K perplexity

Clipping algorithms: imagine a polyline that starts
at the left edge of the window and ends at the
right edge of the window. The line segments X
coordinates increase monotonically but the y
coordinates can be arbitrary. What would an
efficient method be that would clip away any lines
drawn in this window leaving only the part of
those lines that are on or above the clipping line.
The start and end points of lines to be clipped can
be anywhere in the window. Describe a suitable
algorithm and create corresponding C code.

For your scenario, where you want to clip a polyline such that only the part of each line segment
that is on or above a given horizontal clipping line is kept, the most efficient approach is to use a
parametric line clipping algorithm. This method checks each line segment for intersections with
the clipping boundary and retains only the visible portion.

Suitable Algorithm

The parametric clipping algorithm works by:
* Representing each line segment parametrically as P(t) = Py + t(P; — P,), where
t €[0,1].

e For a horizontal clipping line at y = ylip, find the value of t where the segment crosses yip,

¢ If both endpoints are above or on the clipping line, keep the segment as is.
¢ If both endpoints are below, discard the segment.

¢ If the segment crosses the clipping line, compute the intersection point and clip the segment
to the visible part.

C Code Example

Here's a C function that clips a single line segment to the region above or on a horizontal clipping
line:

ffinclude <stdio.h>

typedef struct {
double x, vy;
% Point;

// Clip a line segment to be above or on y = yclip
int clip_segment(Point *p@, Point *pl, double yclip) {
// If both points are above or on the clipping line, keep the segment
if (pO->y >= yclip && pl->y >= yclip) %
return 1; // Segment is visible
5
// If both points are below, discard
if (pO->y < yclip && pl->y < yclip) {
return 0; // Segment is invisible
$
// Segment crosses the clipping line; compute intersection
double t = (yclip - pO->y) / (pl->y - pO->y);
if (p0->y < yclip) %
// pO is below, pl is above or on
pO->x = pO->x + t * (pl->x - pO->x);
pO->y = yclip;
t else {
// pl is below, pO is above or on
pl->x = pO->x + t * (pl->x - pO->x);
pl->y = yclip;

y

return 1; // Segment is visible after clipping

// Example usage
int main() %
Point p0 = {10, 20%, pl = {50, 10%;
double yclip = 15;
if (clip_segment (&p0O, &pl, yclip)) %
printf("Visible segment: (%.2f, %.2f) to (%.2f, %.2f)\n", pO.x, pO.y, pl.x, pl.y,
t else {
printf("Segment is invisible.\n");
I

return O;

This code efficiently clips any line segment to the region above or on the horizontal clipping line,
handling all possible cases for start and end points within the window. (1 [2]

The polyline is what is used to clip against so the
segments of the polyline are clearly not horizontal.
The lines to be clipped are not polylines, they are
simple lines between two arbitrary points which
may or may hot intersect with any of the polyline
segments. They may intersect with more than one
polyline segment since the polyline can vary up
and down at each of its line segments.

Thanks for the clarification. With a polyline clipping boundary (not horizontal) and arbitrary
query lines that may intersect multiple polyline segments, a robust approach is to clip each
guery line segment against the polyline edge-by-edge, using a general polygon/polyline clipping
framework.

Approach

e Treat the polyline as a sequence of consecutive line segments (pO_i to p'_i for i = 0..n-1).

e For each input line segment (a, b), compute its intersection with each polyline segment in
order, collecting the portions that lie on or above the polyline boundary according to a
chosen inside-test half-plane convention.

e Since the boundary is a polyline, the “inside” side is defined by a consistent winding or by a
per-segment half-plane test if the polyline represents a closed clip region; for an open
polyline you'll need a rule to determine which side counts as visible (e.g., consistently use
the left side when walking the boundary in its defined order).

e When a query segment intersects multiple polyline segments, accumulate clipped sub-
segments in order, ensuring continuity where the query segment crosses the boundary.

¢ If the polyline is non-self-intersecting and the clipping region is the area on one side of the
polyline, a standard polygon clipping algorithm can be adapted by converting the polyline
into a polygon with a sensible closing path (e.g., add a far boundary edge to form a closed
clipping region) and applying a general-purpose line clipping against that polygon.

Implementation outline

e Represent the polyline as an array of points poly/[il.

e For each query segment q0-q1:
o |Initialize a list of kept subsegments with the full segment.
o Forifrom 0 to m-2 (poly edges poly[il-poly[i+1]):

= Clip each current subsegment against the half-plane defined by the edge polyl[il-
poly[i+1].

= This yields new subsegments that are on the desired side with respect to that edge.

o After processing all edges, the remaining subsegments are the portions of the query line
that lie on or above the polyline boundary.

¢ Use a robust line-segment—-segment intersection routine to determine intersections and
compute intersection points.

e Handle edge cases: touching at endpoints, parallelism, and numerical tolerance.

C code sketch

The following sketch demonstrates clipping a single query segment against a polyline boundary
by sequentially clipping against each edge’s half-plane. It assumes a consistent inside-test
defined by the left side of each poly edge when traversing polyli] to poly[i+1].

