Machine L earning Using a Genetic Algorithm to Optimise a Draughts
Program Board Evaluation Function

Kenneth J. Chisholm and Peter VE3adbeer.
Department of Computer Studies,
Napier University,
Edinburgh, Scotland.
e-mail: {ken,pvgb}@ilcs.napier.ac.uk

Abstract

This paper reviews the aithors recent
work in using a Genetic Algorithm (GA) to
optimise the board evaluation function of a
game-playing program. The test-bed used
for this dudy has been the game of
draughts (chedkers). A pod of draughs
programs are played against eat other in a
round-robin (al-play-all) tournament to
evaluate the fitness of ead ‘player’ and a
GA is used to preserve and improve the
best performers. Some solutions to the
problems of attempting to compare the
absolute performance of possble solutions
in this areawhich is mainly about relative
abiliti es are presented. Comparisons with
classcd methods and results are dso
briefly discussed.

1 Introduction

Although the original work of Samuel[Samuel59]
on madiine-leaning wsing the game of draughtsis
amost 40 yeas old, the more recent work of the
Chinook[Schadfer92] chedkers program team at
the University of Albertain the 1990s inspired the
authors to look at the problem of optimising the
board-evaluation function using a Genetic
Algorithm (GA). The Chinook team has now
virtually ‘solved’ the draughts end-game by
creging an enormous database of solved
boardgLake94], and the openings are relatively
well understood This leares the mid-game & an
areawhere pure processng power and prodigious
storage is not sufficient, due to the size of the
seach space Thus it was felt that this game-
playing area was 4gill worth investigating wsing
GAs to seeif such an approach could improve on,
or a least match, Samuel’s rather tailored
technique of madineleaning which helped
enable his program to play at county level.

2 Historical Background: Basic Game-Playing
Algorithms

Most standard game-playing programs for two-
person, zero-sum board games such as draughts
and chess use a limted look-ahed
tred Shannon50a] with mini-max seach[Levy91],
usualy with some form of treepruning such as
alpha-beta ait-off[Knuth75] to reduce the number
of moves considered.

A board evaluation function is used for the
terminal boards at the horizon (or led nodes) of
the seach tree The principle of hot-
pursuit[Turings3] is usually used so that the
seach-treeis locdly extended to ensure that the
boards which are evaluated by the board-
evaluation function are relatively stable boards and
are not so bedly effeded by the horizon
effed[Berliner73]. This principle essntidly
causes al pending takes, for example, to be
completed before a board is considered for the
purposes of datic board evaluation. This is
particularly important in draughts sncethe rules of
the game dictate that take-moves must be caried
out by a player if any are avail able on aboard. For
more detals of these isaies se the papers of
Turing[Turing53] and Shannon [Shannon50h
which discuss algorithms for playing computer
chess, which all equally apply to draughts.

The static board evaluation function is esentialy a
weighted-sum of fedures <ore based on the
various properties of the board. The board feaures
considered when evaluating a terminal board are
the usual properties thought important by human
players guich as: number of pieces, mohility count,
centre-control, advancement of pieces, etc.

Thus the evaluated score for a board may be
viewed as a simple linea polynomial, usualy
represented as follows:

Board Score = w*f; + W *fo+ i, W, * f, (1)

The feaures (f; .. f,) used in such a board
evaluation function are usually based on the human
strategic knowledge of the game due to decales (or
even centuries) of analysigBelasco73
Fortman82]. However, the relative weights (w; ...
w,,) assgned to these feaures can till be fruitfully
analysed using optimising techniques such as hill -
climbing. This paper reports how a GA can also be
used to optimise and customise these weightings.
Samuel in his first paper presented a very
impressve method for (what he cdl ed) generalised
learning wsing the technique of hill -climbing. This
was certainly a onsiderable tour-de-force for its
time. Samuel also reported how various board
feaures could be viewed as being conneded in
some way (such as centre control and mohility, for
example) and treaed as a singe feaure for the
purposes of the analysis. For pradicd reasons, the
number of these so-cdled hinary-conneded terms
which Samuel considered had to be limited and
somewhat hard-coded into the program.

In his soond paper, Samuel [Samuel67] presented
a novel method o further grouping feaures
together using what he cdled “signature tables’.
This allowed the @mnnedivity between feaures to
be further extended to include tertiary and even
hierarchicd groupings. It is believed by the authors
that the nature of the GA approach to this each
space @ables the wnredivity of the various
fedures to be catured and produced in a fairly
direct manner.

