Automated Generation of Unconstrained Crossword Puzzles and an
Estimate of Their Solution Space

Zafer Barutguoglu

Department of Mathematics, Bogazici University, Bebek 80815, Istanbul, Turkey
barutcuo@boun.edu.tr

Abstract

Crossword puzzles are today's most popular word game. However, their production by hand is a difficult
and time-consuming process, and the automation of this process has interested computer scientists from
time to time in the past three decades. In this paper, we first mention the guidelines set by previous
work on the subject, and then introduce a crossword production algorithm which uses the approach of
unconstrained construction to produce very large crossword puzzles in reasonable time. Finally, we
attempt a mathematical analysis of unconstrained crossword puzzles to achieve an estimation of the
total number of solutions.

1. INTRODUCTION

Crossword puzzles are a standard feature in many of the world's newspapers and magazines today.
Since the publication of the first puzzle in a supplement to the New York World on 21 December 1913, they
became increasingly popular throughout the world.

Two major types of crossword puzzles have evolved on the two sides of the Atlantic. The "British"
crossword puzzles differ from their original "American" counterparts in that they are rather sparse with respect
to the density of words. In British puzzles, interlocking cells, ones on which two words intersect, are not
adjacent, thus significantly increasing the number of black cells on the grid. Also, the clues in British puzzles
are cryptic, whereas the American type clues are definitive. Since there are comparatively few black cells in
American puzzles, these cells are generally determined in advance of compilation in a pattern for increased
aesthetic quality.

Production of crossword puzzles using computers involves many branches of computer science. One
needs a good database design for the dictionary, and a suitable model for the problem where logic, linear and
integer programming and combinatorics have been tried among others. Since the crossword puzzle can be
actually viewed during the production process, it allows various search methods to be observed in action with a
clarity unequaled in other applications.

This paper primarily examines the generation of American-type crossword puzzles, with the
difference that the black cells are not preplaced on the grid by the user, but by the program during the
generation process. This approach is called unconstrained, and was given very little attention in previous
papers on crossword generation. Although unconstrained construction limits the user's control on the solution
to be found, the placing of the black cells is indeed a demanding job, especially for large puzzles. The user
should ensure that the input grid contains no horizontal or vertical word slots longer than the longest word in
the dictionary. In unconstrained construction, it is sufficient to specify only the dimensions, and very large
puzzles can be constructed without any prior work on the user's side. Indeed this method does not prevent the
user from setting constraints either. Any word or black cell may still be preplaced, but the algorithm can freely
add those of its own.

2. CONSTRUCTION

After a short discussion of previous work on crossword puzzles, we will describe a crossword puzzle
compiler we implemented that works on the principles of unconstrained puzzles, and is able to produce results
of publishable quality in very little time.

2.1. PreviousWork

Back in 1960, E. S. Spiegelthal described a program for producing double-crostics, a relative of
crossword puzzles [Spi60]. He can be considered the first to use computers for a word search problem.

The real early works on crosswords belong to L. J. Mazlack and O. Feger in the mid-70's. Mazlack
defined two basic approaches to construct crossword puzzles: Letter-by-letter and word-by-word [Maz76a).
Choosing the former and using precedence relationships, he produced some very simple puzzles [Maz76b]. His
dictionary had 2000 words of maximum length 4, which could not be kept on main memory with the
technology of the time.

Feger produced better puzzles than Mazlack, but his word list was larger [O.F75]. He used the word-
by-word approach with word slot ordering at initialization. Over a preset order assuming no black cells, the
slots were reordered with respect to black cells using heuristics that tried to minimize backtracking.

The first puzzles to achieve publishable quality were produced by the crossword compiler by P. D.
Smith and S. D. Steen [SS81]. They used an estimation-based scheme that determined the slot to fill at run
time. The algorithm makes an estimate of which slot was the hardest to fill at that point and tried to fill it if
possible, otherwise backtracking. Note that if the estimate is wrong, the program can backtrack and discard
prospective solutions. Smith and Steen are also the first ones to use the basic terms of crossword puzziles that
we use today, such as crossword compiler, word slot, density and interlocking.