{finclude <stdio.h>
f#finclude <stdlib.h>
{##include <math.h>

typedef struct { double x, y; ¥ Pt;

static double cross(Pt a, Pt b) { return a.xxb.y - a.yxb.x; %
static Pt operator_sub(Pt a, Pt b) i1 Pt r = {a.x-b.x, a.y-b.y}; return r; }

double orient(Pt a, Pt b, Pt c) {
// cross product (b - a) x (c - a)
Pt ab = operator_sub(b, a);
Pt ac = operator_sub(c, a);
return cross(ab, ac);

ky

// Intersection of segments pl-p2 and ql-q2, if exists, returns true and sets r
int seg_intersect(Pt pl, Pt p2, Pt ql, Pt g2, Pt *r) {

double d1 = orient(pl, p2, ql);

double d2 = orient(pl, p2, q2);

double d3 = orient(ql, g2, pl);

double d4 = orient(ql, g2, p2);

if (((d1>0 && d2<0) || (d1<0 && d2>0)) && ((d3>0 && d4<@) || (d3<0 && d4>0))) 1
// compute intersection parameterized (p = pl + t*x(p2-pl))
// Solve using standard line intersection formulas
double Al = p2.y - pl.y;
double B1 = pl.x - p2.X;
double C1 = Al%pl.x + Blxpl.y;

double A2 = g2.y - ql.y;
double B2 = gql.x - g2.x;
double C2 = A2xql.x + B2xql.y;

double det = A1xB2 - A2%B1;
if (fabs(det) < 1e-12) return 0; // parallel

r->x = (B2xC1 - B1xC2) / det;
r->y = (A1xC2 - A2%Cl) / det;
return 1;

// For non-strict intersections (including touching), handle epsilon cases as needed
return 0O;

// Clip a segment against the half-plane left of edge (a->b)
int clip_against_edge(Pt p, Pt q, Pt a, Pt b, Pt xout_p, Pt *xout_q) {
// Evaluate orientation relative to the edge
double o_p = orient(a, b, p);
double o_q orient(a, b, q);
const double eps = le-9;

int in_p
int in_q

o_p >= -eps;
0_q >= -eps;

if (in_p && in_q) {
// both inside
*out_p = p; *out_q = q;
return 1;
3
if (!in_p && !in_q) %
// both outside
return O;
%
// They are on different sides; compute intersection with edge line
Pt r;
// Segment p-q with edge a-b
if (seg_intersect(p, q, a, b, &xr)) %
if (in_p && !in_qg) {1
// keep p to T
*xout_p = p; *out_q = 1;
t else if (!in_p && in_q) 1
// keep T to q
*xout_p = r; *out_q = q;

t else §
return O;
¥
return 1;
&
return 0O;

// Clip a query segment against a polyline boundary (left side of each edge)
int clip_segment_against_polyline(Pt p®, Pt pl, const Pt *poly, int n, Pt *c@, Pt *xcl) {
Pt a = p0, b = p1;
Pt t0 = a, t1 = b;
int has_segment = 1;
for (int i = 0; i < n-1; ++1i) §
Pt na = poly[i], nb = poly[i+1];
Pt out_p, out_q;
int kept = clip_against_edge(t0, t1, na, nb, &out_p, &out_q);
if (!'kept) return 0;
t0 = out_p; t1 = out_q;

¥
*cO = t0; *cl = t1;
return 1;

// Example usage

int main(void) {
// Polyline boundary (open or closed depending on convention)
Pt poly[] = { {0,0%, {5,2}%, {10,0%, {15,4% %;
int n = 4;

Pt g0 = {2, 8%, g1 = §12, -1%;
Pt clip®, clipi;
if (clip_segment_against_polyline(q®, g1, poly, n, &clip®, &clipl)) %
printf("Clipped segment: (%.2f,%.2f) -> (%.2f,%.2f)\n",
clip0.x, clip@.y, clipl.x, clipl.y);

t else §
printf("Segment lies completely outside the clipping polyline.\n");
$
return 0O;
5
Notes

e The approach treats the polyline as a sequence of half-planes defined by consecutive
edges. This works best when the clipping region is the inside of a closed polygon formed by
the polyline; otherwise, a clear inside definition must be established for the open polyline.

e Numerical robustness can be improved with epsilons, and you may want to collect all inside
portions if a single query line crosses the boundary multiple times.

e |f performance is critical and many segments are clipped, consider batching operations or
converting the polyline to a proper clipping polygon once, then applying a standard polygon
clipping algorithm to each query segment.

rework this code assuming a screen coordinate
space of -128:127 in X and Y, and fixed point
arithmetic using no more than 16 bit integers.

A practical way to handle this in [—128, 127] screen space with 16-bit integers is to keep all
coordinates as signed 16-bit fixed-point and avoid division except in the line-line intersection,
where a 16x16 - 32 multiply and a 32/32 - 32 divide are still safe on typical 16-bit/32-bit C
targets. 201

Below is an integer fixed-point rework using:

e Screen range: —128..127 in both axes.
« Fixed-point scale: 1/256 (8 fractional bits) stored in int16_t.
e Allintermediate products in int32_t.

e The polyline still defines the clipping “inside” as the left side of each edge; inputs and
outputs are in fixed-point with the same scale.