3 A Genetic Algorithm for Optimising the
Board Evaluation Function

The gproach taken here is to try and evolve aset
of weights for the palynomia in eguation (1) with
the weights themselves forming the genetic
material processed by the
GA[Holland79[Goldberg89], as a dired
representation. To this end a draughts playing
program is required to assess the quality of the
candidate solution. A program cdled DRAFT5S
was pressed into service DRAFTS is a descendant

of a draughts playing program which was written
by one of the aithors almost 20 yeas ago as an
undergraduate Al projed[Chisholm76], to
investigate various methods of achieving better
rote-leaning techniques, such as partia-board
matching during end-games. This program has
been extended, tuned, trandated and pated over
the yeas. DRAFT5 has been the main engine of
the research reported here. DRAFTS is written in
ANSI C and currently runs on UNIX systems and
PCs under MS-DOS. It has a graphicd front-end
and can suggest moves for the human opponent.

As with most draughts and chess programs
DRAFT5 was written so that it was able to play
against itself by aternately searching and moving
for bladk and then for white. This cgpability was
necessary for the purposes of the rote-leaning
experiments mentioned above. This ability of
DRAFTS would enable apod of individuals with
different weights to play against ead other in
some sort of draughts tournament such as the
round-robin format. In pradiceby smply havinga
colledgion of differing weights in a two-
dimensional array it is possble to effedively have
apod of ‘players with different strategies, due to
ead individual usingits own set of weightsin its
board-evaluation function. (See figure 1 for a
sample set of individuals. Note that the range
figure underneah the feaure descriptor indicaes
the maximum possble value permitted for that
weight.)

The fitness function used in this GA is smply the
number of wins achieved in a draughts round-robin
(i.e. all-play-all) tournament by that individual in
the pod. Thisis a measure of the relative fitness of
the individuals in the pod. This clealy introduces
an element of dired competition between the
members of the pod. This can be seen as a similar
model to that used by Rosin and Belew[Rosin95]
except that one gene pod is used here, rather than
the two dstinct co-evolving populations (hosts and
parasites) which they use in their GA model.

-------------------- Generation: 6

Fitness Piece King Mb Kwb Back Cent KCent Advl DBLSq Near Exch MOVE

Range: 1200 2000 140 140 140 140 140 140 660 5 140 240
23 1081 1917 17 25 22 1 110 85 85 128 7
22 416 1564 85 79 131 49 118 65 349 1 104 70
21 896 1564 17 25 74 49 118 138 230 1 104 70
20 734 1068 86 91 74 12 69 65 365 5 136 163
19 786 630 23 137 57 70 35 17 75 1 118 171
18 896 1564 7 91 74 49 118 138 230 1 104 150
1

Figure 1 - A sample pool of board feature weights

It should be noted that a round-robin(RR)
tournament is used, as oppced to a simple
knockout tournament for example, so that
sufficiently acarate evidence is gathered
regarding the aility of an individual program in
the pod. This unfortunately causes a lot more
games to be played per generation, thus dowing
down ead experiment, but this RR approac is
thought to be asolutely necessary due to the high
probability of draughts games ending in a draw.
This is a very common fedure in draughs
tournaments, even with human players, and
particularly with automatic game-playing programs
such as DRAFT5. For example, in the Tinsley-
Chinook match for the World Draughs
Championship in 1993 Schadfer93] which was
played over 40 games, there were 33 draws, 6 wins
for Dr. Tindey and 2 wins for Chinook, leasing
one game not played at the exd o the match.

/* Basic Draughts tournament GA - version 1 */
Max_Number_Of Generations = 50
Pool_Size = 30

Mutation_Rate = 10

/* Initialise the pool of weights with random numbers */

for i = 1to Pool_Sizedo
for j = 1to Chromosome_lengttio
Poolf, j] = random(allowed range)

However, it should be noted that draws are not
quite so common in games involving oppaents
who are not of this exceptional cdibre. The reward
of half apoint for a draw was discounted as it was
beli eved that this would reducethe dfedivenessof
searching for aggressive end-game strategies.

In this first set of experiments a smple assortative
seledion and crossover technique was used and
eliti sm was employed to preserve the best “player”
from ead generation. The basic GA used is
described in figure 2.

4 Resultsand Analysis of Initial Experiments

A first batch of experiments were mnducted using
the GA described in figure 2. Each experiment was
caried out 10 times in an attempt to minimise the
‘noise’ in the results from DRAFTS.

