#define VECTREX 1
// Although I have another file with generic divide code, this is specific to dividing by 10
// which is frequently needed when displaying numbers on screen, and worth optimizing.
// That said, I have not yet put this code on the clock to confirm timings.
// This file contains a 16-bit signed divide by 10,
// and 8-bit signed and unsigned divides by 10 (with two different
// implementations of each - time them and use the faster ones)
#ifdef VECTREX
#include <vectrex.h>
#include "muldiv.h"
// high is 0 on intel, 1 on 6809
#define HIGH 0
#define LOW 1
#define int8_t int
#define uint8_t unsigned int
#define int16_t long
#define uint16_t unsigned long
#define USE_MUL 1
#define EXIT_SUCCESS 0
#define EXIT_FAILURE 1
#else
#include <stdio.h>
#include <stdlib.h>
// high is 0 on intel, 1 on 6809
#define HIGH 0
#define LOW 1
#define int8_t signed char
#define uint8_t unsigned char
#define int16_t signed short
#define uint16_t unsigned short
#define USE_MUL 1
#define TEST
#endif
// If we read and write our parameter and result from a volatile pointer,
// we can ensure the compiler does not optimise expressions out of existence
// when the input is known at compile time!
static long long P1forced_access;
static volatile long long *P1LongLong = (volatile long long *)&P1forced_access;
static volatile long *P1Long = (volatile long *)&P1forced_access;
static volatile int *P1Int = (volatile int *)&P1forced_access;
static long long P2forced_access;
static volatile long long *P2LongLong = (volatile long long *)&P2forced_access;
static volatile long *P2Long = (volatile long *)&P2forced_access;
static volatile int *P2Int = (volatile int *)&P2forced_access;
static void SHOW_NUM(char *dest, long num) { // left-aligned
#define show_digit(x) *dest++ = (char)((x)+'0')
int8_t digit, zeroes;
// This replaces code that used divide by 10 and modulo 10. Much faster.
// handles full 16 bit range of -32768:32767 - Uses negative numbers to avoid the issue of negating -32768
if (num >= 0) num = -num; else *dest++ = '-';
digit = 0;
zeroes = 1; // CLRing is shorter
// max 11 add/subtracts...
if (num <= -20000) { num += 20000; digit += 2; zeroes = 0; }
if (num <= -10000) { num += 10000; digit += 1; zeroes = 0; }
if (!zeroes) show_digit(digit);
digit = 0;
if (num <= -8000) { num += 8000; digit += 8; zeroes = 0; } else if (num <= -4000) { num += 4000; digit += 4; zeroes = 0; }
if (num <= -2000) { num += 2000; digit += 2; zeroes = 0; }
if (num <= -1000) { num += 1000; digit += 1; zeroes = 0; }
if (!zeroes) show_digit(digit);
digit = 0;
if (num <= -800) { num += 800; digit += 8; zeroes = 0; } else if (num <= -400) { num += 400; digit += 4; zeroes = 0; }
if (num <= -200) { num += 200; digit += 2; zeroes = 0; }
if (num <= -100) { num += 100; digit += 1; zeroes = 0; }
if (!zeroes) show_digit(digit);
digit = 0;
if (num <= -80) { num += 80; digit += 8; zeroes = 0; } else if (num <= -40) { num += 40; digit += 4; zeroes = 0; }
if (num <= -20) { num += 20; digit += 2; zeroes = 0; }
if (num <= -10) { num += 10; digit += 1; zeroes = 0; }
if (!zeroes) show_digit(digit);
show_digit((int8_t)-num);
*dest++ = ' ';
*dest = 0x80;
}
// An accurate signed 16 bit division by 10
// Taken from http://homepage.divms.uiowa.edu/~jones/bcd/divide.html
static inline int16_t sdiv10_16(int16_t A) {
int16_t Q; /* the quotient */
int16_t R; /* the remainder */
// Avoid using divide:
Q = ((A >> 1) + A) >> 1; /* Q = A*0.11 */
Q = ((Q >> 4) + Q) ; /* Q = A*0.110011 */
Q = ((Q >> 8) + Q) >> 3; /* Q = A*0.00011001100110011 */
/* either Q = A/10 or Q+1 = A/10 for -87,381 < A < 534,890 */
#ifdef USE_MUL // Need to time both cases on 6809 to see which is faster.
