Design Document:

VisualWorks SmallTalk Basic Paint Program

November 25, 1998

Group 15

Brian Lawson

lawson@cs.jhu.edu
Mike Chmielewski
mvc@cs.jhu.edu
Eric Musgrave

ericm@jhu.edu
TABLE OF CONTENTS

I.
Introduction

II.
Program Description

III.
Overview of object implementation

IV.
Classes

Main application model

Drawing board model

<<Tool classes>>

File output

FIGURES

Screen Samples

Toolbar

Drawing board

<<Dialog boxes>>
Diagrams

High level class association diagram

State transition diagram for notifying the drawing board of current tool

Message passing diagram for notifying the drawing board of current tool
I.
INTRODUCTION

The purpose of this project is to develop an object-oriented drawing program,

which provides the user with a quick and easy way to create simple images rather

than try to use an overly sophisticated application. This application will be

programmed in VisualWorks SmallTalk 3.0.

Our project fulfills the requirements of reusability and extensibility through:

1)‘Pluggability’: Other programmers can use tool classes and easily add
functionality, as well as adding tools to the toolbar.

2)‘Inheritability’: Another program can inherit from the toolbar, or
from specific tools in the toolbar.

3) The ability to add functionality to the canvas without modifying the
toolbar model or main model.

II.
PROGRAM DESCRIPTION

1)
English Description

Once the program is started, a blank drawing board will be created. The
toolbar will then be displayed, and it will wait for a user action. The user
can then start to create the desired image through the use of specific tools
that are located on the toolbar.

The typical paint program tools, which will be included in SBPaint are as
follows. A few basic tools are a freehand drawing tool, a line drawing tool,
a rectangle drawing tool, and a circle drawing tool. As would be expected
there will be the ability to change the color of the primitives that are drawn,
and the background color can also be specified. Along the lines of coloring,
a fill algorithm will be included so that the user can draw primitives that are
not only outlined in a color, but also filled with a color. A few more complex
tools that will be included are a bezier curve drawing tool, a tool to draw
ovular shapes, a text typing tool, a spray painting tool, and a tool to perform
location transformations on selected objects.

As in a variety of paint programs, the user will be able to save the image
to disk for later viewing in other programs. The file formats that will be
supported are bitmap and the internal Smalltalk file format. Files saved with
the internal file format will be allowed to be edited at a later time, while
those saved as bitmaps will only be loaded as a background image.
Painting will end when the user selects the ‘exit’ option.

2)
HotDraw Framework Overview

Our application will use the HotDraw framework for the custom view in our drawing
board. The main class that we will reuse/extend are the Drawing, DrawingController,
and the Tool class. Especially within the Tool class we will inherit and override
certain methods in order to gain extra functionality or to correct existing errors
within the HotDraw framework.

The Drawing class serves as the center of the HotDraw framework. Drawing is the
model which receives messages from various HotDraw application actions. Drawing’s
primary purpose is to keep track of the existing figures for selection on the
drawing board. Thus, Drawing can add, remove, select, and change position of
figures in its abstract model of the picture. These actions will be apparent
through modifications to the drawing view that the user sees. Of particular use,
is Drawing’s idea of “handles”. These handles allow methods to be invoked on
existing figures within Drawing in order to modify them is various ways. (i.e.
resizing a rectangle, or modifying the control points for a bezier curve)

The DrawingController, as its name implies, will handle user input. With middle
or right mouse buttons, the functionality is the same. From the left mouse button
or keyboard, DrawingController’s actions are determined by the currently selected
drawing tool. For example, if the current tool is “Freehand”, dragging the mouse
with the left button pressed will result in points/line being drawn following the
motion of the mouse. On the other hand, if the “Circle” tool is selected,
dragging the mouse with the left button pressed and then releasing, will result in
a circle which is enclosed by the box defined by the start and end points of the
operation. Unlike SmallTalk controllers in general, the DrawingController class is
responsible to act appropriately given the tool that is currently selected. Normal
controllers have well defined methods for handling the input. In order to
successfully accomplish its tasks, the DrawingController class relies on Tool
objects (see below) to handle most of the user input. In fact, the DrawingController
passes any left button mouse click or keyboard operation to the currently selected
tool.

Tool class objects are used by the DrawingController class to handle tool specific
commands. All of the input is handled by the tool using the processKeyboard and
press methods. These methods take the user input and apply it to the Drawing class
for different actions. (i.e. resizing a polygon, or adding text to the drawing board)
HotDraw uses an interesting mechanism with the tool class. Unlike the immediately
intuitive approach, which would be to subclass a particular tool off of a generalized
tool class, a tool is divided into different components that are contained in a single
tool class. According to the HotDraw creator, implementing tools using subclassing
would result in large amounts of duplicate code. This is most noticeable in the press
and pressKeyboard methods since they would always have to be overridden in all subclasses.
This defeats much of the purpose of inheritance, since most of the functionality of the
tools is implemented in those functions.
III.
OVERVIEW OF OBJECT IMPLEMENTATION

Main Application Model: Holds the collection of drawing board objects. Also contains the toolbar view and notifies the
drawing boards what tool is currently selected.