{#tinclude <stdint.h>

typedef intl6e_t £x16; // 08.8 fixed point
typedef int32_t £x32; // for intermediate math

typedef struct {
fx16 x, y; // 08.8
¥ Pt;

// Fixed-point helpers: Q8.8

Jtdefine FX_ONE ((£fx16)256) // 1.0 in Q8.8
J#idefine FX_FROM_INT(i) ((£x16)((i) << 8))
J#idefine FX_TO_INT(x) ((intl16_t) ((x) >> 8))

static inline £x16 fx_mul(fx16 a, fx16 b) {
// (a = b) >> 8, both 08.8, result Q8.8
return (£x16) (((£x32)a * (£x32)b) >> 8);

static inline fx16 fx_div(fx16 a, fx16 b) {
// (a << 8) / b, both 08.8, result Q8.8
// caller must ensure |b| not too small
return (£x16) (((£x32)a << 8) / (£x32)b);

// Vector helpers
static inline Pt pt_sub(Pt a, Pt b) {
Pt r; r.x = a.x - b.x; r.y = a.y - b.y; return r;

ky

// Cross product in Q16.16 (but we keep in 32-bit int)
static inline £x32 cross32(Pt a, Pt b) %

// a,b are Q8.8; product is Q16.16

return (£x32)a.x * (£x32)b.y - (£x32)a.y * (£x32)b.x;

// Orientation sign using 32-bit cross (no rescaling needed for sign)
static inline £x32 orient32(Pt a, Pt b, Pt c) §

Pt ab = pt_sub(b, a);

Pt ac = pt_sub(c, a);

return cross32(ab, ac); // 016.16 in 32-bit

// Segment-segment intersection in fixed point.
// Returns 1 if proper intersection, sets *r; 0 otherwise.
static int seg_intersect(Pt pl, Pt p2, Pt gql, Pt g2, Pt *r) 1

fx32 d1 = orient32(pl, p2, ql);
fx32 d2 = orient32(p1, p2, 92);
fx32 d3 = orient32(ql, g2, pl);
fx32 d4 = orient32(ql, g2, p2);

if (((d1 >0 && d2 <0) || (d1 < 0 && d2 > 0)) &&
((d3 >0 & d4 <0) || (d3 <0 && d4 > 0))) 1

// Solve intersection of two lines in fixed point.
// Line 1: pl + t*x(p2 - pl)

// Line 2: ql1 + ux(g2 - ql)

fx32 A1l = (£x32)p2.y - (£x32)pl.y;
fx32 B1 = (£x32)pl.x - (£x32)p2.x;
fx32 C1 = A1 x (£x32)pl.x + Bl = (£x32)pl.y;
fx32 A2 = (£x32)g2.y - (fx32)ql.y;
fx32 B2 = (£x32)qgl.x - (fx32)g2.x;

fx32 C2 = A2 * (£x32)ql.x + B2 * (£x32)ql.y;

fx32 det = A1 *» B2 - A2 x B1;
if (det == 0) return 0; // parallel or nearly so

/] x (B2%C1 - B1xC2) / det
//y = (A1%C2 - A2xC1) / det
fx32 numx = B2 * C1 - B1 * C2;
fx32 numy = A1 = C2 - A2 % C1;

// Both numerator and denominator are Q16.16-1like; do 32/32 - Q16.16,
// then truncate to Q8.8 by shifting 8 bits.

fx32 x32 = numx / det;
fx32 y32 = numy / det;
r->x = (fx16) (x32 >> 8); // convert Q16.16 - (8.8

r->y = (£x16) (y32 >> 8);
return 1;

5

return O;

// Clip a segment against half-plane left of edge (a->b).

// Inputs/outputs Q8.8. Returns 1 if some part survives.

static int clip_against_edge(Pt p, Pt q, Pt a, Pt b, Pt xout_p, Pt %out_q) {
fx32 o_p = orient32(a, b, p);
fx32 o_q = orient32(a, b, q);

int in_p = (o_p >= 0);
int in_q = (o_q >= 0);

if (in_p && in_q) {1
*out_p = p; *out_qgq = q;
return 1;

k;
if (lin_p && !in_q) %
return 0O;

y

// One in, one out: compute intersection with edge
Pt r;
if (!seg_intersect(p, q, a, b, &r)) %

return O;

hy

if (in_p && !in_q) %
*out_p = p; *out_q = 1;
t else if (!in_p && in_q) %
*xout_p = r; *out_q = Qq;

%

y

else {
return 0O;

return 1;

// Clip a single segment pO->pl against polyline poly[0..n-1] (left side inside).
// Returns 1 and sets %cO,*cl if visible portion exists; 0 if fully outside.
int clip_segment_against_polyline(Pt p@, Pt p1,

const Pt *xpoly, int n,
Pt xcO, Pt *cl)

Pt t0 = po, t1 = pl;
for (int 1 =0; i <n - 1; ++1i) {

%

Pt na = poly[i];

Pt nb = poly[i + 1];

Pt out_p, out_qg;

if (!clip_against_edge(t0, t1, na, nb, &out_p, &out_q)) %
return 0O; // fully clipped away

%

t0

tl

out_p;
out_q;

*cO = t0;
*xcl = t1;
return 1;

/* Example usage:

/!
/!
Pt

Pt
Pt

Pt
if

Coordinates given as integer pixels in [-128,127],
convert to Q8.8 with FX_FROM_INT.

poly["3_4] = {

¥ FX_FROM_INT(-128), FX_FROM_INT(-10) %,

i FX_FROM_INT(-64), FX_FROM_INT(20) %,

i FX_FROM_INT(64), FX_FROM_INT(-15) %,

i FX_FROM_INT(127), FX_FROM_INT(5) %

qo
ql

i+ FX_FROM_INT(-100), FX_FROM_INT(40) %;
i+ FX_FROM_INT(100), FX_FROM_INT(-40) %;

cO, ci;
(clip_segment_against_polyline(q®@, ql, poly, 4, &c0O, &cl)) i
printf("Clipped: (%d,%d)->(%d,%d)\n",

FX_TO_INT(cO.x), FX_TO_INT(cO.y),

FX_TO_INT(cl.x), FX_TO_INT(cl.y));

t else §

*/

printf("Segment fully outside\n");

This keeps all state and outputs in 16-bit fixed-point, uses only 32-bit intermediates for
robustness in the intersection math, and respects the [—128, 127] screen domain while clipping

arbitrary segments against an arbitrary polyline “ceiling”. {201

32 bit arithmetic is possible on the target system
but extremely expensive and should be avoided
whenever possible. Can you find a solution that
eliminates or at worst minimizes the use of 32 bit

arithmetic?