R = Q * 10;
#else
R = ((Q << 2) + Q) << 1;
#endif
R = A - R; /* R = A - 10*Q */
if (R >= 10) { R -= 10; Q += 1; } /* Q = A/10 for -87,381 < A < 534,890 */
if ((Q < 0) && (R != 0)) Q += 1;
#ifdef TEST
if (Q != A/10) {
fprintf(stderr, "A: %d A/10: %d Q: %d\n", A, A/10, Q);
exit(EXIT_FAILURE);
}
#endif
return Q;
}
// ditto with remainder exported to user
static inline int16_t sdiv10_16_with_remainder(int16_t A, int16_t *Remainder) {
int16_t Q; /* the quotient */
int16_t R; /* the remainder */
// Avoid using divide:
Q = ((A >> 1) + A) >> 1; /* Q = A*0.11 */
Q = ((Q >> 4) + Q) ; /* Q = A*0.110011 */
Q = ((Q >> 8) + Q) >> 3; /* Q = A*0.00011001100110011 */
/* either Q = A/10 or Q+1 = A/10 for -87,381 < A < 534,890 */
#ifdef USE_MUL // Need to time both cases on 6809 to see which is faster.
R = Q * 10;
#else
R = ((Q << 2) + Q) << 1;
#endif
R = -R + A; /* R = A - 10*Q */
if (R >= 10) { R -= 10; Q += 1; } /* Q = A/10 for -87,381 < A < 534,890 */
if ((Q < 0) && (R != 0)) { R -= 10; Q += 1; }
*Remainder = R;
#ifdef TEST
if ((Q != A/10) || (R != A%10)) {
fprintf(stderr, "A: %d A/10: %d Q: %d R: %d A%%10: %d\n", A, A/10, Q, R, A%10);
exit(EXIT_FAILURE);
}
#endif
return Q;
}
// divide signed 8-bit quantity by 10 using 16 bit intermediate at most
static inline int8_t s8divided_by_10(int8_t x) {
int8_t rem;
int8_t result;
result = (int8_t)(((int16_t)x * 25L) >> 8L); // A*B should be the only 16 bit quantity
#ifdef USE_MUL
//rem = -(result*10)+x; // *10 is marginally faster than shift+add.
rem = (-10*result)+x; // yet to check if r*-10 faster than -(r*10). Probably is.
#else
rem = -(((result << 2) + result) << 1) + x;
#endif
if (rem > 0) {
if ((x < 0) || (rem >= 10)) result++;
}
#ifdef TEST
if (result != x/10) {
printf("s: %d %d %d rem %d\n", x, x/10, result, rem);
exit(EXIT_FAILURE);
}
#endif
return result;
}
// divide unsigned 8-bit quantity by 10 using 16 bit intermediate at most
static inline uint8_t u8divided_by_10(uint8_t x) {
uint8_t rem;
uint8_t result;
result = (uint8_t)(((uint16_t)x * 25UL) >> 8UL); // Again, A*B should be the only 16 bit quantity
rem = x - result*10; // yet to check if *10 faster than shift+add. Probably is.
if (rem >= 10) result++;
#ifdef TEST
if (result != x/10U) {
printf("u: %u %u %u rem %u\n", x, x/10U,result,rem);
exit(EXIT_FAILURE);
}
#endif
return result;
}
static inline uint8_t divu10_8(uint8_t i) {
uint8_t result, remainder;
union twobytes { // an experiment to see if the 6809 code generator can be forced to avoid using 8 double-byte LSR instructions
uint16_t sixteenbit; // Despite being lengthier source code this should be tighter machine code.
uint8_t eightbit[2];
} temp;
temp.sixteenbit = (i+1)*51;
result = temp.eightbit[LOW]>>1;
remainder = i - result*10;
#ifdef TEST
if (result != i/10) {
printf("U: %u/10 = %u? %u rem %u\n", i, i/10, result, i - result*10);
exit(EXIT_FAILURE);
}
#endif
return result;
}
static inline int8_t divs10_8(int8_t i) {
int8_t result;
union twobytes { // an experiment to see if the 6809 code generator can be forced to avoid using 8 double-byte ASR instructions
int16_t sixteenbit;
int8_t eightbit[2];
} temp;
temp.sixteenbit = (i+1)*51;
result = temp.eightbit[LOW]>>1;
if ((i < 0) && (i > result*10)) result += 1; // there's probably a bit-twiddling expression to avoid two comparisons...