H. Berghel expressed the crossword puzzle as a logic problem, and showed that any given grid and
word list could be expressed as a set of Horn clauses [H.B87]. With C. Yi, he extended his work and developed
a crossword-compiler-compiler that, given a grid configuration, produces a Prolog program that solves it
[H.B89]. Berghel and Yi were successful in their line of work, but their solutions were nowhere near
commercial quality, suffering largely from the inefficiency of logic interpreters. Perhaps, with the help of
parallel computing and optimizing compilers, their approach might gain popularity in the future.

J. M. Wilson, concurrent with the work of Berghel and Yi, formulated the problem as an integer
programming problem, and gave pure 0-1 integer models for both word-by-word and letter-by-letter
approaches [Wil89]. However, as the dictionary size increases, integer programming can no more produce
solutions in reasonable time. Indeed the number of variables in both models were proportional to the number of
words in his dictionary, rendering the problem NP-complete, as all pure 0-1 integer models were later shown
to be.

Ginsberg et al. applied a number of artificial intelligence techniques to the crossword problem,
although their work, as they also stated, was more of a study of search methods than crossword puzzles
[G.al90]. Among the heuristics used were, cheapest first, connectivity, adjacency, intelligent instantiation
(using dictionary statistics), and /ookahead.

G. H. Harris wrote the first paper on unconstrained puzzles [G.H90a]. Instead of a brute-force
approach that would generate all possible grids and try to fill them in the constrained sense, he proposed an
algorithm that avoided grid configurations that were impossible to solve. The algorithm starts out with an
empty grid, and places black cells as it places the words. Harris developed a dynamic slot table implementation
that treated word slots like those of constrained puzzles, but divided and updated them when necessary
[G.H90c].

I. Berker and C. Say developed a crossword compiler, seemingly for Turkish, while the program is
indeed language independent [Ber93]. They started out by interviewing human crossword makers, and
implemented their methods on the computer. This involved filling a row and a column alternately top left to
bottom right, and is an interesting illustration of the differences between humans and computers, because this
strategy proved to be very inefficient in speed. They also proposed several other strategies such as circular-fill,
divide-and-conquer and random-fill, none which they implemented since they judged them to be inferior to the
row-column fill they used.

The last and so far the most comprehensive work on automated crossword compilation was published
by S. C. Jensen [S.J97] very recently, towards the end of our research for this paper. Examining and
summarizing the work in all fields of crossword puzzle research, Jensen systematically classified the
constrained generation schemes proposed since Mazlack, benchmarked them, and developed his own
crossword compiler which uses a hybrid of word-based and letter-based approaches, supported by two
complementing dictionary architectures for different search needs at different points in the algorithm. Of the
various schemes Jensen compared using previously proposed benchmarks [H.B90a, L.S90], he showed that
filling in a single direction (horizontal or vertical) was best for minimizing backtracks.

2.2. Strategy

After some early attempts at developing crossword compilers, we realized that a placing strategy was
essential for efficiency. The strategy should avoid dead ends as carly as possible and thus cut down on
backtracks, not losing time in subtrees. Finally we decided that filling in rows only and checking columns as
the words are placed satisfies these properties pretty well, better than any other scheme that we examined.
Jensen's thesis was not yet published at the time, and his benchmarks later confirmed the fitness of our choice
[S.J97].

First, let us briefly explain our dictionary architecture. We send it a query string where letters must
match, and spaces can match with any letter. The query is compared to the strings of matching length in the
word list. If no match is found, the query is truncated as the spaces in it allow, and shorter matches are sought.
If no matches can be found, the algorithm must backtrack.

The algorithm starts from the current position, and gets a query until the end of the row. This query is
checked against the dictionary to find the longest matching word, and the word is placed on the board. Now,
for each column intersecting this word (including the column containing the black box at the end of the word),
there should fit at least one vertical word to intersect the row. This is called the prefix constraint, since the
horizontal words placed above the last word so far form a prefix that the vertical intersecting word should
match. If the algorithm finds that there is only one word to match that prefix, the vertical word is actually
placed on the board. This causes letters to appear in the middle of horizontal queries further down the board,
which is essentially why we use our query system.

2.3. Backtracking

Since most cells belong to two words at the same time, chronological backtracking yields pathetic
results, and the need to use a dependency-directed method arises.