[* Carry our generations of RR draughts tournaments with GA */

for g =1to Max_Number_of Generatiomn®

{ I* Evaluate fitness of Pool of draughts players (using RR matches) */

for i = 1to Pool_Sizedo {
for j = 1to Pool_Sizedo {
if (i#])then {

Copy Pod]jweights to ‘Player A’ evaluation function
Copy Pool[j] weights to ‘Player B’ evaluation function

result = draughts (Player A vs. Player B)

if result = 1then Pool[].fithess = Poolf.fithess + 1
if result = 2then Pool[j].fithess = Pool[j].fithess + 1

}
}
}

Sort Pool of Players based on the Fitness from RR Draughts Tournament

Elite = Pool[1]
Crossover Pool
for m = 1to Mutation_Ratedo Mutate Pool
PoolPool_Size] = elite
Display and store results

}

/* Preserve best player */

/* Insert elite back in Pool */

Figure 2 - The first GA used for a RR draughts tournament

__ Cener ati on:

Fitness Piece King Mbb KMbb Back Cent
Range: 1200 2000 140 140 140 140
30 989 1590 74 53 65 22
29 904 1590 74 5 65 33
28 904 1590 74 107 65 33
28 904 1590 133 76 65 35
26 904 1692 74 126 73 33

50

KCent Advl DBLSq Near Exch MOVE
140 140 660 5 140 240
127 83 385 1 79 203
127 137 385 1 79 123
127 92 385 2 79 98
127 83 473 1 79 98
127 137 385 1 79 98

Figure 3 - Sample top-five weights from the final (50th) generation pool

For apod sizeof 30, there ae gproximately 900
games per generation thus giving about 45,000
games played per experiment. It should be noted
that eadh individual game takes about 2 seconds
and thus ead experiment takes approximately 30
hours on a Pentium 90. The seach limit for the
look-ahead by DRAFTS5 was st to two moves
(plus hot-pursuit) so that these experiments would
be feasible in a reasonable time-scde. Due to the
time wnsuming reture of the processng a pod
size of more than 30 was not considered.

A sample top-five from the final (50th) generation
pod is siown in figure 3. In passng, it can be seen
that the board feaure weights dow signs of
convergence Firstly, perhaps the most
encouraging result from these initial experiments
was the fad that the King Weight was aways
approximately 1.5 times the (ordinary) Piece
Weight. This is the generaly accepted ratio as
given in many draughts bodks for human players
and indeed was the ratio which was used by
Samuel in his dudies. This means that three
(ordinary) pieces will be exchanged for two kings,
if by so ddng some positional advantage is
obtained.

Semndly, the values for the lessr weights such as
mobility, centre ontrol, cramping and
advancement were found to be very similar to
those determined by yeas of fine tuning wing
human oppaents playing DRAFT5. Many yeas
of testing and tuning of DRAFT5 against volurtee
oppaents had produced considerable successand
best results with similar values for most of these
positional board-feature weights.

Thirdly, DRAFT5 played some games against
human oppaents using these GA-cdculated
weights with some success This ‘variant’ of the
draughts program DRAFT5 with automaticdly
determined weight settings is referred to as
DRAFT5-GA throughout this paper.

5 Measuring the Improvement of DRAFT5-GA

In the aeaof draughs and chessthe success and
ability of a human player (and indeed a program) is
usualy given by measuring the results obtained
against other players (or programs) in tournaments.
This charaderistic of ranking players and the work
of Donnelly e a with the game of
GQ[Donnelly94] suggested the following method
of determining a more absolute measure of the
improvement of DRAFT5-GA obtained while

learning using the GA described above in figure 2.

In a second set of experiments, the winner of ead
draughts tournament held during ead generation
of the GA is preserved in a findists pod. At the
end of 50 generations, these generation winners
compete ayainst ead other in a final all-play-all
tournament to determine whether the GA has been
succesgul in improving the playing ability of
DRAFT5-GA.

The graph in figure 4 shows the number of wins by
generation winners plotted against generation
number. From the graph in figure 4, it can be seen
that there is a general trend of dight improvement,
but that this is superimposed with a lot of locd
variability. Aswith the work of Donnelly et d, it is
felt that one of the main fadors affeding
performanceis probably the difficulty of obtaining
reliable fitness information when uwsing the
win/loss results against the other versions of
DRAFT5-GA. Thisis again partly due to the large
number of drawn games being very common in
draughts.