Drawing Board: Contains the Drawing Board view, and holds all the drawn objects. It also responds to tools that send messages to it.

Tools: Contains a specific action that will execute on the drawing board.

File I/O: Receives the image upon a file save command, and outputs to a disk file (specified by the user) receives the image load command, reads
a file from a disk, and then sends it to the Main Application Model.

3.1
VIEWS

SBPaint includes two basic views, the drawing board and the toolbar. The
toolbar is a standard MVC, and the drawing board is a custom view using the AF.
3.2
OBJECT INTERACTION

The Main Application Model will control the interaction between the
Drawing Board and the Toolbar. The Drawing Board will interact with the
File I/O object to save the image on the board, or to load an image onto the
board. The tools will interact with the Drawing Board to execute their
functionality on the image.
IV.
CLASSES

4.1
Drawing Tools

The actual drawing tool classes will be taken from the HotDraw framework provided
with VisualWorks, if possible. We will fix certain bugs in pre-existing tools using

inheritance and overriding. Since most of the functionality in these tools will be transparent

to the user, we will only show the functions that we will be overriding. Some tentative tools are: rectangle, circle, Bezier curves, line, freehand, select, fill, erase, and text.
4.11
 Responsibilities

· press - This function will be overridden in certain tools (circle, rectangle) to add our own custom

functionality or to fix pre-existing bugs.

· initialize<<our own custom tool>> - As time permits, we will implement our own tools using the predefined structure of the HotDraw tool class. This method initializes the tool object to be used as

a particular tool.

4.12
 Collaborators

· OurDBoardController - This class asks for functionality from the tool object when the user attempts to

· perform an action on the drawing board.

4.2
GraphicsAppModel

This is the main class that gets executed in order to do any actual drawing. It facilitates in passing the currently selected tool from the toolbar to the drawing boards. There are certain action buttons on the toolbar as well, like spawning a new drawing board, exiting the program, etc.

4.21 Responsibilities

· windowSpec - Holds tool bar specification.

· initialize – Creates a default tool at start-up, spawns an empty drawing board, and adds the drawing board to a list held by the GraphicsAppModel.

· <<actions>> - Functions called when a toolbar button is pressed, thus changing the current tool, or causing an action. They are named after the tools/actions that are selected.

4.22 Collaborators

· Variables -Tool bar (view), currentTool, drawingBoardList

· Drawing Board Class

4.3
Tool Bar

This is the class that the user uses to select which drawing tool will be used on
the drawing board. This is done using the MVC. The toolbar is installed on the GraphicsAppModel class.
4.31 Responsibilities
· Holds the visual view of the tool bar
· Sends messages to the main application class notifying it of which tool has
· been selected

4.32 Collaborators

· Main application class

4.4
OurDB

This is the class that the user will draw on. The currently selected tool will determine its behaviors
. We will inherit from the HotDraw
Drawing class, and add functionality where needed. It also has a menu bar that holds commands for the image in this particular drawing board.
4.41 Responsibilities

· inititalize – Gives a default name to the drawing board.

· setTool – Receives what the newly selected tool is from the GraphicsAppModel, and notifies its drawing

· setName – Sets the name of the drawing.

· name – gets the name of the current drawing.

· saveDrawing – Sends the drawing to a filehandler, in order to save it to disk in the proper format.

· loadDrawing – Loads a drawing from the disk into the current drawing.
· <<Menubar actions>> - passes actions selected on the menu bar to the drawing.
4.41 Collaborators

· Variables – name, drawingModel, drawingController
· Menu bar (View)

· GraphicsAppModel

· FileHandler

4.5
Menu Bar

This is the class that the user will select options from that pertain only to the
drawing board. It is a view installed on the OurDB class.
4.51
Responsibilities

· Notify the drawing board of actions such as loading and saving

· Notifies the main application class if the “Quit” option is selected

4.52
Collaborators

· Drawing board

4.6 OurDrawingModel

This is the class that holds the abstract model of the drawing. We will inherit from HotDraw’s Drawing class. It holds the figures in the drawing as a list, and is acted on by the OurDrawingController class (see below).

4.61 Responsibilities

· Manipulates drawing/drawing figures as directed to by the OurDrawingController class.

4.62 Collaborators

· OurDrawingController

· FileHandler

· OurDB

4.7 OurDrawingController

This is the class that handles user input for drawing. It has some built-in functionality, but mostly it interfaces with the Tool object in order to cause the proper action to be performed on the drawing board. We will inherit from HotDraw’s DrawingController class.

4.71 Responsibilities

· Takes the input from the user and passes it to the tool to handle, or performs an action on the drawing model itself.

4.72 Collaborators

· OurDrawingModel

· Tool

4.8 FileHandler

This class takes a drawing or file name as input and performs either saving or loading, respectively. The two supported formats will be .ppm or the internal VisualWorks format.