A dead end results from one of two things, either an impossible

BIA|C|IK|T|R[A|C|K query, or an impossible set of prefixes. Since the constraints (letters) on
I C|R|A|T|E I [N| horizontal queries are imposed by the words above too, the cause is the
AlT A S| G letters above the query alone. The most obvious method is to backtrack
A . E until the word above the query is backtracked. One problem is that

L A queries extend until the end of the row, and we don't really know which

. N word above causes the problem in the query. We may backtrack just until

the last word in the row above, but this is not very efficient. Another way
is to analyze the query and the prefixes, find out where the problem is,
and backtrack until above it. This is also inefficient for a frequently
executed routine. We shall do the simplest, and fix a number called
MaxOverlap and suppose the problem is at this point after the beginning
of the query. This is not an inappropriate assumption, because the query
is continuously truncated and if the problem was towards the end of the
query, chances are that a shorter match would be found. So the problem
must occur at the first few letters. We generally used 2, 3, or 4 for
MaxOverlap and obtained satisfactory results. While no 20x20 puzzle
Figure 2: Prefixes dead-end could be found in less than 10 hours before, this heuristic brought the
typical time for a 20x20 puzzle down to 3 minutes.

olv|Ic|H|wn|w

X[X|X[X|X|X|X[X]|X - A little thought on our backtracking scheme will show that it is
X IS EEENE not "correct". This is because the query is not indeed independent of the
Al words to the left on the same row, since they determine its starting point.

. . A shorter match to one of the words on the left could result in the

. . otherwise unmatching query to be resolved, possibly resulting in a

. . solution. If we have very few solutions in the solution space and the

algorithm happens to backtrack over them, the program will report a no-
Figure 3: MaxOverlap=3. Dotted solytion, and will have erred. Fortunately, this is extremely unlikely, even
cells are backtracked. virtually impossible with a reasonable word list. As we shall further
witness in the section on estimation, the solution space of an unconstrained puzzle is vastly larger than that of
a constrained one. Besides, if the program is set to repeat the whole search without using this backtracking
scheme if the first run cannot find a solution, the overall algorithm will have become "correct”, the first run
supposedly being a "heuristic". A heuristic that resulted in decreases of over two orders of magnitude in time.

2.4. Dictionary

A very important factor in the overall performance of the program is the structure of the dictionary
where the words to be placed are stored. Counting on the contemporary state of personal computers, the
dictionary is stored in primary memory for the minimum access time. The words are read from disk at
initialization and all further dictionary access is performed in the memory.

The nature of the typical query renders the use of search trees impossible, and a linear structure must
be used. Linear lists of words in lexicographic order are maintained for each word length. Although the typical
query can have spaces and letters anywhere, most of the queries come from the prefix constraint which very
commonly have letters followed by spaces. As a result, more than 100% decrease in access time was achieved
using efficient indexing and early termination of search. To handle synonyms, the dictionary allows multiple
occurences of entries, and words appear in a solution at most as many times as they occur in the dictionary.

2.5. Results

We put these elements together along with some optional constraints to decrease the black cell density
and a user-friendly interface in a software package, with the core routines implemented in C++. On a computer
using a 120MHz PowerPC RISC processor, and with a dictionary of 10000 words of maximum length 10, it
typically produces 10x10 puzzles in under 30 seconds, and 50x50 puzzles in about 40 minutes, despite the
degradation caused by the fourth generation language handling the user interface, such as progress bars and
user-interruption checks. Crossword puzzles appearing in Turkish newspapers are generally of an
unconstrained nature; i.e., there is no special pattern of black cells. Therefore, a Turkish newspaper that
publishes a 10x10 puzzle each day can produce all the puzzles needed for a year in about 3 hours using our
program.

3. ESTIMATION

There are two types of probabilistic algorithms, those that are always correct and probably efficient are
called Las Vegas, and those that are always efficient and probably correct are called Monte Carlo [D.H87]. The
backtracking scheme of our algorithm is more of the latter nature in that it discards probable solutions for the
advantage of resolving probable conflicts at once. This brings the possibility of running out of solutions in a
narrow solution space, so we need to have an estimation of the size of our solution space, if not the exact size.
Namely, we are looking for a function of the dictionary and the grid dimensions which will yield us the
expected number of puzzles that can be constructed on a grid of the given size, using the given dictionary.