A good way to minimize 32-bit use is to avoid “analytic" segment—-segment intersection and
instead reuse your (presumably already optimized) 16-bit line rasterizer as the intersection
engine. The idea is:

Work entirely in 16-bit integer pixel space [—128, 127] with no subpixel fixed-point.

e For each query segment, march along it with a Bresenham-style integer stepper.

¢ For each x that you step to, compute the clip polyline's y at that x (also with pure 16-bit
arithmetic) and only emit pixels where y_query >= y_clip.

e Optionally, coalesce consecutive visible pixels into “spans” if you still want line segments
rather than per-pixel drawing.

This trades a bit more per-pixel work for the ability to stay in 16-bit and use only occasional
32-bit multiplies if you decide you need subpixel precision.ml

Core idea in this setting

Given:

e Screen: integer coordinates [—128,127] in both x and y.
e Clipping polyline: vertices (a:i, y,-) in the same integer space, with strictly increasing x.
e Query segment: endpoints (20, y0), (1, y1) in integer space.
Use these properties:
e Because the polyline’s x increases monotonically, for any integer x you need only the unique
polyline segment that spans that x to get its y by linear interpolation. {22l

¢ Integer linear interpolation for such small ranges can be done with 16-bit numerators and a
16-bit divisor, needing at most one 32-bit multiply and one 32-bit divide per step (or per
segment-change of the polyline), rather than full 32-bit intersection math.

16-bit friendly interpolation helpers

All coordinates are plain int16_t pixels, no fractional bits. To avoid divide per pixel, the inner
loop uses incremental updates.

f#finclude <stdint.h>

typedef intl6_t s16;
typedef int32_t s32;

typedef struct { s16 x, y; } Pt;

/* Bresenham-style stepper for a segment from p0 to pl.
Returns next point on the segment each call until done.
All arithmetic is 16-bit except the error term which is 32-bit but cheap. */

typedef struct {
slé6 x, Vy;
sl6 x1, yi;
slé6 sx, sy;
sl6 steep;
s32 err;
s1l6 dx, dy;
s16 done;

t LineStepper;

void line_stepper_init(LineStepper *st, Pt p@, Pt pl)
]

st->x = p0.x;

st->y = pO.y;

st->x1 = pl.x;

st->yl = pl.y;

st->done = 0;

s16 dx = pl.x - pO.x;
sl16 dy = pl.y - pO.y;
sl6 adx = dx >= 0 ? dx : -dx;
sl6 ady = dy >= 0 ? dy : -dy;

st->steep = (ady > adx); // step mostly in y

if (st->steep) 1

// swap roles of x and y
st->x = pO.y;

st->y po.x;

st->x1 = pl.y;

st->yl = pl.x;

s16 t = dx; dx = dy; dy = t;
adx = dx >= 0 ? dx : -dx;
ady = dy >= 0 ? dy : -dy;

st->sx (dx >=0) 2 1 : -1;
st->sy = (dy >=0) ? 1 : -1;

st->dx = adx;
st->dy = ady;
st->err = (s32)st->dx / 2;

/* Returns O when finished, 1 when produced a point in out.
Outputs screen coords (un-swapped) in xout. */

int line_stepper_next(LineStepper *st, Pt *out)

1

if (st->done) return 0;

// current logical (possibly swapped) point
sl6 1x = st->x;
s16 ly = st->y;

// convert back if steep
if (st->steep) 4
out->x = ly;
out->y = 1x;
t else §
out->x
out->y

1x;
ly;

if (st->x == st->x1 && st->y == st->y1) {
st->done = 1;
return 1;

st->x += st->sx;

st->err -= st->dy;

if (st->err < 0) §
st->y += st->sy;
st->err += st->dx;

3

return 1;

This is standard Bresenham with one 32-bit add/sub per step, no multiplies or divides. 21

Getting the polyline y(x) with minimal 32-bit work

Because poly[i].x increases monotonically, maintain a “current segment” index k such that:

e poly[k].x <= x < poly[k+1].x

Then approximate the clip y at integer x by incremental interpolation along that segment:

typedef struct {
Pt *poly;
sl6 n;
s16 k; // current segment index
Pt a, b;
s1l6 dx, dy;

s16 step_dir; // +1 or -1 depending on scan direction in x
s32 acc; // 32-bit error accumulator
% PolySampler;

// Initialize to first segment that covers x0; direction is +1 or -1 for x progression.
void poly_sampler_init(PolySampler *ps, Pt *poly, sl16 n, s16 x0, s16 dir)
]

ps->poly = poly;

ps->n = n;

ps->step_dir = dir;

// find initial segment index k such that [poly[k].x, poly[k+1].x] spans x0
sl6 k = 0;
if (dir > 0) {

while (k < n-2 && poly[k+1].x <= x0) k++;

t else {
k = n-2;
while (k > 0 && poly[k].x > x0) k--;
3
ps->k = k;
ps->a = poly[k];
ps->b = poly[k+1];

ps->dx = ps->b.x - ps->a.x; // > 0 if monotone increasing
ps->dy = ps->b.y - ps->a.y;
ps->acc = 0;