4.81 Responsibilities

· saveDrawing:As – This takes a drawing and file name, and saves the drawing into the file specified.

· loadDrawing:From – This takes a drawing and file name, and loads the specified file into the drawing given.

· convertToPPM – This converts a drawing from the internal data structure into the .ppm format.

4.82 Collaborators

· OurDrawingModel
V.
USE-CASES

For the tool features we hope to implement a common mechanism to communicate
between tool bar selections and what the drawing board is supposed to do for
that specific tool. Currently, the idea is to have the tool bar and the
drawing board as instances in the GraphicsAppModel. The GraphicsAppModel will keep track of which tool is currently selected. When a tool is
selected on the tool bar it sends a message to the GraphicsAppModel to
update the current tool, if necessary. Then GraphicsAppModel sends a message to each drawing board in its list for the new tool so that they know
which behavior to expect.
5.1
Use case for starting the program

You start the program with the workspace message <application-to-be-named-later>
open. A tool bar and an empty drawing board will be spawned from this command.
You may also start the program with <application-to-be-named> open: <file>. This fills the drawing board with the contents of the specified file.

5.2
Use case for the selection tool

Once you choose the selection tool from the tool bar and move it over the
drawing board, the cursor will signify the selection tool. There are two
methods of selection:
(1)
Point and click method: If you click on a drawn object on the drawing board, it will become
highlighted.

(2) Click and drag method: If you click and drag and then release, everything either totally

within or partially within the selection box will be highlighted.
5.3
Use case for the move tool

If a selection has been made using the selection tool, the move tool will
allow the user to click and drag the selected objects around within the
area of the drawing board. If nothing has been selected, the move tool
will be disabled.
5.3
Use case for line drawing

When the line tool is selected from the tool bar, the user will be
able to click and drag an outline of the line to be drawn. When
the user releases the mouse button, the line will be drawn.
5.4
Use case for rectangle drawing

When the rectangle tool is selected from the tool bar, the user will be
able to click and drag an outline of the rectangle to be drawn. When
the user releases the mouse button, the rectangle will either be filled
or left unfilled depending on the specific rectangle selection.
5.5
Use case for oval drawing

When the oval tool is selected from the tool bar, the user will be
able to click and drag an outline of the oval to be drawn. When
the user releases the mouse button, the oval will either be filled
or left unfilled depending on the specific oval selection.
5.6
Use case for free-hand drawing

When the scribble tool is selected, the user is free to draw anywhere
within the bounds of the drawing board. When the left mouse button is
pressed, drawing will be enabled. When the left mouse button is released,
drawing will be disabled.
5.7
Use case for color specification

There will be two color icons on the tool bar. One for background color
specification and one for foreground color specification. For background
color, the background will simply be set to the color the user selects.
There are two possibilities for foreground color selection:
(1) There are no selected object on the drawing board: In this case, the selected foreground color will apply to all new
objects created from this point on.
(2) There are selected objects on the drawing board: In this case, the selected foreground color will be applied to
those objects which are selected.
5.8
Use case for loading a file

To load a file the user will select the “Load” option from the “File”
menu bar option. A dialog box will appear prompting the user for the path
name and file name for a file. After the user has entered a file name
and pressed okay, we will use a Visual Works internal file format
converter to properly display the file on the drawing board.
5.9
Use case for saving a file

To save a the user will select the “Save” or the “Save as” option from
the “File” menu bar option.

(1) Save: In this case, the image will be saved into the file name already
specified. otherwise an error message will be displayed.
(2) Save As: In this case, a dialog box will appear prompting the user for the path
and file name to save this file to.

5.10
Use case for merging two images

When the user selects the merge image icon from the tool bar, a dialog box
will prompt he/she for the path name and file name for the files to be merged.
After the user has entered the file(s) and pressed okay, the second file will
be merged on top of the first one.

5.11
Use case for the “New” option from the “File” menu bar option.

When the user selects this option it will ask for confirmation with a dialog
box. If the user replies with “okay”, then the canvas will be cleared.
5.12
Use case for opening a new drawing board.

The tool bar will contain an icon for spawning new drawing boards in addition
to the any drawing boards which are already open. The tool bar will notify
the parent class to create the new board.
5.13
Use case for exiting the program.

The tool bar will contain an icon for exiting the program at any time. When
this icon is pressed, it will notify the main application class, which will
in turn message to all of the drawing boards to quit. Before the actual
exiting occurs, a dialog box will warn the user that any changes made since
the last save will not be saved.
VII.
GROUP MEMBER RESPONSIBILITIES, for the benefit of the group members

Brian Lawson – Documentation, I/O functionality

Mike Chmielewski – Documentation, HotDraw API interface to our application

Eric Musgrave – Documentation, tool selection mechanism, HotDraw API interface
VIII.
ACKNOWLEDGEMENTS

Code Inheritance/Reuse:

· HotDraw

Inspiration/Design:

· HotPaint

Adobe Photoshop

HotDraw. Brant, John Michael. 1995.