3.1. Previous Work

There are two previous papers on the subject of crossword solution estimation. They both use Bayesian
estimates, and neither examines unconstrained puzzles. The first paper by C. Long is specifically on full square
puzzles, nxn puzzles without any black cells [C.L92]. Clearly, this would be of little use for our purposes. The
second paper, by G. H. Harris and J. J. H. Forster, went further and devised an estimate for a given dictionary
and puzzle geometry, making use of the distribution of word slots and possible letter intersections between
words [G.H90b]. We will try to adapt their formula to the unconstrained problem. However, there are no
predefined word slots in unconstrained crossword puzzles. Therefore, we will need approximations of word
slots and intersections for given dimensions and number of black cells.

Harris and Forster derived this estimate for the number of solutions:

L) =
LD CREREE

where d; is the number of words of length i in the dictionary, e, is the number of word slots of length i,
and P,(a,i) is the probability of a w-letter word in the dictionary having the a'th letter of the alphabet in the i'th
position within the word (i < w). There are s intersections which are enumerated in some way.

3.2. Word Slots

We need approximate distributions for the lengths of word slots and their intersections. Fortunately,
these boil down to counting problems, where we count all possible grid combinations in which a given pattern
-slot or intersection- may appear. To accomplish this, we fix some possible position for our pattern and count
the combinations of remaining blacks for the rest of the grid. When we do this for all possible positions of the
pattern, we divide it by the total number of possible grids, and we have our probability for that specific pattern.

Let us illustrate this idea on word slots in one dimension for simplicity. On a row of cells of length m,
a word slot of length / can be cither adjacent to one of the two sides bounded by a single black cell, or in one of
the (mm-I-2) intermediate locations bounded by two black cells, supposing /<m-2 for the moment. Then the
number of grid combinations in which this slot may appear is,

ot =2 mn—z—m(') Gn—1-20
= X —] — p%e
o, Hp-1 g\ Ho-2

When we extend this idea to two dimensions, we still consider rows and columns separately. For each
row (or column) we consider every possible number of blacks in this row and apply the above idea. This gives
us the equation for rows,

» . O Enn—l—lD(; l)ﬂnn—l—ZDD
= X X -/ =
(mnb,ly=n g % b1 %+m % b—2 %

Reversing the m and n's gives us the formula for the columns. Now all we have to do is to add them
up, and divide by the total number of combinations of » blacks cells in mn cells to find the average number of
word slots of a given length. This, after some simplification, yields the formula for the approximated e; to
substitute in Harris and Forster's equation:

(b)_D +(N)x2mn—(b+]) x(j +])D %nn—i—Z% %nn% -
e,\m,n, —%mn m+n) Q(D b2 Hs F-)

The constraint on b results from the case by case nature of the derivation, and can be easily overcome
by handling the case that »=0,1,2 and defining the above formula piecewise accordingly. However, it is not
likely that the number of puzzles with so few black cells is of significance compared to the total number of
puzzles, regarding that it is harder to find solutions of a greater degree of interlocking as in the case of
b=0,1,2. (In confirmation, puzzles with »=0, called full puzzles, are extremely rare when m and » are above 5
in general, and their search is a popular part of crossword puzzle research. Full puzzles of size greater than
10x10 have not yet been found in any spoken language, as of this time.)

Note that with no black cells on the board, we have m+n slots. Every black cell added increases this
number by 2 unless it is adjacent to the sides or another black cell. Thus, an upper bound for the total number
of word slots is (m+n+2b). This allows us to verify our formula for e;, since it bounds the sum,

Zei <(m+n+2b).

The sum was loosely about 75% of the upper
m n b mint2b | Fe Exp. bound in general for the values we tested. On
5 5 3 16 10 13 examining real puzzles with the given measures, the
experimental values we found were generally half-
way between the sum and the upper bound,

12 40 28 30

10 10 18 56 41 46 converging to the upper bound as m and » increase,
10 10 20 60 43 47 since the possibility that a black cell is adjacent to a

side or another black cell decreases with the
11 10 18 >7 43 49 perimeter per area ratio. Since we are indeed
11 10 20 61 46 53 interested in the distribution of specific lengths, this
23 20 89 271 171 205 experimental error below 25% in the sum is a quite

satisfactory verification of our distribution.