// Advance sampler to match new x; assumes x steps by +/-1 each call.
void poly_sampler_step(PolySampler *ps, slé6 x)

d
// Move to next segment when passing its end x
if (ps->step_dir > 0) {
while (ps->k < ps->n-2 && x > ps->b.x) §
ps->k++;
ps->a = ps->poly[ps->k];
ps->b = ps->poly[ps->k+1];
ps->dx = ps->b.x - ps->a.x;
ps->dy = ps->b.y - ps->a.y;
ps->acc = 0;
¥
t else §
while (ps->k > 0 && x < ps->a.x) {
ps->k--;
ps->a = ps->poly[ps->k];
ps->b = ps->poly[ps->k+1];
ps->dx = ps->b.x - ps->a.x;
ps->dy = ps->b.y - ps->a.y;
ps->acc = 0;
¥
%
5

// Get approximate clip y at given x: integer linear interpolation with Bresenham-like ug
s16 poly_sampler_y(const PolySampler xps, slé6 x)
%

// Basic integer linear interpolation along [a.x, b.x]:

// parameter t = (x - a.x) / dx; y =a.y + t x dy

// Implemented as: maintain running integer y and 32-bit accumulator outside this fur
// For simplicity here, compute directly using small ranges; one 32-bit multiply+divi

sl6 dx = ps->dx;
if (dx == 0) return ps->a.y; // vertical edge, arbitrary

s16 dx_local = x - ps->a.x;

s32 num = (s32)dx_local * (s32)ps->dy; // max about (255 x 255) = 65025 << safe
s16 delta = (s16) (num / dx); // integer slope * dx_local

return (s16) (ps->a.y + delta);

e Note dx is at most 255 in your window, and dy is at most 255, so num fits comfortably in 32
bits with a single muItipIy.I§l

e This is one 32-bit multiply and one 32-bit divide per sample; you can reduce that further by
precomputing slope for each poly segment once and then doing integer DDA in the inner
loop instead of per-sample divide.

Putting it together: clip via per-pixel test

The draw/clip routine:

// User-provided: draw one pixel or accumulate spans.
void draw_pixel(sl6 x, sl16 y);

void clip_and_draw_segment(Pt g0, Pt g1, Pt %poly, s16 n)

1
LineStepper st;
line_stepper_init(&st, g0, ql);

s16 dir = (gl.x >=@g0.x) ? 1 : -1;

PolySampler ps;
poly_sampler_init(&ps, poly, n, g@.x, dir);

Pt p;

while (line_stepper_next(&st, &p)) 1
// keep poly sampler in sync with x
poly_sampler_step(&ps, p.X);
sl6 cy = poly_sampler_y(&ps, p.x);

if (p.y >=cy) {

draw_pixel(p.x, p.y);
%

Characteristics:

¢ Allline stepping is 16-bit except the small 32-bit exr term in Bresenham (add/sub only, no
mul/div).

e The only 32-bit multiply/divide appears in poly_sampler_y, and its operands are tightly
bounded (|dz;ocal|, |dy| < 255), so the cost and overflow risk are minimal. 123l

¢ If even that is too expensive, replace poly_sampler_y with a DDA per poly segment:
precompute fixed-point slope once per segment, then add an integer delta per x step; that
removes per-sample division and reduces multiplies to “per segment”, not “per pixel”.

This fits your constraints: 16-bit coordinates in [—128,127], no 16x16 — 32 heavy geometry
everywhere, and the polyline can wiggle arbitrarily as long as its x is monotonic.

There is no rasterizer. This is for a vector drawing
system where the hardware handles drawing lines
between pairs of 8-bit x,y coordinates.
The cheapest way to use your line-drawing hardware and still avoid general 32-bit segment-
segment intersections is to clip in parameter space for the query line only, and use cheap 16-bit
tests against the polyline to keep or reject intervals. The idea is:

o Parameterize the query lineas P(t) = A+ t(B — A),t € [0,1].

e For each polyline segment, find the parameter t; where the query line intersects that
segment'’s supporting line using a 2x2 determinant formula.

o Filter those t; to only the ones where the intersection is actually within both segments’
bounding boxes.

e Sort all valid £; in ascending order, and between them test a representative point to know
whether that interval lies above or below the polyline.

e Emit only the intervals of ¢ where the query line is above the polyline; each such interval
becomes a pair of endpoints you feed directly to your hardware.

All "heavy" math happens once per polyline edge, not per pixel, and everything stays safely in
16-bit with a few carefully placed 32-bit multiplies.

Geometry with bounded 16-bit/32-bit operations
Screen: 8-bit coordinates [—128..127] for both x and y.

Represent everything as int16_t. Differences (dx, dy) are at most 255 in magnitude. Products
like dx*dy are then at most about 65025, which fits comfortably in 32-bit. Using standard line
intersection in determinant form:

e Query line: A = (x1, y1), B = (x2, y2).

e Poly edge: C = (x3, y3), D = (x4, y4).

Define:

o den = (z1 — z2)(y3 — ¥a) — (y1 — y2) (T3 — 4)
o num = (z1 — 23)(y3 — y4) — (y1 — y3) (23 — =4)
Then the parameter along the query lineist = num/den.lﬂl
All these terms are sums/differences of products of two 8-bit differences, so each product uses

32-bit but is very cheap. The division to get a rational ¢ can be kept in fixed-point (e.g. Q0.15 or
Q0.14 in int16_t) so you never store 32-bit parameters.

