Boolean expressions (see Section 6.2.1, “Conditions” [31]), the expressions
after IF are known as conditions. The syntax for expressions is

Expression ::=
 Unconditionalexpression
 Conditionalexpression

Unconditionalexpression ::=
 Simpleexpression
 String

Strings are defined in Section 10.4, “Strings” [53].

6.1. Simple Expressions

Arithmetic is performed with the monadic and dyadic adding operators + and -, and
with the dyadic multiplying operators * (multiply) and / (divide). The plus and minus
operators work on terms, which are combinations of factors joined by multiplication
or division. There is no exponentiation operator. The syntax for simple expression
begins as follows

25XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Simpleexpression ::=
 Term
 Addoperator Term
 Simpleexpression Addoperator Term

Term ::=
 Factor
 Term Multoperator Factor

Addoperator ::=
 +
 -

Multoperator ::=
 *
 /

6.1.1. Primaries

Primaries are the basic operands in expressions. For example in the analysis of the
expression

x + y * (a + b) - 4

we discover three terms, the primary x, the term y * (a + b) and the primary 4. The
middle term is the product of two factors, the primary y and the primary (a + b). To
complete the analysis, all expressions from within brackets are similarly analyzed
until no further reduction is possible an no expression brackets remain. When an
expression contains no word-logical operators (see Section 6.1.1.2, “Typed
Primaries” [27]), a factor must be a primary, which may or may not be of a defined
type. Thus,

Factor ::=
 Primary
 Booleanword

Primary ::=
 Untypedprimary
 Typedprimary

6.1.1.1. Untyped Primaries

Untyped primaries are those operands which cannot be classed as integer, floating-point
or fixed-point (of known scale) without reference to their context. For example, the

26

Chapter 6. Expressions

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

number 3.1416 may be represented, with varying degrees of accuracy, in may different
ways within a computer word. The same applies to an expression, whose type is
determined by context (see Section 6.1.3, “Evaluation of Expressions” [30]).

Untypedprimary ::=
 Real
 (Expression)

A "real" (see Section 10.2, “Numbers” [52]) is an unsigned numerical constant
containing a decimal or octal point or a tens exponent.

6.1.1.2. Typed Primaries

Typed primaries are classified as follows

Typedprimary ::=
 Wordreference
 Partword
 LOCATION (Wordreference)
 Numbertype (Expression)
 Procedurecall
 Integer

6.1.1.2.1. Word References

A simple reference, or a reference to an array element or whole-word table-element,
has a type defined in its declaration. Such references may be described as word
references because they refer to items of data for which whole computer words are
set aside. A further kind of word reference, the anonymous reference, takes the form

[Index]

where the index is any expression evaluated to an integer to give the actual location
of a computer word. An anonymous reference possesses all the properties of an
identified reference, except that it lacks an identifier. Just as a variable i, declared as
INTEGER i, may be used in an expression to refer to the contents of the computer
word allocated to i, so the use of an anonymous reference in an expression will refer
to the contents of the address defined by Index. Such contents are taken to be of
numeric type INTEGER, irrespective of any type declaration which may have been
associated with that word with some other type. See also Section 6.1.1.2.3,
“Locations” [28]. The syntax for a word reference is

Wordreference ::=
 Id
 Id [Index]

6.1.1. Primaries

27XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

 Id [Index , Index]
 []

Index ::=
 Expression

6.1.1.2.2. Part-Words

Any single item of packed data may act as a typed primary. Such an item is either

1. a reference to a part-word table-element, or

2. a specified field of any typed primary.

In case (a), the type is defined in the table declaration. In case (b), the desired field
is selected by a prefix of the form

BITS[Totalbits , Bitposition]

in front of the primary to be operated upon. The result of this operation is a positive1

integer value of width Totalbits and in units of the bit at Bitposition. The value will
in general be implementation-dependent, even though the operand must be typed, as
no conventions are laid down for the internal representation of floating-point or
fixed-point items of data. In all cases, however, the numeric type resulting from the
application if BITS is INTEGER. The syntax for a part-word, which should be
distinguished from that of a part-word reference (see Section 7.1, “Assignments” [34]),
is

Partword ::=
 Id [Index]
 BITS [Totalbits , Bitposition] Typedprimary

6.1.1.2.3. Locations

The computer location of any word reference is obtainable by the location operator
which is written in the form

LOCATION(Wordreference)

and has the value of type INTEGER. It may be notes that if i and j refer to integers,
[LOCATION(i)] is equivalent to i, and LOCATION([j]) is equivalent to j. The
reasoning is as follows. LOCATION(i) is the address of the computer word allocated

1It is assumed that Totalbits will not be set equal to the full word length

28

Chapter 6. Expressions

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

to i. Enclosure in square brackets forms an entity equivalent to an identifier standing
for this address, which by hypothesis is i. Similarly, [23] is equivalent to an identifier
for the address 23, and LOCATION([23]) is the address for which this fictitious
identifier stands, which is 23 by hypothesis.

6.1.1.2.4. Explicit Type-Changing

A typed primary may have its type changed, and an untyped primary may be typed,
by enclosure within round brackets preceded by a specific Numbertype as described
in Section 6.1.3, “Evaluation of Expressions” [30].

6.1.1.2.5. Functions

The call of a typed procedure (see Chapter 8, Procedures [41]) may be treated as a
function and used as a primary in any expression. For the syntax of a procedure call,
See Section 7.3, “Procedure Statements” [35].

6.1.1.2.6. Integers

An integer used in any expression (see Section 10.2, “Numbers” [52]) can be assumed
to have the numeric type INTEGER before any necessary type-changes are enforced
by context.

6.1.2. Word-Logic

Three dyadic logical operators are defined for use between typed primaries. The effect
of these operators is implementation-dependent to the extent that the
word-representation of data is not defined by the language. The ith bit of the result
is a given logical function of the ith bits of the two operands, and the result as a whole
has the numeric type INTEGER. To avoid confusion with Boolean operators in
conditions (see Section 6.2.1, “Conditions” [31]), a different terminology is used.
The operators are

DIFFER UNION MASK
 0 1 0 1 0 1
 ----- ----- -----
0|0 1 0|0 1 0|0 0
1|1 0 1|1 1 1|0 1

DIFFER is recognizable as "not equivalent", UNION as "inclusive or" and MASK
as "and". The operators are shown in order of increasing tightness of binding. As
bracketed expressions are untyped, the use of brackets to overcome binding priorities
entails explicit integer scaling. For example

6.1.2. Word-Logic

29XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

a MASK INTEGER(b UNION c)

The formal syntax continued from Section 6.1.1, “Primaries” [26], is

Booleanword ::=
 Booleanword2
 Booleanword4 DIFFER Booleanword5

Booleanword2 ::=
 Booleanword3
 Booleanword5 UNION Booleanword6

Booleanword3 ::=
 Booleanword6 MASK Typedprimary

Booleanword4 ::=
 Booleanword
 Typedprimary

Booleanword5 ::=
 Booleanword2
 Typedprimary

Booleanword6 ::=
 Booleanword3
 Typedprimary

6.1.3. Evaluation of Expressions

Expressions are used in assignment statements, as value parameters of procedures
and as integer indexes, all of which contexts determine the numeric type finally
required. Coral 66 expressions are automatically evaluated to this type, but in the
process of calculation, data may be subjected by the compiler to various intermediate
transformations. Although an algorithm for evaluating expressions does not form part
of the official definition of the language, all syntactically outermost terms in an
expression will be evaluated to the required numeric type before the adding operators
are applied. In the simplest cases, this rule ensures predictable results, though it should
be particularly noted that rounding-off errors will not be minimal, and overflow may
occur. If an expression is enclosed in round brackets, its terms are not "outermost",
the rule no longer applies, and the algorithm for the particular compiler determines
the sequence of events. The programmer can impose any desired system of evaluation
by the use of Numbertype(Expression), which is a typed primary (see Section 6.1.1.2,
“Typed Primaries” [27]), any occurrence of which behaves like a variable, ref (say),
declared as

30

Chapter 6. Expressions

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Numbertype ref;

and assigned a value by

ref := Expression

before it is used. For example, if i and j are integer references and x is a floating-point
reference, the assignment statement

x := i - j

causes i and j to be converted to floating-point before the subtraction, whilst

x := INTEGER(i - j)

causes subtraction of integers before conversion to floating point. Although the order
of evaluation of expression is undefined, the following rule concerning functions will
apply. Value parameters of a function are necessarily evaluated before the function
itself is computed, so that the order of evaluation of sin(cos(expn)) will be expn, cos,
sin. Apart from this type of reversal, functions occurring in a simple expression will
be evaluated in the order in which they appear when the expression is read from left
to right, regardless of brackets.