3.3. Intersections

Now, what remains is the approximate distribution for the intersections. Let s(x,y) be the number of
intersections between word slots of length x and y. They will intersect at some fixed letter positions, but this
will not affect the result. Imagine the pattern of two intersecting word slots that we may freely position on the
grid, as in the previous derivation. Only, we can no longer consider the problem in one dimension, and so
there are more cases to handle. The pattern may be placed at a corner so bounded by two black cells, or
adjacent to a side only, so bounded by three black cells, or in the middle, so bounded by four black cells. Let us
assume the usual case that b>4, and write down the formula:

Gn -10 gm-x -y -2 TR
4Hn bx—zy [an —x=2) +2m(n -y -2)| O n bx—3 G m=x =2){n - _Z)Hn bx—4y t

When we divide this by the total number of possible grids, after some simplification for case of
computation, we get the following formula of s(x,)), indeed s(x,y,m,nb), for fixed letter positions of
intersection:

OGnn-x-y - Onn-x-y-20

10 Onn—x -y —300 /Gan0
sx y,m,n,b BilE RN E+[2n(m—x—2) +2m(n -y —2)] EH b_3 E+(m—x—2)(n -y —Z)E b_4y E/Eb E

This seemingly complicated but computationally trivial formula fills the last gap in our extension of
the estimation formula to unconstrained puzzles.

3.4. Adaptation

All that remains is to put the equation in the correct form with respect to its new structure:

S(m,n,b) = ﬁ?mmlizg(x,y,mnb)?;;;(> (a, p) P (aq))%m_b

The fixed values of the original equation have now become sums of probability distributions. The
multiplication of intersections in the first formula is now a power since all terms are identical approximations.
Also, the combination at the very end of the formula for s(x,y,m,n,b) is not dependent on x and y, so may be
moved outside the outermost summations for ease of computation, but is left here as such for clarity.

Note that this formula is dependent on b. For the total number of estimated solutions, we should add
up the results for each value of /. We may as well exclude the degenerate solutions that have too many black
cells, simply by performing this summation up to a certain maximum value of 5.

4. CONCLUSION

We presented the method of unconstrained construction of puzzles, which relieves the user of host
grid production by hand. It also largely increases the solution space since the constraints are absent, and
relying on this we introduced an algorithm using a backtracking scheme that is not algorithmically "correct" in
theory, but is extremely fast in resolving conflicts to minimize search time. We implemented this algorithm in
C++ as a software package which is able to produce commercial quality crossword puzzles in seconds.

In the second part we attempted to adapt a previously developed Bayesian estimate of a constrained
puzzle's solution space for the unconstrained puzzle, and succeeded. This also helped demonstrate the solution
space's vast increase in size, making us feel more secure in risking to miss several solutions to find one as
quick as possible.

Possible future research on unconstrained puzzles includes the development of a benchmark specific
to, or including, unconstrained methods. While there are two papers proposing benchmarks for constrained
puzzles, there is yet none that applies to unconstrained construction. Apart from that, there is always room for
a better estimate. Also, neither the strategy nor the dictionary can be said with certainty to be the best it can
get. There is even work to do in our specific approach. We used experimentally convenient values for
MaxOverlap in backtracking. There must be a method to optimize this value either through a dictionary
analysis at initialization, or dynamically, at run time.

Future work on crossword puzzle research in general may include the extension of various crossword
construction methods to different topologics. Puzzles in a space of more than two dimensions would be a good
challenge, but of little commercial value of publishability, even when compared to puzzles wrapped around
cylinders, cubes, other polyhedra, the Mébius band, or any other fancy surface that comes to mind. There is
also a whole other world of puzzles we did not examine in this paper; the British type. Although not very
interesting in construction, British puzzles use cryptic clues which incorporate anagrams, synonyms, acrostics
and such to hint for the solution in a seemingly irrelevant sentence. The production of these types of clues is
generally reserved to very few gifted people, and the automation of this process using Artificial Intelligence is
a very puzzling research area in itself.

5. REFERENCES

[Ber93] 1 Berker, A. C. C. Say. A Crossword Puzzle Generator for Turkish . Proceedings of the 8th International
Symposium on Computer and Information Sciences, 1993.