// (but just casting i to uint8_t won't work)
#ifdef TEST
if (result != i/10) {
printf("S: %d/10 = %d? %d rem %d\n", i, i/10, result, i - result*10);
exit(EXIT_FAILURE);
}
#endif
return result;
}
#define IRQ_6809_MASK 0x10
#define ENABLE_IRQ_6809 asm("andcc #0xef")
#define DISABLE_IRQ_6809 asm("orcc #0x10")
//static int Ready = 0;
// does not return, since we use the
// actual waitRecal "shortcut" to jump to "set_refresh" and return from there
__attribute__((noinline)) void iWaitRecal(void) // if inlined, the JMP -> RTS goes astray!!!
{
asm("jmp 0xF1A2"); // Set_Refresh
}
volatile unsigned int8_t *rand = (volatile unsigned int *)0xc87b;
volatile unsigned int8_t *timer_lo = (volatile unsigned int *)0xD004;
static unsigned int16_t udiv16(unsigned int16_t qq, unsigned int16_t d) {
unsigned int32_t x, q=qq;
unsigned int16_t b, res, t;
t = msb16(d);
//fprintf(stdout, "q: %d t: %d d: %d\n", q, t, d);
if (t != d) t <<= 1; // t >= d
//fprintf(stdout, "t: %d >= d: %d\n", t, d);
b = 1;
while (t < q) {
//fprintf(stdout, "t: %d <= q: %d b: %d\n", t, q, b);
t <<= 1;
b <<= 1;
if (t == 0) break;
}
//fprintf(stdout, "... t: %d q: %d b: %d\n", t, q, b);
res = b;
for (;;) {
x = d*res; // assumes 16 bit quotient was formed as the product of 2 8-bit factors. If not, use umultiply16.
//fprintf(stdout, "trying %d * %d = %d against %d\n", d, res, x, q);
b >>= 1;
if (x == q) {
//fprintf(stdout, "%d / %d = %d (actual %d)\n", q, d, res, q / d);
return res;
} else if ((x <= q) && (x+d > q)) {
//fprintf(stdout, "%d / %d = %d rem %d (actual %d rem %d)\n", q, d, res, q-x, q / d, q % d);
return res;
} else if (x < q) {
res += b;
} else if (x > q) {
res -= b;
}
}
}
int main(void) {
static unsigned long t1,t2;
static char debug[12];
Vec_Rfrsh = 0L;
Vec_Loop_Count = 0L;
for (;;) {
Wait_Recal();
Reset0Ref();
Intensity_a(0x3f);
{
asm(" nop ");
// initialisation:
*P1Long = 12345L;
*P2Long = 10L;
long p1 = *(long *)P1Long; // use of volatile forces code to be executed
long p2 = *(long *)P2Long;
// insert code to be tested here:
t1 = dp_VIA_t2;
//=======================================================================================
//asm(" nop "); // 4 cycles (not 3 like https://atjs.mbnet.fi/mc6809/Information/6809.htm )
//asm(" adda #0 "); // 4 cycles
//p1 = sdiv16_by_16(p1,p2); // 17626 cycles
//p1 = sdiv16_by_8(p1,(int)p2); // 17634 cycles
//p1 = (long)udiv16_by_16((unsigned long)p1,(unsigned long)p2); // 17180 cycles
//p1 = (long)udiv16_by_8((unsigned long)p1,10); // 17138 cycles
//p1 = p1/10L; // 2364 cycles
//p1 = p1/p2; // 2360 cycles
//p1 = sdiv10_16(p1); // 352 cycles
p1 = (long)udiv16((unsigned long)p1,(unsigned long)p2); // 9760 cycles
//=======================================================================================
t2 = dp_VIA_t2;
t1 = (t1<<8) | ((t1>>8)&255);
t2 = (t2<<8) | ((t2>>8)&255);
*P1Long = p1; // force results to be calculated and not discarded
*P2Long = p2;
}
SHOW_NUM(debug, (long)((t1-t2-13L)<<1)); // cycle count of operation above
Print_Str_d(80, -40, debug);
//SHOW_NUM(debug, (long)t1); // display the result as a check!
SHOW_NUM(debug, (long int)*P1Long); // display the result as a check!
Print_Str_d(40, -40, debug);
continue;
(void)(*P1LongLong);
(void)(*P1Long);
(void)(*P1Int);
(void)(*P2LongLong);
(void)(*P2Long);
(void)(*P2Int);
}
#ifdef NEVER
{ // signed 16-bit divide
int16_t Q,R,A = 0;
do Q = sdiv10_16_with_remainder(A++,&R); while (A);
do Q = sdiv10_16(A++); while (A);
}
{ // unsigned 8-bit divide
uint8_t i, r2, r5;
i = 0;
for (;;) {
if (i) {
r2 = u8divided_by_10(i);
r5 = divu10_8(i);
}
i++;
if (i == 0) break;
}
}
{ // signed 8-bit divide
int8_t i, r1, r2, r5;
i = -128;
for (;;) {
if (i) {
r1 = i/10;
r2 = s8divided_by_10(i);
r5 = divs10_8(i);
}
i++;
if (i == -128) break;
}
}
#ifdef TEST
printf("All test passed\n");
exit(EXIT_SUCCESS);
#endif
#endif
return (EXIT_FAILURE);
}