6.2. Conditional Expressions

A conditional expression has the form

Conditionalexpression ::=
 IF Condition
 THEN Expression
 ELSE Expression

with the usual interpretation.

6.2.1. Conditions

A condition is made up of arithmetic comparisons connected by Boolean operators
OR and AND, of which AND is the more tightly binding. The permitted arithmetic
comparisons are less than, less than or equal to, equal to, greater than or equal to,
greater than, and not equal to. The syntax rules are

6.2. Conditional Expressions

31XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Condition ::=
 Condition OR Subcondition
 Subcondition

Subcondition ::=
 Subcondition AND Comparison
 Comparison

Comparison ::=
 Simpleexpression Comparator Simpleexpression

Comparator ::=
 <
 <=
 =
 >=
 >
 <>

The Boolean operators have their usual meanings, the OR being inclusive. Conditions
are evaluated from left to right only as far as is necessary to determine their truth or
falsity.

32

Chapter 6. Expressions

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

StatementsChapter 7

Statement ::=
 Label : Statement
 Simplestatement
 Conditionalstatement
 Forstatement

Simplestatement ::=
 Assignmentstatement
 Gotostatement
 Procedurecall
 Answerstatement
 Codestatement
 Compoundstatement
 Block
 Dummystatement

Statements are normally executed in the order in which they were written, except that
a goto statement may interrupt this sequence without return, and a conditional statement
may cause certain statements to be skipped.

33XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

7.1. Assignments

The left-hand side of an assignment statement is always a data reference, and the
right-hand side an expression for procuring a numerical value. The result of the
assignment is that the left-hand side refers to the new value until this is changed by
further assignment, or until the value is lost because the reference goes out of scope
(but see Section 4.7, “Preservation of Values” [20]). The expression on the right hand
side is evaluated to the numeric type of the reference, with automatic scaling and
rounding as necessary. The left-hand side may be a word reference as defined in
Section 6.1.1.2.1, “Word References” [27] or it may be a part-word reference, i.e. a
part-word table-element or some selected field of a word reference. When assignment
is made to a part-word reference, the remaining bits of the word are unaltered. As
examples of assignment,

[LOCATION(i) + 1] := 3.8

has the effect of placing the integer 4 in the location succeeding that allocated to i,
and

BITS[2,6]x := 3

has the effect of placing the binary digits 11 in bits 7 and 6 of the word allocated to
x. This last assignment statement is treated in a similar manner to an assignment which
has on its left-hand side an unsigned integer table-element. The statement

BITS[1,23][LOCATION(i) + 1] := 1

would in a 24-bit machine, force the sign bit in the indicated location to one. The
syntax of the assignment statement is

Assignmentstatement ::=
 Variable := Expression

Variable ::=
 Wordreference
 Partwordreference

Partwordreference ::=
 Id [Index]
 BITS [Totalbits , Bitposition] Wordreference

There is no form of multiple assignment statement.

34

Chapter 7. Statements

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

7.2. Goto Statements

The goto statement causes the next statement for execution to be the one having the
given label. The label may be written explicitly after GOTO, or may be referenced
by means of a switch whose index must lie within the range 1 to n where n is the
number of labels in the switch declaration. See also Section 3.4, “Labels” [9] and
Chapter 5, Place References–Switches [23]. The syntax is

Gotostatement ::=
 GOTO Destination

Destination ::=
 Label
 Switch [Index]

7.3. Procedure Statements

A procedure identifier, followed in parentheses by a list of actual parameters (if any),
is known generally as a procedure call. If the procedure possesses a value, it may be
used as a primary in an expression, but whether it possesses a value or not, it may
also stand alone as a statement. This causes

1. the formal parameters in the procedure declaration to be replaced by the actuals
in a manner which depends on the formal parameter specifications (see
Section 8.3, “Parameter Specification” [42]).

2. the procedure body to be executed before the statement dynamically following
the procedure statement is obeyed.

The syntax for a procedure call is

Procedurecall ::=
 Id
 Id (Actuallist)

Actuallist ::=
 Actual
 Actual , Actuallist

Actual ::=
 Expression
 Wordreference
 Destination
 Name

7.2. Goto Statements

35XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Name ::=
 Id

The purposes of the four types of actual parameter are defined in Section 8.3,
“Parameter Specification” [42].

7.4. Answer Statements

An answer statement is used only within a procedure body, and is the means by which
a value is given to the procedure. It causes an expression to be evaluated to the numeric
type of the procedure, followed by automatic exit from the procedure body. The syntax
is

Answerstatement ::=
 ANSWER Expression

7.5. Code Statements

Any sequence of code instructions enclosed in CODE BEGIN and END may be used
as a Coral 66 statement and it is recommended that code statements provide for the
inclusion of nested Coral text. The form of the code is not defined; it may be the
assembly code for a particular computer, or it may be at a higher level enabling
available compiler features to be exploited. The code should, above all, enable the
Coral programmer to exploit all the available hardware facilities of the computer. For
communication between code and other statements, it must be possible to use any
identifier of the program within the code statement, provided such identifiers are in
scope. In some implementations, a code statement may be said to possess a value.
The "statement" may then be used as a primary in an expression, like a call of a typed
procedure. Though not prohibited, this is not a standard feature of Coral 66, and may
not be extended to other forms of statement. The syntax for a code statement is

Codestatement ::=
 CODE BEGIN Codesequence END

Codesequence ::=
 defined in a particular implementation

7.6. Compound Statements

A compound statement is a sequence of statement grouped to form a single statement,
for use where the syntactic structure of the language demands. Compound statements
are transparent to scopes. It is therefore permitted to go to a label which is set inside
a compound statement. The syntax is

36

Chapter 7. Statements

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Compoundstatement ::=
 BEGIN Statementlist END

Statementlist ::=
 Statement
 Statement ; Statementlist

7.7. Blocks

See Chapter 3, Scoping [7].

7.8. Dummy Statements

A dummy statement is a void whose execution has no effect. For example, a dummy
statement follows the colon in

; label: END

The syntax rule is

Dummystatement ::=
 void

7.9. Conditional Statements

The two forms of conditional statement are

Conditionalstatement ::=
 IF Condition THEN Consequence
 IF Condition THEN Consequence ELSE Alternative

Consequence ::=
 Simplestatement
 Label : Consequence

Alternative ::=
 Statement

If the condition is true, the consequence is obeyed. If the condition is false and ELSE
is present, the alternative is obeyed. If the condition is false and no ELSE is present,
the conditional statement has no effect beyond evaluation of the condition.

7.7. Blocks

37XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

7.10. For Statements

The for-statement provides a means of executing repeatedly a given statement, the
"controlled statement", for different values of a chosen variable, which may (or may
not) occur within the controlled statement. A typical form of for-statement is

FOR i := 1 STEP 1 UNTIL 4,
 6 STEP 2 UNTIL 10,
 15 STEP 5 UNTIL 30
 DO Statement

Other forms are exemplified by

FOR i := 1, 2, 4, 7, 15 DO Statement

which is self-explanatory, and

FOR i := i + 1 WHILE x < y DO Statement

In the latter example, the clause "i + 1 WHILE x < y" counts as a single for-element
and could be used as one element in a list of for-elements (the "for-list"). As each
for-element is exhausted, the next element in the list is taken. The syntax is

Forstatement ::=
 FOR Wordreference := Forlist DO Statement

Forlist ::=
 Forelement
 Forelement , Forlist

Forelement ::=
 Expression
 Expression WHILE Condition
 Expression STEP Expression UNTIL Expression

The controlled variable is a word reference, i.e. either an anonymous reference or a
declared word reference.

7.10.1. For-elements with STEP

Let the element be denoted by

38

Chapter 7. Statements

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

e1 STEP e1 UNTIL e3

In contrast to Algol 60, the expressions are evaluated only once. Let their values be
denoted by v1, v2 and v3 respectively. Then

1. v1 is assigned to the control variable,

2. v1 is compared with v3. If (v1 - v3) * v2 > 0, then the for-element is exhausted,
otherwise

3. the controlled statement is executed,

4. the value of v1 is set from the controlled variable, then incremented by v2 and
the cycle is repeated from (a).

7.10.2. For-elements with WHILE

Let the element be denoted by

e1 WHILE Condition

Then the sequence of operation is

1. e1 is evaluated and assigned to the control variable,

2. the condition is tested. If false, the for-statement is exhausted, otherwise

3. the controlled statement is executed and the cycle repeated from (i).

Unlike those in Section 7.10.1, “For-elements with STEP” [38], the expression e1
and those occurring in the condition are evaluated repeatedly.