[C.L92] C.Long. Mathematics of Square Constructions . Word Ways, 26(1), 1992.
[D.H87] Harel, D. Aigorithmics: The Spirit of Computing . Addison-Wesley, 1987.

[G.al90] M. L. Ginsberg et al. Search Lessons Learned from Crossword Puzzles . Proceedings of AAAI 90, 1990.
http://medg.lcs.mit/mpt/papers/Ginsberg/Ginsberg-et-al-90.html.

[G.H90a] G. H. Harris. Generation of Solution Sets for Unconstrained Crossword Puzzles . Symposium on Applied
Computry. TH037-9/90/0000/0214 Copyright 1990 IEEE, April 5-6 1990.

[G.H90b] 1. J. H. Forster, G. H. Harris. On the Bayesian Estimation and Computation of the Number of Solutions to
Crossword Puzzles . Symposium on Applied Computry. TH0307-9/90/0000/0220 Copyright 1990 IEEE,
April 5-6 1990.

[G.H90c] G. H. Harris, D. Roach, P. D. Smith, H. Berghel. Dynamic Crossword Slot Table Implementation .
Symposium on Applied Computry. Copyright 1992 ACM 0-89791-502-X/92/0095, 1990.

[H.B87] H. Berghel. Crossword Compilation with Horn Clauses . The Computer Journal, 30(2):183-188, 1987
[H.B89] H. Berghel, C. Yi. Crossword Compiler-Compilation . The Computer Journal, 32(3):276--280, 1989.

[H.B90a] H. Berghel, R. Rankin. A4 Proposed Standard for Measuring Crossword Compilation Efficiency . The
Computer Journal, 33(2):181--184, 1990.

[H.BO0b] H. Berghel, D. Roach, J. Talburt. Approximate String Matching and the Automation of Word Games
Symposium on Applied Computry. TH0307-9/90/0000/0209 Copyright 1990 IEEE, April 5-6 1990.

[L.S90] L. J. Spring, H. Berghel, G. H. Harris, J. J. H. Forster. A Proposed Benchmark for Testing Implementations
of Crossword Puzzle Algorithms . Symposium on Applied Computry Vol. 1. Copyright 1991 ACM 0-89791-
502-x/92/0002/0099, 1990.

[Maz76a] L. J. Mazlack. Computer Construction of Crossword Puzzles Using Precedence Relationships . Artificial
Intelligence, 7(1):1--19, 1976.

[Maz76b] L.J. Mazlack. Machine Selection of Elements in Crossword Puzzles . SIAM Journal of Computing, 5(1):51--
72, March 1976.

[O.F75] O. Feger. A Program for the Construction of Crossword Puzzles . Data information, 17(5):189--195, 1975.
Angewandte Informatik.

1S.J97] S. C. Jensen. Design and Implementation of Crossword Compilation Programs Using Sequential
Approaches . M.S. Thesis. Odense University, Denmark, January 1997.

[Smi83] P. D. Smith. XENO: Computer-Assisted Compilation of Crossword Puzzles . The Computer Journal,
26(4):296--302, 1983.

[Spi60] E. S. Spiegelthal. Redundancy Exploitation in the Computer Construction of Double-crostics . Proceedings
of the EJCC, 39-56, 1960.

[SS81] P. D. Smith, S. Y. Steen. A Prototype Crossword Compiler . The Computer Journal, 24(2):107--111, 1981.

[Wil89] J. M. Wilson. Crossword Compilation Using Integer Programming. The Computer Journal,
32(3):273--275, 1989.

Figure 4: Example 50x50 puzzle output
KA A A A KA A A A A A A A A A A A A A A A A A AR A A A A A A A A A A A A A A A A AR A A A A A A AR