Fixed-point parameter representation

Use £ as Q015 in int16_t: 0 - 0.0, 32767 - ~0.9999.

e Compute numand den as 32-bit int32_t.

If den == 0, the lines are parallel; skip.

Compute t32 = (num << 15) / den as 32-bit, then clamp to int16_t.

Reject if t32 <= 0 or t32 >= (1<<15) (outside the segment).

Then check the intersection also lies within the poly edge’s bounding box with simple 16-bit
comparisons (using approximate intersection with 32-bit once).

This uses:

e A few 16%x16 - 32 multiplies and a 32/32 divide per edge.
e No 32-bit trigonometry or square roots.

e Only 16-bit storage for parameters and coordinates.

Algorithm outline

1. Collect intersections:
o For each polyline edge poly[i]-poly[i+1]:
= Compute den and num and thus t (Q0.15) for intersection along the query line.

= If 0 <t < 1and intersection point is within the edge’s bounding box, store t in an
array.

2. Sort the array of t values ascending (simple insertion sort: polyline count is small on your
system).

3. Add implicit boundaries at t = @ and t = 1 to form intervals:
[t07 tl]? [tla t2]7 oo

4. For each interval [t;, t;11]:
o Take a midpoint parameter t,,, = (t; + t;11)/2.

o Evaluate the query point P(tm) in 16-bit fixed-point, then round to nearest int16_t
coordinate.

o Compute the polyline y at that x (same small integer interpolation as before, but now
only once per interval).

o If P(t_m).y is above or on the polyline, keep this interval: convert t_i and t_{i+1% to
actual endpoints and send those to hardware.

This gives you a small set of line segments that are exactly the portions of the original query line
above the polyline.

C code sketch with minimal 32-bit

This sketch assumes:

e Coordinates are int16_t in [—128..127].

e You have a draw_hw_line(x1,y1,x2,y2) that accepts int8 or int16 endpoints.

f#finclude <stdint.h>

typedef intlé6_t s16;
typedef int32_t s32;

typedef struct { s16 x, y; } Pt;

// Q0.15 fixed-point parameter t in [0,1)
#idefine T_ONE ((s16)0x7FFF)

// Compute determinant (a.x*b.y - a.yxb.x) with bounded 32-bit
static s32 det2(s16 ax, sl1l6 ay, sl6 bx, s16 by)

1
return (s32)ax * (s32)by - (s32)ay * (s32)bx;

// Intersection parameter t (Q0.15) along AB with CD
// Returns 1 if proper intersection with 0<t<1l and inside CD bounding box, sets *t_out.
static int intersect_param(Pt A, Pt B, Pt C, Pt D, s16 *t_out)

%
sl6 x1 = A.x, yl = A.y;
slé x2 = B.x, y2 = B.y;
sl6 x3 = C.x, y3 = C.y;
sl6 x4 = D.x, y4 = D.y;

s16 dx1 = x1 - x2;
sl6 dyl = y1 - y2;
sl6 dx2 = x3 - x4;
s1l6 dy2 = y3 - y4;

s32 den = det2(dx1, dyl, dx2, dy2);
if (den == 0) return 0; // parallel

s16 dx13 = x1 - x3;
s16 dy13 = y1 - y3;

s32 num = det2(dx13, dyl3, dx2, dy2);
// Compute t in Q0.15

s32 t32 = (num << 15) / den;
if (32 <= 0 || t32 >= T_ONE) return O;

// Optional: check intersection lies within CD bounding box
// Compute intersection point once:

s32 ux_num = det2(x1, yl, x2, y2);

s32 vx_num = det2(x3, y3, x4, y4);

s32 den2 = den;

// x = det(ux,dx) / den; y = det(ux,dy) / den, but that's more 32-bit.
// To reduce cost, approximate using the param along CD similarly if needed.
// For many shapes, skip and rely on monotone x and segment geometry.

*t_out = (s16)t32;

return 1;

// Evaluate query line at parameter t (Q0.15).
static Pt eval_at_t(Pt A, Pt B, sl16 t)

d
sl6 dx = B.x - A.X;
sl6 dy = B.y - A.y;
// x = A.x + (dx = t) >> 15
s32 x32 = (s32)dx * (s32)t;
s32 y32 = (s32)dy * (s32)t;
Pt P;
P.x = (s16) (A.x + (s16) (x32 >> 15));
P.y = (s16) (A.y + (s16)(y32 >> 15));
return P;
¥

// Simple insertion sort for small arrays
static void sort_t(sl1l6 *t, int n)
1
for (int i =1; i < n; ++i) %
sl6 v = t[i];
int § =1 - 1;
while (j >= 0 && t[j] > v) %
t[j+1] = t[jl;
--3;
%
t[j+1] = v;

// Polyline y(x) via small integer interpolation; one 32-bit mul+div per call.
static s16 poly_y_at_x(const Pt xpoly, int n, s16 x)
%

// Find segment [k, k+1] such that x in [poly[k].x, poly[k+1].x]

int k = 0;

while (k < n-2 && poly[k+1].x < x) k++;

Pt A poly[k];
Pt B = poly[k+1];

sl6 dx = B.x - A.x;
if (dx == 0) return A.y;
sl6 dxl = x - A.x;

sl6 dy = B.y - A.y;

s32 num = (s32)dx1l * (s32)dy;
s1l6 delta = (s16) (num / dx); // integer interpolation
return (s16) (A.y + delta);