7.10.2. For-elements with WHILE

39XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

40XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

ProceduresChapter 8

A procedure is a body of program, written out once only, named with an identifier,
and available for execution anywhere within the scope of the identifier. There are
three methods of communication between a procedure and its program environment.

a. The body may use formal parameters, of types specified in the heading of the
procedure declaration and represented by identifiers local to the body. When the
procedure is called, the formal parameters are replaced by actual parameters, in
one-to-one correspondence.

b. The body may use non-local identifiers whose scopes embrace the body. Such
identifiers are also accessible outside the procedure.

c. An answer statement within the procedure body may compute a single value for
the procedure, making its call suitable for use as a function in an expression. A
procedure which possesses a value is known as a typed procedure.

The syntax for a procedure declaration is

Proceduredec ::=
 Answerspec PROCEDURE Procedureheading ; Statement
 Answerspec RECURSIVE Procedureheading ; Statement

41XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

The second of the above alternatives is the form of a declaration used for recursive
procedures (see Section 3.5, “Restrictions Connected with Scoping” [9]). The
statement following the procedure heading is the procedure body, which contains an
answer statement (see Section 7.4, “Answer Statements” [36]) unless the answer
specification is void (see Section 8.1, “Answer Specification” [42]), and is treated as
a block whether or not it includes any local declarations (see Section 8.4, “The
Procedure Body” [47]).

8.1. Answer Specification

The value of a typed procedure is given by an answer statement (see Section 7.4,
“Answer Statements” [36]) in its body; and its numeric type is specified at the front
of the procedure declaration. An untyped procedure has no answer statement, possesses
no value, and has no answer specification in front of the word PROCEDURE.

Answerspec ::=
 Numbertype
 Void

8.2. Procedure Heading

The procedure heading gives the procedure its name. It also describes and lists any
identifiers used as formal parameters in the body. On a call of the procedure, the
compiler sets up a correspondence between the actual parameters in the call and the
formal parameters specified in the procedure heading. The syntax of the heading is

Procedureheading ::=
 Id
 Id (Parameterspeclist)

Parameterspeclist ::=
 Parameterspec
 Parameterspec ; Parameterspeclist

8.3. Parameter Specification

Any object can be passed to a procedure by means of a parameter, whether it be an
object of data, a place in the program, or a process to be executed. For data there are
two distinct levels of communication, numerical values (for input to the procedure)
and data references (for input or output). Table 8.1, “Parameters of Procedures” [43]
lists all the types of object which can be passed, the syntactic form of specification,
and the corresponding form of the actual parameter which must be supplied in the
call. The equivalent syntax rules are:

42

Chapter 8. Procedures

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Parameterspec ::=
 Specifier Idlist
 Tablespec
 Procedurespec

Specifier ::=
 VALUE Numbertype
 LOCATION Numbertype
 Numbertype ARRAY
 LABEL
 SWITCH

Table 8.1. Parameters of Procedures

Actual ParameterFormal SpecificationObject

ExpressionVALUENumbertypeIdanumerical value

WordreferenceLOCATIONNumbertypeIdalocation of data word

IdNumbertypeARRAYIdaname of array

IdTablespecbname of table

DestinationLABELIdaplace in program

IdSWITCHIdaname of switch

IdProcedurespeccname of procedure

aComposite specification of similar parameters has Idlist in place of Id
bsee Section 8.3.2.3, “Table Parameters” [44]
csee Section 8.3.4, “Procedure Parameters” [45]

8.3.1. Value Parameters

The formal parameter is treated as though declared in the procedure body; upon entry
to the procedure, the actual expression is evaluated to the type specified (including
scaling if the numeric type is FIXED), and the value is forthwith assigned to the
formal parameter. The formal parameter may subsequently be used for working space
in the body; if the actual parameter is a variable, its value will be unaffected by
assignments to the formal parameter.

8.3.2. Data Reference Parameters

Location, array and table parameters are all examples of data references. Upon entry
to the procedure, these formals are made to refer to the same computer locations as
those to which the actual parameters already refer. Operations upon such formal

8.3.1. Value Parameters

43XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

parameters within the procedure body are therefore operations on actual parameters.
For example, the values of the actual parameters may be altered by assignments within
the procedure.

8.3.2.1. Word Location Parameters

The actual parameter must be a word reference, i.e. a simple data reference, an array
element, an index table identifier, a whole-word table-element or an anonymous
reference. Index expressions are evaluated on entry to the procedure as part of the
process of obtaining the location of the actual parameter. The numeric type of the
actual parameter must agree exactly with the formal specification. Part-word
references, such as table elements are not allowed as word location parameters. An
example of a procedure heading and a possible call of the same procedure is

heading f (VALUE INTEGER n; LOCATION INTEGER m)
call f (LOCATION(u[i]), [j])

8.3.2.2. Array Parameters

As in an array declaration, the specified numeric type applies to all the elements of
the array named. The numeric type of the actual array name must agree with this
formal specification. By indexing within the body, the procedure can refer to any
element of the actual array.

8.3.2.3. Table Parameters

The specification of a table parameter is identical in form to a table declaration except
that presetting is not allowed. The syntax rule is

Tablespec ::=
 TABLE Id [Width, Length] [Elementdeclist]

The element declaration list need include only such fields as are used in the procedure
body.

8.3.3. Place Parameters

8.3.3.1. Label Parameters

The actual parameter must be a destination, i.e. a label or a switch element. In the
latter case, the index is evaluated once upon entry to the procedure. The actual
parameter must be in scope at the call, even if it is out of scope where the formal
parameter is used in the procedure body.

44

Chapter 8. Procedures

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

8.3.3.2. Switch Parameters

The actual parameter is a switch identifier. By indexing within the procedure body,
the procedure can refer to any of the individual labels which form the elements of the
switch.

8.3.4. Procedure Parameters

Within the body of a procedure, it may be necessary to execute an unknown procedure,
i.e. a procedure whose name is to be supplied as an actual parameter. The features of
the unknown procedure must be formally specified in the heading of the procedure
within which it is called. As an example, suppose that a procedure g has been declared
as

FIXED(24,2) PROCEDURE g (VALUE INTEGER i, j;
 INTEGER ARRAY a); Statement

and further suppose that a procedure q has a formal parameter f for which it may be
required to substitute g. A declaration of q, illustrating the necessary specification
(italicized for clarity) might be

PROCEDURE q (LABEL b; FIXED(24,1) PROCEDURE f(VALUE INTEGER,
 VALUE INTEGER, INTEGER ARRAY)); Statement

A typical call of q would be q (lab, g). At the inner level of parameter specification,
no formal identifiers are required, no composite specifications are allowed (as for i
and j in g) and the specifications are separated by commas. To pursue the example
to a deeper level of nesting, suppose that a procedure c66 has a parameter p for which
it may be required to substitute q. A declaration of c66 might then be

PROCEDURE c66 (PROCEDURE p(LABEL, FIXED(24,2) PROCEDURE;
 SWITCH s); Statement

A typical call of c66 would be c66 (q, sw). At the level of specification shown in
italics in the latter example, no further parameter specifications are required. The
syntax rules for a procedure specification are

Procedurespec ::=
 Answerspec PROCEDURE Procparamlist

8.3.4. Procedure Parameters

45XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Procparamlist ::=
 Procparameter
 Procparameter , Procparamlist

Procparameter ::=
 Id
 Id (Typelist)

Typelist ::=
 Type
 Type , Typelist

Type ::=
 Specifier
 TABLE
 Answerspec PROCEDURE

8.3.5. Non-Standard Parameter Specification

The need to specify numeric type for formal value and location parameters places an
undesirable constraint on the designer of input and output procedures. For such
procedures it is desirable that the procedure should adapt itself to the numeric type
and scale of the actual parameters. The following extension of the syntax for
Parameterspec (see Section 8.3, “Parameter Specification” [42]) is regarded as an
acceptable device in Coral 66 implementations:

Parameterspec ::=
 VALUE Formalpairlist
 LOCATION Formalpairlist
 Specifier Idlist
 etc

Formalpairlist ::=
 Formalpair
 Formalpair , Formalpairlist

Formalpair ::=
 Id : Id

At the call of the procedure, each formal pair corresponds to a single actual parameter.
The first identifier is used within the procedure body, with numeric type integer, as
a reference to the value of, or as the location of, the actual parameter. The compiler
arranges that the second identifier passes the numeric type and scale of the actual
parameter, represented in the form of an integer by some implementation-dependent
convention. For example, the declaration of an output procedure might begin

46

Chapter 8. Procedures

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

PROCEDURE out (VALUE u:v)

If x is a variable of numeric type FIXED(24,12), the procedure statement out(x) would
take account of this known scale.