*1scis*uluslararasi*bilgisayar*bilimleri*sempozyumu*
*klasman*curnata*ahbapol*abihayat*anasanli*astronom*
*lak*od*aut*alantalan*bakterisit*ad*histerezis*mv*a*
*aya*kabin*bel*tedavi*usul**tarihce*argac*dokun*a*r*
t*bitotu*ariza*emdte*1hi*tike**an*ene*itila*na*~*
*t*donam*cenk*nb*tugay**acele*k*badya*likit*y*ac*ba*
*aban*v*muzlim*la*reglan*abiru*babac*bey**&*antijen*
*binbasi*nail*e*be*prese*nem*car*arife*emaret**beri*
*alto*aha**y*abdal*ga*aba*n*kafein*caki*af*bre*ita**
*s*en*n*basdérti*direnc*efendi*az*opera*arterit*l*sb*
*bal*cidadi*bildik*nd*evele*pili*zad*raca*bu*adi*ya*
*uf*al*ajans**ye**icit*ir*kg*halk*literatir*am*y*oh*
*sabo*omurga*boksdér*sac*icar*afyon**at*yo*ur*ide*ni*
**karar*r*i1li*som*fldre*ne*e*maarif*n*yinele*nato*s*
*daktilo*arap*kr*ca*raht*bant*1l*alicenap*bibi*r*bi**
*ana*doku*d*i1*o*bent*statik*ag*flit*nah*ce*amcazade*
*m*lain*taassup*ah*aks*cinmisiri*fil*anca*iptida*ak*
*afi*y*bab*alt*zorunlu*im*as*kandela*siryan*iman*do*
*cetvel*calyaka*bek*atil*anla*pd*r*br***1gtin*ra*il*
*av*ota*ir**kukla*alp*r*artiuc*i1**hanidir*alan*ay*o*
*neon*dimtek**topal*ebat*kak*ahkam*d*sontaki*erte*j*
*armoni***belgit*bak*abes*r*etibba*amansiz*cadi*gri*
a*zingadak*afazi*akliyat*omurilik*obua*ada*eh*a*
*ant*silk*bert*r*dah*olivin*pr*tali*tekne*ikon*ahar*
*n*cif*iklim*o*y*ecir*itap*doc¢c*i**flit*blok*osur*co*
*ag*firka*leb*basvur*pm*not*zum*aga*v*dikse*letafet*
*s*bay*ona**abu**in*cb*a*genetik*aylak*li*n*i*acim**
*aci1*e*j*baklivat**cu*anarsi*ula*fe*sakit*cet*n*tb**
*adli*feminist*badrikara*art*remi*t*yb*mabet*hg*tok*
*t*dalan*dama*ala**kobay*fire*laka*dolu*b**abra*ira*
**pbirak*cep*mahalli*tu*a*y*agu*natron*c*1*oép*ic*ruf*
*toredigsi*a**butlan*uz*s*arter*¢*ban*aka*cc*cs*t*se*
**sc*r*iriyari*a*yuva*rakam*e*mayo*acep*ulu*lirat*olus*
*m*1*n*kakavan*akak**me*evegen**alo*edrice*eloglu*a*
*ayni*seks*i1*de*a**kabzimal*n*daginik*ulus*fi**eten*
*eu*bap*lu*r*onat*arsa*lal*h*dimag*semt*b*dipdiri*t*
*stuidyo*a*ezani**i*ilk*glikoz*dy*igsin*adet*k*ala*fa*
*t*mavna*aki*erbap*pa*kaide*itaat*dért*no*ek*brans*n*
*ohm*atik*ova**ahlat*merkep*karni*y**m*bakisim*saf**
*sair*ali*sila*kriko*et***aciz*triloji*r*avukat*bar*
*of*aynen*erat*kakul*bezzaz*raf*anemon*ahla**dayali*
arz*evermalaz**o*d*eogen*lasta*ari*d*ini*ulan*h*
k*aigsaf*akim*bej*emare*aklan*dr*j*po*f*rcamit*gd*
*balkan*th*on*p*alkil*amal*d*tin*kih*edebi*kabahat*a*
*on*1si1*ela*alabros*adgcek*farmason*oto*r*bizon*yu*n*
*c*c*is*zeki*Or*iki*fr*timis**hamail*klasik*r*i*ha**
*edat*f*i*iv*si*fani*ev**ol*bltce*deste*ehlidil**cf*
*kalomel*ateh*ti*j*binit*tlivana*dem*kof*dua*akarlar*
dasitandal*lw*ars*dlises*birey*amir*beg*t*ama*re*
*firt**midrik*feci*e*hamal*kaki*ayn**a**f*alaz*mg*n*
ArA AKX A A A A KR AR A AFR AR A R AR A AR A I A A I A F AR I AR AR A AR A * A AR AR A KKK
Blacks %: 22.40

Duration: 2544 sec.

MaxOverlap: 3