6 DRAFT5 versusDRAFT5-GA

A third set of experiments were cnducted using a
dlight variation of the basic notion described in the
previous dion. In this st of experiments
however, the winner of ead generation was
entered into a 40 game match against the original,
hand-tuned DRAFT5. The original DRAFTS5 uses
the same set of feaures as DRAFT5-GA with

Fithess Growth

g0

a0
40
30
20

Humber of Wing

A0 g e

0

1 4 7 101316 19 22 25 25 31 34 37 40 43 46 49

Generation

Figure 4 - Graph of relative fithess improvement

DRAFTS-GA Fitness Growth v DRAFTS

Humber of Wins

1 4 F 10 13

19 22 23 25 31 34 357 40

Generation

Figure 5 - Fitness Improvement of DRAFT5-GAs v DRAFT5

hand-tuned values for the feaure weights. Over the
yeas DRAFTS5 is known to play well from its
performance aainst many good human players
and ather draughts programs. The results of this st
of experiments were dso quite promising and are
shown in figure 5. Again there is aso a genera
trend of improvement with some superimposed
local variability.

7.Conclusions

The magjor conclusion that can be drawn from this
work is that a relatively unsophisticated GA can
determine agood set of board-evaluation weights
to play draughts without the aldition of any
domain spedfic information, such as gedalist
crossover or inoculating the pod with known good
starting pointg Surrey96]. To dete, this ystem has
demonstrated a ladk of sensitivity to the seledion
mechanism employed.

Acknowledgements

The aithors would like to thank the anonymous
reviewers for their constructive comments.

References

[Belasco73] ABelasco, “Chess and Draughts -
How to Play Scientifically”,Foulsham, 1973

[Berliner73] H.J.Berliner, “'Some Necessary
Conditions for a Master Chess Program”, Third
International Joint Conference on Atrtificial
Intelligence, Stanford, CA, 1973.

[Chisholm76] K.JChisholm, “DRAFTS5 - A
Learning Draughts Program”, B.Sc. Project Report,
University of Edinburgh, 1976.

[Donnelly94] P.Donnelly, P.Corr & D. Crookes,
“Evolving Go Playing Strategy in Neural
Networks”, AISB Workshop on Evolutionary
Computing, Leeds, England, 1994.

[Fortman82] RFortman, “Basic Checkers”,
Available from the American Checkers Federation,
1982.

[Goldberg89] D.EGoldberg, “Genetic Algorithms
in SearchOptimization & Machine Learning”,
Addison-Wesley, 1989.

[Holland75] J.H. Holland, Adaption in Natural and
Artificial systems”, University of Michigan Press,
Ann Arbor, 1975.

[Knuth75] D.E.Knuth & R.W. Moore, “An
Analysis of Alpha-Beta Pruning”, Atrtificial
Intelligence, Volume 6, No. 4, 1975.

[Lake94] R. Lake, JSchaeffer & PLu, “Solving
Large Retrograde-Analysis Problems Using a
Network of Workstations”, Advances in Computer
Chess VII, (Ed. H.J. van déterik et al),

University ofLimberg, Netherlands, pages 135-162,
1994.

[Levy91] D. Levy & M. Newborn, “How
Computers Play Chess”, Computer Science Press,
1991.

[Rosin95] C.D Rosin & R.KBelew, “Methods for
CompetitiveCo-evolution: Finding Opponents
Worth Beating”, Proceedings of the Sixth
International Conference on Genetic Algorithms, pp
373-380. MorgaKaufmann, 1995.

[Samuel59] A.L. Samuel, “Some Studies in
Machine Learning Using the Game of Checkers”,

IBM Journal of Research and Development, Vol. 3,
No. 3, 1959.

[Samuel67] A.L. Samuel, “Some Studies in
Machine Learning Using the Game of Checkers Il -
Recent Progress”, IBM Journal of Research and
Development, Vol. 11, No. 6, 1967.

[Schaeffer92] JSchaeffer, JCulbertson, B.K.
Treloar, PLu & D. Szafron, “A World
Championship Calibre Checkers Program”,
Artificial Intelligence, Vol. 53, pp 273-289, 1992.

[Schaeffer93] JSchaeffer, NTreloar, PLu & R.
Lake, “Man Verses Machine for the World
Checkers Championship”, Al Magazine, Vol. 4,
No. 2, pp 28-35, 1993.

[Shannon50al.E. Shannon, “Programming a
Digital Computer for Playing Chess”, Philosophy
Magazine, Vol. 41, 1950.

[Shannon50b{.E. Shannon, “Automatic Chess
Player”, Scientific American, Vol. 182, No. 48,
1950.

[Surrey96] P.D. Surrey & N.JRadcliffe,
“Inoculation to Initialise Evolutionary Search”,
AISB Workshop on Evolutionary Computing,
University of Sussex, 1996.

[Turing53] A.M. Turing, “Digital Computers
Applied to Games” Faster Than Thought (Ed.
B.V. Bowden), pp 186-310, 1953.