8.4. The Procedure Body

For purposes of scoping, a procedure declaration may be regarded as a block as the
place where it appears on the program sheet (even though this might be an illegal
position). Everything except the body of the procedure can be disregarded, and the
formal parameters treated as though declared within the body, labels included.
Identifiers which are non-local to the procedure body are those in scope at the place
of the procedure declaration, subject to the restrictions given in Section 3.5,
“Restrictions Connected with Scoping” [9]. Actual parameters must, of course, be
in scope at the procedure call. For example, the block:

BEGIN INTEGER i;
 INTEGER PROCEDURE p; ANSWER i;
 i := 0;
 BEGIN INTEGER i;
 i := 2;
 print (p);
 END
END

has the effect of printing 0.

8.4. The Procedure Body

47XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

48XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

CommunicatorsChapter 9

The segments of a program may communicate with each other through COMMON
(see Section 9.1, “COMMON Communicators” [49] below), and with objects external
to the program by means of communicators such as LIBRARY, EXTERNAL or
ABSOLUTE, as defined in particular implementations.

9.1. COMMON Communicators

Global objects declared within a program (see Section 3.3, “Globals” [8]) are
communicated to all segments through a COMMON communicator. This consists of
a list of COMMON items separated by semi-colons all within round brackets following
the word COMMON. Such items are of three kinds, corresponding to division of
objects into data, places and procedures. A COMMON data item is a declaration of
the identifiers listed within it, exactly as in Chapter 4, Reference to Data [11], storage
being allocated as in Section 4.5, “Storage Allocation” [17], presets an overlays as
in Section 4.6, “Presetting” [18] and Section 4.8, “Overlay Declarations” [20].
Communication of places and procedures takes the form of specification, as in the
equivalent parameters of a procedure declaration (Section 8.3.3, “Place
Parameters” [44] and Section 8.3.4, “Procedure Parameters” [45]). For each identifier
specified in a COMMON communicator, there must correspond an appropriate
declaration (or for labels a setting) in one and only one outermost block of the program.
The syntax is

49XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Commoncommunicator ::=
 COMMON (Commonitemlist)

Commonitemlist ::=
 Commonitem
 Commonitem ; Commonitemlist

Commonitem ::=
 Datadec
 Overlaydec
 Placespec
 Procedurespec
 Void

Placespec ::=
 LABEL Idlist
 SWITCH Idlist

9.2. LIBRARY Communicators

To make provision for the use of library procedures (and possibly also data references
used by such procedures), programs may include LIBRARY communicators. These
should begin with the word LIBRARY and be styled to conform with the rest of the
language. The relative importance attached to COMMON and LIBRARY as means
of inter-segment communication borders on the questions of implementation which
falls outside the scope of the present language definition.

9.3. EXTERNAL Communicators

It may be desirable to refer to an object external to a Coral 66 program by means of
an identifier. Provided the loader permits, this may be achieved by an EXTERNAL
communicator similar in form to a COMMON communicator.

9.4. ABSOLUTE Communicators

Coral 66 programs may refer to objects having absolute addresses in the computer
by use of ABSOLUTE communicators, which associate an identifier with a
specification of the "absolute" object, including its address. The form recommended
is that of a COMMON communicator, except that each identifier to be associated
with an absolute location takes the syntactic form Id / Integer.

50

Chapter 9. Communicators

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Names and ConstantsChapter 10

10.1. Identifiers

Identifiers are used for naming objects of data, labels and switches, procedures, macros
and their formal parameters. An identifier consists of an arbitrary sequence of lower
case letters and digits, starting with a letter. It carries no information in its form, e.g.
single-letter identifiers are not reserved for special purposes. It may be of any length,
though it is permissible for compilers to disregard all but the first twelve printing
characters. As layout characters are ignored, spaces may be used in identifiers without
acting as terminators.

Id ::=
 Letter Letterdigitstring

Letterdigitstring ::=
 Letter Letterdigitstring
 Digit Letterdigitstring
 Void

Letter ::= a b c d e f g h i j k l m n o p q r s t u v w x y z

Digit ::= 0 1 2 3 4 5 6 7 8 9

51XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

An obvious liberty is taken with the layout of alternatives in the above rules.

10.2. Numbers

Numerical constants appearing in other sections of this definition are of the following
types:

1. Constants for presetting, optionally signed.

2. Integers and reals as primaries in expressions. A sign attached to a primary
belongs syntactically to the expression and not to the number.

3. Integers and signed integers used in declarations or specifications, typically for
defining fixed scales, bit-fields and array bounds.

The syntactic classification is as follows:

Constant ::=
 Number
 Addoperator Number

Number ::=
 Real
 Integer

Signedinteger ::=
 Integer
 Addoperator Integer

Real ::=
 Digitlist . Digitlist
 Digitlist 10 Signedinteger
 10 Signedinteger
 Digitlist . Digitlist 10 Signedinteger
 OCTAL (Octallist . Octallist)

Integer ::=
 Digitlist
 OCTAL (Octallist)
 LITERAL (printing character)

The further expansions are

52

Chapter 10. Names and Constants

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Digitlist ::=
 Digit
 Digit Digitlist

Octallist ::=
 Octaldigit
 Octaldigit Octalist

Octaldigit ::= 0 1 2 3 4 5 6 7

where 0 to 7 are alternatives.

10.3. Literal Constants

A printing character is assumed to have a unique integer representation within the
computer, dependent on some hardware or software convention. The integer value
may be referred to within the program by the LITERAL operator. For example,

LITERAL (a)

has an integer value uniquely representative of "a". The form is included within the
syntax of integer (Section 10.2, “Numbers” [52]). The printing characters will be
implementation-dependent, but it must be assumed that the set includes one 26-letter
alphabet and a set of 10 digits (see Appendix B, List of Language Symbols [71]).
Layout characters are not acceptable as arguments to LITERAL.

10.4. Strings

A string is any succession of characters (printing or layout) enclosed in quotation
marks (string quotes). Assuming that the hardware representations of the opening and
closing quote symbols are distinguishable, occurrence of such marks must be properly
paired within the string (but see Appendix B, List of Language Symbols [71]). A string
is classed as an unconditional expression (Chapter 6, Expressions [25]), and its value
is its location, but it may not be used as a LOCATION parameter. Procedures capable
of selecting individual characters from a string should be designed so that characters
are represented by the same integers values as are defined for literal constants.

String ::=
 " sequence of characters with quotes matched "

10.3. Literal Constants

53XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

54XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Text ProcessingChapter 11

11.1. Comment

A program may be annotated by the insertion of textual matter which is ignored by
the compiler.

11.1.1. Comment Sentences

A comment sentence may be written wherever a declaration or statement can appear.
It consists of the word COMMENT followed by text and terminated by a semi-colon.
For obvious reasons, the text must not contain a semi-colon. The entire comment
sentence is ignored by the compiler.

11.1.2. Bracketed Comment

Bracketed comment is any textual matter enclosed within round brackets immediately
after a semi-colon of the program. The text may contain brackets provided that they
are matched. Bracketed comment (including the brackets) is ignored by the compiler.

55XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

11.1.3. END Comment

Annotation may be inserted after the word END provided that it takes the form of an
identifier only. The identifier is ignored by the compiler.

11.2. Macro Facility

A Coral 66 compiler embodies a macro processor, which may be regarded as a
self-contained routine which processes the text of the Coral program before passing
it on to the compiler proper. Its function is to enable the programmer to define and
to use convenient macro names, in the form of identifiers, to stand in place of
cumbersome or obscure portions of text, typically code statements. Once a macro
name has been defined, the processor expands it in accordance with the definition
wherever it is subsequently used, until the definition is altered of canceled
(Section 11.2.4, “Deletion and Redefinition of Macros” [57]. However the macro
processor treats comments and character strings (see Section 10.4, “Strings” [53]) as
indivisible entities, and does not expand any identifiers within these entities. No
character which could form part of an identifier may be written adjacent to the use
of a macro name or formal parameter, as this would inhibit the recognition of such
names. A macro definition may be written into the source program wherever a
declaration or statement could legally appear, and is removed from it by action of the
macro processor.

11.2.1. String Replacement

In the simplest use, a macro name stands for a definite string of characters, the macro
body. For example, the (fictitious) code statement

CODE BEGIN 123,45,6 END

might be given the name "shift6". The macro definition would be written

DEFINE shift6 " CODE BEGIN 123,45,6 END " ;

The expansion, or body, can be any sequence of characters in which the string quotes
are matched (but see Appendix B, List of Language Symbols [71]). Care must be taken
to include brackets, such as BEGIN and END, as part of the macro body wherever
there is the possibility that the context of the expansion may demand them.

11.2.2. Parameters of Macros

A macro may have parameters as in the following example,

56

Chapter 11. Text Processing

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

DEFINE shift(n) " CODE BEGIN 123,45,n END " ;

Subsequent occurrences of shift(6) would be expanded to the code statement in
Section 11.2.1, “String Replacement” [56]. A formal parameter, such as n above,
must be written as an identifier. An actual parameter (e.g. 6) is any string of characters
in which string quotes are matched, all round and square brackets are nested and
matched, and all occurrences of a comma lie between round or square brackets. This
rule enables commas to be used for separating actual parameters. The number of
actual parameters must be the same as the number of formals, which are also separated
by commas.