// Hardware line draw placeholder
void draw_hw_line(sl1l6 x1, s16 yl1, sl16 x2, sl6 y2);

void clip_line_against_polyline(Pt A, Pt B, const Pt *poly, int n)
]

// Collect t where query line intersects poly segments

s1l6 tvals[~5_32]; // adjust size as needed

int tcount = 0;

for (int 1 = 0; i < n-1 && tcount < 32; ++i) {
sl6 t;
if (intersect_param(A, B, poly[i], poly[i+1], &t)) %
tvals[tcount++] = t;

%
¥
// Add boundaries 0 and 1
tvals[tcount++] = 0;
tvals[tcount++] = T_ONE;

sort_t(tvals, tcount);

// For each interval, test midpoint and draw if above polyline
for (int i = 0; i < tcount-1; ++i) 3%

sl6 t0 = tvals[i];

sl6 t1 = tvals[i+l];

if (t1 <= t0) continue;

s16 tm = (s16) (((s32)t0 + (s32)t1) >> 1);

Pt Pm = eval_at_t(A, B, tm);
sl6 yc = poly_y_at_x(poly, n, Pm.x);

if (Pm.y >= yc) £
Pt Pstart = eval_at_t(A, B, t0);
Pt Pend = eval_at_t(A, B, t1);
draw_hw_line(Pstart.x, Pstart.y, Pend.x, Pend.y);

Properties vs. your constraints

¢ All coordinates are 8-bit in range; all stored as int16_t.
e 32-bit arithmetic is used only where mathematically necessary:

o A handful of 16x16 — 32 multiplies and a single 32-bit divide per poly segment to
compute each intersection parameter.

o A few 16x16 - 32 multiplies for evaluating points on the query line and polyline.
¢ No 32-bit storage; no matrices; no rasterization.

e The hardware still just receives clean (x,y) pairs for straight lines, and you get exactly the
visible sub-segments above the polyline.

Thank you, we will try that solution.

Glad it helps. If you run into any precision or performance quirks when you integrate it with your
vector hardware, share a few representative polylines and test segments and it can be tuned
further (e.g., reduce divides, tighten bounds on t, or specialize for mostly upward/downward
polyIines).lﬂl

1. https://pmc.ncbi.nim.nih.gov/articles/PMC9605407/

2. https://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/CSD-92-688.pdf

w

. https://www.thiyagaraaj.com/tutorials/computer-graphics-programs-using-c-programming/line-clippin
g-program-using-c-programming

. http://www.richardssoftware.net/Home/SearchTag?tag=Line+Clipping

. https://wavoowajeehacollege.in/assets/pdf/e-content/cs/UNIT 3 - CLIPPING OPERATIONS.pdf

. https://www.cs.montana.edu/courses/spring2009/425/dslectures/clipping.pdf

. https://cgl.ethz.ch/teaching/former/gdv1_04/GDV1_WS04/lecture/09_clipping_4.pdf

. https://redirect.cs.umbc.edu/~ebert/435/notes/435_ch4.html

© 00 N O o b

. https://www.scribd.com/document/856754653/5-Clipping-Algorithms

10. https://open.library.ubc.ca/media/stream/pdf/831/1.0096928/1

11. https://www.slideshare.net/slideshow/line-clipping-76333693/76333693

12. https://zappysautowashes.com/blogs/news/the-ultimate-guide-to-choosing-the-right-soap-for-your-ca
r-wash?srsltid=AfmBO0o0o9 TNIVUyv5Qpwz|_ OWWOtUY3sfNbzur4TnVTbRQsmBZXy0QdHu

13. https://www.academia.edu/31245761/Fast_algorithms_for_clipping_lines_and_line_segments_in_E_2

14. https://stackoverflow.com/questions/31430544/fixing-the-code-for-line-clipping-algorithm

15. https://github.com/topics/clipping-algorithm?I=c%2B%2B&o=asc&s=forks

16. https://programmerbay.com/program-for-clipping-a-line-using-cohen-sutherland-algorithm/

17. https://www.thecrazyprogrammer.com/2017/02/cohen-sutherland-line-clipping-algorithm.html

18. https://lodev.org/cgtutor/lineclipping.html

19. https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/Clipping.html

20. https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/Clipping.html

21. https://www.pascalgamedevelopment.com/showthread.php?5143-16-16-integer-fixed-point-line-draw
er-)