11.2.3. Nesting of Macros

A macro definition may embody definitions or uses of other macros to any depth.
When a macro is defined, the body is kept but not expanded. When the macro is used,
it is as though the body were substituted into the program text, and it is during this
substitution that any other macros encountered are processed. The use of a macro
with parameters may be regarded as introducing virtual macros definitions for the
formal parameters before the macro body is substituted. Thus, to continue the example
from Section 11.2.2, “Parameters of Macros” [56], the occurrence of shift(6) is
equivalent to

DEFINE n " 6 " ;
CODE BEGIN 123,45,n END

followed immediately by deletion of the virtual macro n. Throughout the scope of
the macro shift, the formal parameter n may not be defined as a macro name. A formal
parameter may not be used in any inner nested macro definition, neither in its body
nor as a macro name nor as a formal parameter. Furthermore, no identifier in an actual
parameter string, or its subsequent expansions, may be the same as any formal
parameter of the calling macro.

11.2.4. Deletion and Redefinition of Macros

Macro definitions are valid from the point of definition until either the end of the
program text is reached of the macro name is redefined or deleted. The scope of a
macro is independent of the blocks structure of the program. To delete a macro the
command

DELETE Macroname ;

11.2.3. Nesting of Macros

57XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

is used wherever a declaration or statement could appear. Alternatively, a macro name
can be redefined. Macro definitions which have the same name are stacked, so that
the most recent is the one which applies when the name is used. If a redefined macro
is deleted, it is the most recent definition which is deleted, and the previous one is
reinstated. 'Recent' and 'previous' refer to the sequence as processed by the macro
processor.

11.2.5. Syntax of Comment and Macros

Commentsentence ::=
 COMMENT any sequence of characters not including a semi-colon ;

Bracketedcomment ::=
 (any sequence of characters in which round brackets are matched)

Endcomment ::=
 Id

Macrodefinition ::=
 DEFINE Macroname " Macrobody "
 DEFINE Macroname (Idlist) " Macrobody " ;

Macroname ::=
 Id

Macrobody ::=
 any sequence of characters in which string quotes are matched

Macrodeletion ::=
 DELETE Macroname ;

Macrocall ::=
 Macroname
 Macroname (Macrostringlist)

Macrostringlist ::=
 Macrostring , Macrostringlist
 Macrostring

Macrostring ::=
 any sequence of characters in which commas are
 protected by round or square brackets and in
 which such brackets are properly matched and
 nested

58

Chapter 11. Text Processing

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax SummaryAppendix A

Actual ::=
 Expression
 Wordreference
 Destination
 Name

Actuallist ::=
 Actual
 Actual , Actuallist

Addoperator ::=
 +
 -

Alternative ::=
 Statement

Answerspec ::=
 Numbertype
 Void

59XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Answerstatement ::=
 ANSWER Expression

Arraydec ::=
 Numbertype ARRAY Arraylist Presetlist

Arrayitem ::=
 Idlist [Sizelist]

Arraylist ::=
 Arrayitem
 Arrayitem , Arraylist

Assignmentstatement ::=
 Variable := Expression

Base ::=
 (Id)
 Id [Signedinteger]

Bitposition ::= Integer

Block ::=
 BEGIN Declist ; Statementlist END

Booleanword ::=
 Booleanword2
 Booleanword4 DIFFER Booleanword5

Booleanword2 ::=
 Booleanword3
 Booleanword5 UNION Booleanword6

Booleanword3 ::=
 Booleanword6 MASK Typedprimary

Booleanword4 ::=
 Booleanword
 Typedprimary

Booleanword5 ::=
 Booleanword2
 Typedprimary

60

Appendix A. Syntax Summary

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Booleanword6 ::=
 Booleanword3
 Typedprimary

Bracketedcomment ::=
 (any sequence of characters in which round brackets are matched)

Codesequence ::=
 defined in a particular implementation

Codestatement ::=
 CODE BEGIN Codesequence END

Commentsentence ::=
 COMMENT any sequence of characters not including a semi-colon ;

Commoncommunicator ::=
 COMMON (Commonitemlist)

Commonitem ::=
 Datadec
 Overlaydec
 Placespec
 Procedurespec
 Void

Commonitemlist ::=
 Commonitem
 Commonitem ; Commonitemlist

Comparator ::=
 <
 <=
 =
 >=
 >
 <>

Comparison ::=
 Simpleexpression Comparator Simpleexpression

Compoundstatement ::=
 BEGIN Statementlist END

61XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Condition ::=
 Condition OR Subcondition
 Subcondition

Conditionalexpression ::=
 IF Condition
 THEN Expression
 ELSE Expression

Conditionalstatement ::=
 IF Condition THEN Consequence
 IF Condition THEN Consequence ELSE Alternative

Consequence ::=
 Simplestatement
 Label : Consequence

Constant ::=
 Number
 Addoperator Number

Constantlist ::=
 Group
 Group , Constantlist

Datadec ::=
 Numberdec
 Arraydec
 Tabledec

Dec ::=
 Datadec
 Overlaydec
 Switchdec
 Proceduredec

Declist ::=
 Dec
 Dec ; Declist

Destination ::=
 Label
 Switch [Index]

Digit ::= 0 1 2 3 4 5 6 7 8 9

62

Appendix A. Syntax Summary

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Digitlist ::=
 Digit
 Digit Digitlist

Dimension ::=
 Lowerbound : Upperbound

Dummystatement ::=
 void

Elementdec ::=
 Id Numbertype Wordposition
 Id Partwordtype Wordposition , Bitposition

Elementdeclist ::=
 Elementdec
 Elementdec ; Elementdeclist

Elementpresetlist ::=
 PRESET Constantlist
 Void

Elementscale ::=
 (Totalbits , Fractionbits)
 (Totalbits)

Endcomment ::=
 Id

Expression ::=
 Unconditionalexpression
 Conditionalexpression

Factor ::=
 Primary
 Booleanword

Forelement ::=
 Expression
 Expression WHILE Condition
 Expression STEP Expression UNTIL Expression

Forlist ::=
 Forelement
 Forelement , Forlist

63XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Formalpair ::=
 Id : Id

Formalpairlist ::=
 Formalpair
 Formalpair , Formalpairlist

Forstatement ::=
 FOR Wordreference := Forlist DO Statement

Fractionbits ::= Signedinteger

Gotostatement ::=
 GOTO Destination

Group ::=
 Constant
 (Constantlist)
 Void

Id ::=
 Letter Letterdigitstring

Idlist ::=
 Id
 Id , Idlist

Index ::=
 Expression

Integer ::=
 Digitlist
 OCTAL (Octallist)
 LITERAL (printing character)

Label ::= Id

Labellist ::=
 Label
 Label , Labellist

Length ::= Integer

Letter ::= a b c d e f g h i j k l m n o p q r s t u v w x y z

64

Appendix A. Syntax Summary

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Letterdigitstring ::=
 Letter Letterdigitstring
 Digit Letterdigitstring
 Void

Lowerbound ::=
 Signedinteger

Macrobody ::=
 any sequence of characters in which string quotes are matched

Macrocall ::=
 Macroname
 Macroname (Macrostringlist)

Macrodefinition ::=
 DEFINE Macroname " Macrobody "
 DEFINE Macroname (Idlist) " Macrobody " ;

Macrodeletion ::=
 DELETE Macroname ;

Macroname ::=
 Id

Macrostring ::=
 any sequence of characters in which commas are
 protected by round or square brackets and in
 which such brackets are properly matched and
 nested

Macrostringlist ::=
 Macrostring , Macrostringlist
 Macrostring

Multoperator ::=
 *
 /

Name ::=
 Id

Number ::=
 Real
 Integer

65XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Numberdec ::=
 Numbertype Idlist Presetlist

Numbertype ::=
 FLOATING
 FIXED Scale
 INTEGER

Octaldigit ::= 0 1 2 3 4 5 6 7

Octallist ::=
 Octaldigit
 Octaldigit Octalist

Overlaydec ::=
 OVERLAY Base WITH Datadec

Parameterspec ::=
 VALUE Formalpairlist
 LOCATION Formalpairlist
 Specifier Idlist
 etc

Parameterspec ::=
 Specifier Idlist
 Tablespec
 Procedurespec

Parameterspeclist ::=
 Parameterspec
 Parameterspec ; Parameterspeclist

Partword ::=
 Id [Index]
 BITS [Totalbits , Bitposition] Typedprimary

Partwordreference ::=
 Id [Index]
 BITS [Totalbits , Bitposition] Wordreference

Partwordtype ::=
 Elementscale
 UNSIGNED Elementscale

66

Appendix A. Syntax Summary

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Placespec ::=
 LABEL Idlist
 SWITCH Idlist

Presetlist ::=
 := Constantlist
 Void

Primary ::=
 Untypedprimary
 Typedprimary

Procedurecall ::=
 Id
 Id (Actuallist)

Proceduredec ::=
 Answerspec PROCEDURE Procedureheading ; Statement
 Answerspec RECURSIVE Procedureheading ; Statement

Procedureheading ::=
 Id
 Id (Parameterspeclist)

Procedurespec ::=
 Answerspec PROCEDURE Procparamlist

Procparameter ::=
 Id
 Id (Typelist)

Procparamlist ::=
 Procparameter
 Procparameter , Procparamlist

Real ::=
 Digitlist . Digitlist
 Digitlist 10 Signedinteger
 10 Signedinteger
 Digitlist . Digitlist 10 Signedinteger
 OCTAL (Octallist . Octallist)

Scale ::= (Totalbits , Fractionbits)

67XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Sign ::=
 +
 -
 Void

Signedinteger ::=
 Integer
 Addoperator Integer

Simpleexpression ::=
 Term
 Addoperator Term
 Simpleexpression Addoperator Term

Simplestatement ::=
 Assignmentstatement
 Gotostatement
 Procedurecall
 Answerstatement
 Codestatement
 Compoundstatement
 Block
 Dummystatement

Sizelist ::=
 Dimension
 Dimension , Dimension

Specifier ::=
 VALUE Numbertype
 LOCATION Numbertype
 Numbertype ARRAY
 LABEL
 SWITCH

Specimen ::=
 ALPHA Sign
 BETA Sign

Statement ::=
 Label : Statement
 Simplestatement
 Conditionalstatement
 Forstatement

68

Appendix A. Syntax Summary

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Statementlist ::=
 Statement
 Statement ; Statementlist

String ::=
 " sequence of characters with quotes matched "

Subcondition ::=
 Subcondition AND Comparison
 Comparison

Switch ::= Id

Switchdec ::=
 SWITCH Switch := Labellist

Tabledec ::=
 TABLE Id [Width , Length]
 [Elementdeclist Elementpresetlist] Presetlist

Tablespec ::=
 TABLE Id [Width, Length] [Elementdeclist]

Term ::=
 Factor
 Term Multoperator Factor

Totalbits ::= Integer

Type ::=
 Specifier
 TABLE
 Answerspec PROCEDURE

Typedprimary ::=
 Wordreference
 Partword
 LOCATION (Wordreference)
 Numbertype (Expression)
 Procedurecall
 Integer

Typelist ::=
 Type
 Type , Typelist

69XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Unconditionalexpression ::=
 Simpleexpression
 String

Untypedprimary ::=
 Real
 (Expression)

Upperbound ::=
 Signedinteger

Variable ::=
 Wordreference
 Partwordreference

Width ::= Integer

Wordposition ::= Signedinteger

Wordreference ::=
 Id
 Id [Index]
 Id [Index , Index]
 []

70

Appendix A. Syntax Summary

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

List of Language SymbolsAppendix B

The following 45 keywords are specified in the Official Definition Appendix 2.

SWITCH 5, 8.3, 9.1LABEL 8.3, 9.1DIFFER 6.1.2ABSOLUTE 9.4
TABLE 4.4.1LIBRARY 9.2DO 7.10AND 6.2.1
THEN 6.2, 7.9LITERAL 10.3ELSE 6.2, 7.9ANSWER 7.4
UNION 6.1.2LOCATION 6.1.1.2,

8.3
END 3.1, 7.6ARRAY 4.3

UNSIGNED 4.4.2.2MASK 6.1.2EXTERNAL 9.3BEGIN 3.1, 7.6
UNTIL 7.10.1OCTAL 10.2FINISH 4.1BIT 4.4.2
VALUE 8.3OR 6.2.1FIXED 4.1BITS 6.1.1.2.2
WHILE 7.10.2OVERLAY 4.8FLOATING 7.10CODE 7.5
WITH 4.8PRESET 4.6.2FORCOMMENT 11.1.1

PROCEDURE 8GOTO 7.2COMMON 9.1
RECURSIVE 8IF 6.2, 7.9DEFINE 11.2.1
STEP 7.10.1INTEGER 4.1DELETE 11.2.4

The following keywords extend the official syntax.

SRAPROGRAMFINISHBINARY
SRLSEGMENTHEXCONSTANT

SLLLONGCORAL

71XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

72XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Levels of ImplementationAppendix C

The language requirements for a particular machine or particular classes of work, or
generally for both, are not easily assessed. The richer the language, the larger the
compiler may become, and the more difficult it may be to compile into efficient
object-code. The balance between code efficiency and the human effort needed to
attain it is not easy to strike. The objective of Coral 66 development has been to permit
latitude, not in details, where there is little merit in diversity of expression, but in the
presence or absence of major features such as RECURSIVE procedures, which may
or may not be considered worth having. Other such major features are:

• TABLE facility

• FIXED numbers

• BITS, DIFFER, UNION and MASK

• FLOATING numbers

A full Coral 66 compiler handles all these features, but it would not normally be
expected that a compiler for an object machine lacking floating point hardware should
handle the FLOATING type of number. The use of additional features, not officially
within the Coral 66 language, and not clashing with the official definition or with
each other, may be approved for specific fields of defence work.

73XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

74XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Implementation-Defined
Characteristics

Appendix D

The Coral 66 language allows for certain machine dependences in a controlled manner.
Each implementation must document all implementation-defined characteristics:

D.1. Language Profiles

Using compile time switches, the user may select one of several language profiles.

The profiles supported are:

• Official Definition Profile

• XGC Profile

• Custom Profile

D.1.1. Official Definition Profile

This profile corresponds to the features of the official definition, and inlcudes all
features that are described as optional. That is, the profile includes:

• RECURSIVE procedures

75XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

• TABLE facility

• FIXED numbers

• BITS, DIFFER, UNION and MASK

• FLOATING numbers

• COMMON Communicators

• EXTERNAL Communicators

• ABSOLUTE Communicators

• CODE statements

D.1.2. The XGC Profile

This profile includes all the features of the Official Definition Profile, and the following
extensions:

• The BYTE Numbertype

• BYTE arrays from the Blandford Extension

• LONG Numbertypes

• The LIBRARY communicator

• BINARY Numbers

• HEX Numbers

• CONSTANT Declarations

• Shift operators

• ANSI C compatible strings

D.1.3. The Custom Profile

The custom profile is reserved for users who require the language features to be the
same as those of some other compiler. There is no default custom profile, and each
custom profile requires changes to the compiler to implement the necessary language
features.

76

Appendix D. Implementation-Defined Characteristics

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

D.2. Implementation Details

Numeric Types. See Section 4.1, “Numeric Types” [11].
XGC Coral supports 16, 32 and 64 bit integer types, 16, 32 and 64 bit fixed point
types, and 32 and 64 bit floating point types. The implementation defined keyword
LONG is used to form LONG INTEGER, LONG FIXED and LONG FLOATING.

Meaning of Word-position. See Section 4.4.2, “Table-Element Declaration” [14].
XGC Coral allows table elements to extend over more than one word.
Word-position always refers to the word in which the least significant bit is
located.

Format of Code Statements. See Section 7.5, “Code Statements” [36].
In XGC Coral 66, a code statement follows the practice established for other
programming languages. Each line of the code statement is an assembly language
instruction, where the operands are references to Coral source objects. A full
description will be found in Section 7.5, “Code Statements” [36].

Support for the COMMON Communicator. See Section 9.1, “COMMON
Communicators” [49].

COMMON Communicators are implemented as recommended. They are the
primary means by which program segments communicate. Where the source text
for a program is located across many files, it is usual for the COMMON
Communicators to have their own files, which are then compiled along with the
program segments by giving the file name on the compiler command line. Note:
there is no include feature in Coral 66.

Support for the LIBRARY Communicator. See Section 9.2, “LIBRARY
Communicators” [50].

In XGC Coral, the library communicator is used to include a Coral source file
that contains an external communicator that defines the data and procedures in
a program library. It is typically used with standard libraries (an I-O library for
example), but may be used with user-defined libraries too. The communicator is
written LIBRARY ("filename"). The convention is for files used in this way to
have the suffix ".h66" to indicate that they are Coral 66 files. For example, the
file for the math library is called "math.h66", and is included by the statement
LIBRARY ("math.h66").

Support for the EXTERNAL Communicator. See Section 9.3, “EXTERNAL
Communicators” [50].

The EXTERNAL Communicator is supported as recommended. The form is
similar to that of the COMMON communicator, but using the keyword
EXTERNAL rather than COMMON. As an implementation-defined extension,
the syntactic form Id / String is permitted so that linkage may be made to external
symbols that are not acceptable as Coral identifiers.