22. https://pmc.ncbi.nim.nih.gov/articles/PMC9605407/

23. https://www.cs.jhu.edu/~misha/Spring16/15.pdf

https://pmc.ncbi.nlm.nih.gov/articles/PMC9605407/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/CSD-92-688.pdf
https://www.thiyagaraaj.com/tutorials/computer-graphics-programs-using-c-programming/line-clipping-program-using-c-programming
https://www.thiyagaraaj.com/tutorials/computer-graphics-programs-using-c-programming/line-clipping-program-using-c-programming
http://www.richardssoftware.net/Home/SearchTag?tag=Line+Clipping
https://wavoowajeehacollege.in/assets/pdf/e-content/cs/UNIT%203%20-%20CLIPPING%20OPERATIONS.pdf
https://www.cs.montana.edu/courses/spring2009/425/dslectures/clipping.pdf
https://cgl.ethz.ch/teaching/former/gdv1_04/GDV1_WS04/lecture/09_clipping_4.pdf
https://redirect.cs.umbc.edu/~ebert/435/notes/435_ch4.html
https://www.scribd.com/document/856754653/5-Clipping-Algorithms
https://open.library.ubc.ca/media/stream/pdf/831/1.0096928/1
https://www.slideshare.net/slideshow/line-clipping-76333693/76333693
https://zappysautowashes.com/blogs/news/the-ultimate-guide-to-choosing-the-right-soap-for-your-car-wash?srsltid=AfmBOoo9TNlVUyv5Qpwzl_0WWOtUY3sfNbzur4TnVTbRQsmBZXy0QdHu
https://zappysautowashes.com/blogs/news/the-ultimate-guide-to-choosing-the-right-soap-for-your-car-wash?srsltid=AfmBOoo9TNlVUyv5Qpwzl_0WWOtUY3sfNbzur4TnVTbRQsmBZXy0QdHu
https://www.academia.edu/31245761/Fast_algorithms_for_clipping_lines_and_line_segments_in_E_2
https://stackoverflow.com/questions/31430544/fixing-the-code-for-line-clipping-algorithm
https://github.com/topics/clipping-algorithm?l=c%2B%2B&o=asc&s=forks
https://programmerbay.com/program-for-clipping-a-line-using-cohen-sutherland-algorithm/
https://www.thecrazyprogrammer.com/2017/02/cohen-sutherland-line-clipping-algorithm.html
https://lodev.org/cgtutor/lineclipping.html
https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/Clipping.html
https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/Clipping.html
https://www.pascalgamedevelopment.com/showthread.php?5143-16-16-integer-fixed-point-line-drawer-%29
https://www.pascalgamedevelopment.com/showthread.php?5143-16-16-integer-fixed-point-line-drawer-%29
https://pmc.ncbi.nlm.nih.gov/articles/PMC9605407/
https://www.cs.jhu.edu/~misha/Spring16/15.pdf

24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.

37.
38.
39.
40.
41.
42.

https://www.cs.princeton.edu/~chazelle/pubs/IntersectLineSegments.pdf

https://www.sciencedirect.com/science/article/abs/pii/009784939290029U

https://www.realtimerendering.com/resources/GraphicsGems/gemsiii/finsectc.c

https://resources.mpi-inf.mpg.de/departments/d1/teaching/ws09_10/CGGC/Notes/Arrangements.pdf

https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.1140241

https://www.gorillasun.de/blog/an-algorithm-for-polygon-intersections/

https://www.semanticscholar.org/paper/Fixed-Point-Arithmetic-Line-Clipping-Vaya-Jorquera/afde293d

c2f470f7420a650d5f59e2098aa37566

https://www.cs.ubc.ca/sites/default/files/tr/1993/TR-93-32_0.pdf

https://www.youtube.com/watch?v=5FkOO0TWwb8w

https://stackoverflow.com/questions/31430544/fixing-the-code-for-line-clipping-algorithm

https://cp-algorithms.com/geometry/check-segments-intersection.html

https://stackoverflow.com/questions/36658998/line-segment-intersection-algorithm

https://www.topcoder.com/community/data-science/data-science-tutorials/geometry-concepts-line-inte

rsection-and-its-applications/

https://www.youtube.com/watch?v=TFI4xQO_rw4

https://ti.inf.ethz.ch/ew/courses/CG08/materials/v3.pdf

https://jvm-gaming.org/t/fastest-linesintersect-method/35387

https://github.com/AngusJohnson/Clipper2/discussions/334

https://cp-algorithms.com/geometry/check-segments-intersection.html

https://pmc.ncbi.nim.nih.gov/articles/PMC9605407/

https://www.cs.princeton.edu/~chazelle/pubs/IntersectLineSegments.pdf
https://www.sciencedirect.com/science/article/abs/pii/009784939290029U
https://www.realtimerendering.com/resources/GraphicsGems/gemsiii/insectc.c
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ws09_10/CGGC/Notes/Arrangements.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.1140241
https://www.gorillasun.de/blog/an-algorithm-for-polygon-intersections/
https://www.semanticscholar.org/paper/Fixed-Point-Arithmetic-Line-Clipping-Vay%C3%A1-Jorquera/afde293dc2f470f7420a650d5f59e2098aa37566
https://www.semanticscholar.org/paper/Fixed-Point-Arithmetic-Line-Clipping-Vay%C3%A1-Jorquera/afde293dc2f470f7420a650d5f59e2098aa37566
https://www.cs.ubc.ca/sites/default/files/tr/1993/TR-93-32_0.pdf
https://www.youtube.com/watch?v=5FkOO1Wwb8w
https://stackoverflow.com/questions/31430544/fixing-the-code-for-line-clipping-algorithm
https://cp-algorithms.com/geometry/check-segments-intersection.html
https://stackoverflow.com/questions/36658998/line-segment-intersection-algorithm
https://www.topcoder.com/community/data-science/data-science-tutorials/geometry-concepts-line-intersection-and-its-applications/
https://www.topcoder.com/community/data-science/data-science-tutorials/geometry-concepts-line-intersection-and-its-applications/
https://www.youtube.com/watch?v=TFl4xQO_rw4
https://ti.inf.ethz.ch/ew/courses/CG08/materials/v3.pdf
https://jvm-gaming.org/t/fastest-linesintersect-method/35387
https://github.com/AngusJohnson/Clipper2/discussions/334
https://cp-algorithms.com/geometry/check-segments-intersection.html
https://pmc.ncbi.nlm.nih.gov/articles/PMC9605407/