D.2. Implementation Details

77XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Support for the ABSOLUTE Communicator. See Section 9.4, “ABSOLUTE
Communicators” [50].

ABSOLUTE Communicators are implemented as recommended. The syntactic
form Id / Integer gives the address of the object identified by Id. On a
byte-addressed computer, this is a byte address.

Length of identifiers. See Section 10.1, “Identifiers” [51].
XGC Coral permits identifiers of any length up to the length of a line. A
compile-time option is provided to specify whether just the first twelve or all the
characters are significant.

Binary Numbers. See Section 10.2, “Numbers” [52].
Integers and floating point numbers may also be given in binary notation. The
implementation defined keyword BINARY is used as a prefix, as in the following
example: BINARY (1.0001). Note: binary floating point numbers cannot have
an exponent.

Hexadecimal Numbers. See Section 10.2, “Numbers” [52].
Integers and floating point numbers may also be given in hexadecimal notation.
The additional digits that represent values 10 to 15 are represented using the
letters 'a' to 'f', in lower case or in upper case. The implementation defined
keyword HEX is used as a prefix, as in the following example: HEX (fff.8). Note:
neither the octal nor hexadecimal number formats permit an exponent.

Literal Constants. See Section 10.3, “Literal Constants” [53].
The numeric representation of characters in the LITERAL form, is determined
by the host computer, and is assumed to be 7-bit ASCII. Non-printing characters,
with the exception of the space character, are not accepted as literals. Note also
the only one character is permitted between the parentheses.

The layout of strings. See Section 10.4, “Strings” [53].
The first character of each string contains the length of the string. The maximum
length of a string is 255 characters.

The Macro Facility. See Section 11.2, “Macro Facility” [56].
Macros are supported as described in Section 11.2, “Macro Facility” [56]. The
macro body may be written over as many lines as necessary, and there is no limit
on its size.

Support for formal pairs. See Section 8.3.5, “Non-Standard Parameter
Specification” [46].

Formal pairs are supported as suggested in the Official Definition with the address
of the actual parameter passed as the first of the pair, and the encoded type of the
parameter passed as the second. The encoded type is represented as follows:

78

Appendix D. Implementation-Defined Characteristics

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table D.1. Encoded Type in a Formal Pair

MeaningEncoded Type

BYTELITERAL (s)

INTEGERLITERAL (i)

LONG INTEGERLITERAL (l)

FIXEDLITERAL (j)

LONG FIXEDLITERAL (q)

FLOATINGLITERAL (f)

LONG FLOATINGLITERAL (d)

Constant Declarations. This is an XGC extension.
The keyword CONSTANT may be used to define a compile-time value that may
be later used where a constant value is required. The value may be the result of
an expression that includes literal numbers and references to other constants. For
example:

CONSTANT Pi := 3.14159263589793;
CONSTANT Pi over 2 := Pi / 2;

D.2. Implementation Details

79XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

80XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Format of Code
Statements

Appendix E

E.1. Format of Code Statements

In XGC Coral 66 the format of a code statement is:

CODE BEGIN instructions : output operands : input operands END

For example, here is how to use the 68881's “fsinx” instruction:

CODE BEGIN "fsinx %1,%0" : "=f" (result) : "f" (angle) END

Here angle is the Coral expression for the input operand while result is that of the
output operand. Each operand has "f" as its operand constraint, saying that a floating
point register is required. The = in =f indicates that the operand is an output; all output
operands' constraints must use =.

Each operand is described by an operand-constraint string followed by the Coral
expression in parentheses. A colon separates the assembler template from the first
output operand, and another separates the last output operand from the first input, if
any. Commas separate output operands and separate inputs. The total number of

81XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

operands is limited to ten or to the maximum number of operands in any instruction
pattern in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then there must be two
consecutive colons surrounding the place where the output operands would go.

Output operand expressions must be locations; the compiler can check this. The
compiler cannot check whether the operands have data types that are reasonable for
the instruction being executed. It does not parse the assembler instruction template
and does not know what it means, or whether it is valid assembler input. Code
statements are most often used for machine instructions that the compiler itself does
not know exist. If the output expression cannot be directly addressed (for example,
it is a bit field), your constraint must allow a register. In that case, the compiler will
use the register as the output of the code statement, and then store that register into
the output location.

The output operands must be write-only; the compiler will assume that the values in
these operands before the instruction are dead and need not be generated. Code
statements do not support input-output or read-write operands. For this reason, the
constraint character +, which indicates such an operand, may not be used.

When the assembler instruction has a read-write operand, or an operand in which
only some of the bits are to be changed, you must logically split its function into two
separate operands, one input operand and one write-only output operand. The
connection between them is expressed by constraints which say they need to be in
the same location when the instruction executes. You can use the same Coral
expression for both operands, or different expressions. For example, here we write
the (fictitious) combine instruction with bar as its read-only source operand and foo
as its read-write destination:

CODE BEGIN "combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar) END

The constraint "0" for operand 1 says that it must occupy the same location as operand
0. A digit in constraint is allowed only in an input operand, and it must refer to an
output operand.

Only a digit in the constraint can guarantee that one operand will be in the same place
as another. The mere fact that foo is the value of both operands is not enough to
guarantee that they will be in the same place in the generated assembler code. The
following would not work:

CODE BEGIN "combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar) END

82

Appendix E. Format of Code Statements

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Various optimizations or reloading could cause operands 0 and 1 to be in different
registers; the compiler knows no reason not to do so. For example, the compiler might
find a copy of the value of foo in one register and use it for operand 1, but generate
the output operand 0 in a different register (copying it afterward to foo's own address).
Of course, since the register for operand 1 is not even mentioned in the assembler
code, the result will not work, but the compiler can't tell that.

Some instructions clobber specific hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given
as strings). Here is a realistic example for the Vax:

CODE BEGIN
 "movc3 %0,%1,%2"
 : COMMENT no outputs ;
 : "g" (from), "g" (to), "g" (count)
 : "r0", "r1", "r2", "r3", "r4", "r5" END

If you refer to a particular hardware register from the assembler code, then you will
probably have to list the register after the third colon to tell the compiler that the
register's value is modified. In many assemblers, the register names begin with %; to
produce one % in the assembler code, you must write %% in the input.

If your assembler instruction can alter the condition code register, add cc to the list
of clobbered registers. the compiler on some machines represents the condition codes
as a specific hardware register; cc serves to name this register. On other machines,
the condition code is handled differently, and specifying cc has no effect. But it is
valid no matter what the machine.

If your assembler instruction modifies memory in an unpredictable fashion, add
memory to the list of clobbered registers. This will cause the compiler to not keep
memory values cached in registers across the assembler instruction.

You can put multiple assembler instructions together in a single code statement,
separated either with newlines (written as \n) or with semicolons. The input operands
are guaranteed not to use any of the clobbered registers, and neither will the output
operands' addresses, so you can read and write the clobbered registers as many times
as you like. Here is an example of multiple instructions in a template; it assumes that
the subroutine _foo accepts arguments in registers 9 and 10:

CODE BEGIN "movl %0,r9;movl %1,r10;call _foo"
 : COMMENT no outputs;
 : "g" (from), "g" (to)
 : "r9", "r10" END

E.1. Format of Code Statements

83XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Unless an output operand has the & constraint modifier, the compiler may allocate it
in the same register as an unrelated input operand, on the assumption that the inputs
are consumed before the outputs are produced. This assumption may be false if the
assembler code actually consists of more than one instruction. In such a case, use &
for each output operand that may not overlap an input.

If you want to test the condition code produced by an assembler instruction, you must
include a branch and a label in the code statement, as follows:

CODE BEGIN
"clr %0;frob %1;beq 0f;mov #1,%0;0:"
 : "g" (result)
 : "g" (input) END

Speaking of labels, jumps from one code statement to another are not supported. The
compiler's optimizers do not know about these jumps, and therefore they cannot take
account of them when deciding how to optimize.

If a code statement has output operands, the compiler assumes for optimization
purposes that the instruction has no side effects except to change the output operands.
This does not mean that instructions with a side effect cannot be used, but you must
be careful, because the compiler may eliminate them if the output operands aren't
used, or move them out of loops, or replace two with one if they constitute a common
subexpression. Also, if your instruction does have a side effect on a variable that
otherwise appears not to change, the old value of the variable may be reused later if
it happens to be found in a register.

E.2. Constraints for Operands

Here are specific details on what constraint letters you can use with code statement
operands. Constraints can say whether an operand may be in a register, and which
kinds of register; whether the operand can be a memory reference, and which kinds
of address; whether the operand may be an immediate constant, and which possible
values it may have. Constraints can also require two operands to match.

E.2.1. Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one
kind of operand that is permitted. Here are the letters that are allowed:

84

Appendix E. Format of Code Statements

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

“m”

A memory operand is allowed, with any kind of address that the target computer
supports in general.

“o”

A memory operand is allowed, but only if the address is offsettable. This means
that adding a small integer (actually, the width in bytes of the operand, as
determined by its machine mode) may be added to the address and the result is
also a valid memory address.

For example, an address which is constant is offsettable; so is an address that is
the sum of a register and a constant (as long as a slightly larger constant is also
within the range of address-offsets supported by the machine); but an
auto-increment or auto-decrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending on the other
addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand, the
constraint letter “o” is valid only when accompanied by both “<” (if the target
machine has pre-decrement addressing) and “>” (if the target machine has
pre-increment addressing).

“V”

A memory operand that is not offsettable. In other words, anything that would
fit the “m” constraint but not the “o” constraint.

“<”

A memory operand with auto-decrement addressing (either pre-decrement or
post-decrement) is allowed.

“>”

A memory operand with auto-increment addressing (either pre-increment or
post-increment) is allowed.

“r”

A register operand is allowed provided that it is in a general register.

E.2.1. Simple Constraints

85XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

“d”, “a”, “f”, ...
Other letters can be defined in machine-dependent fashion to stand for particular
classes of registers. “d”, “a” and “f” are defined on the 68000/68020 to stand for
data, address and floating point registers.

“i”

An immediate integer operand (one with constant value) is allowed. This includes
symbolic constants whose values will be known only at assembly time.

“n”

An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use “n” rather than “i”.

“I”, “J”, “K”, ... “P”

Other letters in the range “I” through “P” may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, “I” is defined to stand for the range
of values 1 to 8. This is the range permitted as a shift count in the shift instructions.

“E”

An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine (on
which the compiler is running).

“F”

An immediate floating operand (expression code const_double) is allowed.

“G”, “H”

“G” and “H” may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

“s”

An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an instruction allows a constant operand with a
value not known at compile time, it certainly must allow any known value. So
why use “s” instead of “i”? Sometimes it allows better code to be generated.

86

Appendix E. Format of Code Statements

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between -128 and 127, better
code results from loading the value into a register and using the register. This is
because the load into the register can be done with a “moveq” instruction. We
arrange for this to happen by defining the letter “K” to mean "any integer outside
the range -128 to 127", and then specifying “Ks” in the operand constraints.

“g”

Any register, memory or immediate integer operand is allowed, except for registers
that are not general registers.

“X”

Any operand whatsoever is allowed.

“0”, “1”, “2”, ... “9”

An operand that matches the specified operand number is allowed. If a digit is
used together with letters within the same alternative, the digit should come last.

This is called a matching constraint and what it really means is that the assembler
has only a single operand that fills two roles which code statements distinguish.
For example, an add instruction uses two input operands and an output operand,
but in many computers an add instruction really has only two operands, one of
them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of the
operand that uses it in the constraint.

“p”

An operand that is a valid memory address is allowed. This is for "load address"
and "push address" instructions.

“p” in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

E.2.1. Simple Constraints

87XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

“Q”, “R”, “S”, ... “U”

Letters in the range “Q” through “U” may be defined in a machine-dependent
fashion to stand for arbitrary operand types.

E.2.2. Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For
example, on the 68000, a logical-or instruction can combine register or an immediate
value into memory, or it can combine any kind of operand into a register; but it cannot
combine one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be
described by a series of letters for each operand. The overall constraint for an operand
is made from the letters for this operand from the first alternative, a comma, the letters
for this operand from the second alternative, a comma, and so on until the last
alternative.

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the
operands so that that alternative applies. The alternative requiring the least copying
is chosen. If two alternatives need the same amount of copying, the one that comes
first is chosen. These choices can be altered with the “?” and “!” characters:

?

Disparage slightly the alternative that the “?” appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit more
costly for each “?” that appears in it.

!

Disparage severely the alternative that the “!” appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

E.2.3. Constraint Modifier Characters

Here are constraint modifier characters.

“=”

Means that this operand is write-only for this instruction: the previous value is
discarded and replaced by output data.

88

Appendix E. Format of Code Statements

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

“+”

Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to
know which operands are inputs to the instruction and which are outputs from
it. “=” identifies an output; “+” identifies an operand that is both input and output;
all other operands are assumed to be input only.

“&”

Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.

“&” applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires “&” while others do not.
See, for example, the “movdf” instruction of the 68000.

An input operand can be tied to an earlyclobber operand if its only use as an input
occurs before the early result is written. Adding alternatives of this form often
allows GCC to produce better code when only some of the inputs can be affected
by the earlyclobber. See, for example, the “mulsi3” instruction of the ARM.

“&” does not obviate the need to write “=”.

“%”

Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if that
is the cheapest way to make all operands fit the constraints.

“#”

Says that all following characters, up to the next comma, are to be ignored as a
constraint. They are significant only for choosing register preferences.

E.2.4. M68000 Constraints

These additional constraints apply to the M68000 family.

“d”
A data register, %d0 to %d7

E.2.4. M68000 Constraints

89XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

“a”
An address register, %a0 to %a7

“f”
A MC68881 floating point register, %fp0 to %fp7

90

Appendix E. Format of Code Statements

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Symbols
! in constraint, 88
in constraint, 89
% in constraint, 89
& in constraint, 89
+ in constraint, 89
0 in constraint, 87
< in constraint, 85
= in constraint, 88
> in constraint, 85
? in constraint, 88

A
address constraints, 87
address_operand, 87
anonymous reference, 27, 28
answer statement, 36, 42
array, 12, 17, 44
assignment, 34
auto-increment/decrement addressing, 85

B
Bit numbering, 14
bit position numbering, 15
bit selection, 28
block, 7
bound, 12

C
Character, 5, 53
clash, 8
code, 36
code statement, 36
comment, 55
common, 6, 8, 49
communicator, 6
compound statement, 36
condition, 31
conditional statement, 37
constant, 52
constants in constraints, 86
constraint modifier characters, 88
constraint, matching, 87

91

Index

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

constraints, 84
code statements, 84

D
d in constraint, 85
declaration, 7
digits in constraint, 87
dimension, 12
documentation (required of an
implementation), 75
dummy statement, 37

E
E in constraint, 86
earlyclobber operand, 89
Element (table), 14
evaluation, 30
exclamation point, 88
exponent, 25
expression, 25
extensible constraints, 88

F
F in constraint, 86
factor, 25
field, 13, 27
fixed-point, 11
floating-point, 11
for statement, 38
function, 29

G
G in constraint, 86
g in constraint, 87
Global, 8
goto statement, 35
grammar

complete listing, 59

H
H in constraint, 86

I
i in constraint, 86
I in constraint, 86
identifier, 5, 51
implementation, 3
implementation defined

summary of characteristics, 75
index, 12, 17, 27
initialization, 18
integer, 11, 29, 52
integer type, 11

L
Label, 9, 23, 35, 44
layout, 5, 51, 53
length, 14
library, 6, 50
literal, 5, 53
load address instruction, 87
local, 7
location, 17, 28, 44
logic, 29, 31

M
m in constraint, 85
macro, 56
matching constraint, 87
memory references in constraints, 85
modifiers in constraints, 88
multiple alternative constraints, 88

N
n in constraint, 86
nesting, 7, 57
number, 52
numeric type, 11

O
o in constraint, 85
Object, 5
offsettable address, 85
operand constraints

code statements, 84

92

Index

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

operator
arithmetic, 25
boolean, 31
logical, 29

outermost block, 8
overlay, 20
own, 20

P
p in constraint, 87
packing, 13
parameter, 42, 56
part-word, 15, 28
part-word reference, 34
place, 5, 44
presetting, 18
primary, 26
procedure, 41

body, 47
call, 35
declaration, 41
parameters, 45

procedure statement, 35
program, 6
push address instruction, 87

Q
Q, in constraint, 88
question mark, 88
quote, 53, 56, 71

R
r in constraint, 85
Real, 26, 52
real time, 2
recursion, 9, 73
reference, 11, 23
registers in constraints, 85

S
s in constraint, 86
scale, 11
scope, 7, 36
segment, 6

simple constraints, 84
specification, 9, 42
statement, 33

answer, 36
block, 7
code, 36
compound, 36
conditional, 37
dummy, 37
for, 38
goto, 35
procedure, 35

step, 38
storage, 17
string, 5, 53
switch, 23, 35, 44, 45
symbol, 5
syntax, 2

complete listing, 59

T
Table, 13, 44
term, 25
token, 71
type, 11
type-changing, 29, 30, 44

V
V in constraint, 85
Value call, 43
variable, 34
void, 37
void preset, 19, 20

W
while, 39
width, 14
word position, 14
word reference, 27, 44

X
X in constraint, 87

93XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

