
Machine Learning Using a Genetic Algorithm to Optimise a Draughts
Program Board Evaluation Function

Kenneth J. Chisholm and Peter V.G. Bradbeer.
Department of Computer Studies,

 Napier University,
 Edinburgh, Scotland.

e-mail: {ken,pvgb}@dcs.napier.ac.uk

 Abstract

This paper reviews the authors’ recent
work in using a Genetic Algorithm (GA) to
optimise the board evaluation function of a
game-playing program. The test-bed used
for this study has been the game of
draughts (checkers). A pool of draughts
programs are played against each other in a
round-robin (all -play-all) tournament to
evaluate the fitness of each ‘player’ and a
GA is used to preserve and improve the
best performers. Some solutions to the
problems of attempting to compare the
absolute performance of possible solutions
in this area which is mainly about relative
abiliti es are presented. Comparisons with
classical methods and results are also
briefly discussed.

1 Introduction

Although the original work of Samuel[Samuel59]
on machine-learning using the game of draughts is
almost 40 years old, the more recent work of the
Chinook[Schaeffer92] checkers program team at
the University of Alberta in the 1990’s inspired the
authors to look at the problem of optimising the
board-evaluation function using a Genetic
Algorithm (GA). The Chinook team has now
virtually ‘solved’ the draughts end-game by
creating an enormous database of solved
boards[Lake94], and the openings are relatively
well understood. This leaves the mid-game as an
area where pure processing power and prodigious
storage is not suff icient, due to the size of the
search space. Thus it was felt that this game-
playing area was still worth investigating using
GAs to see if such an approach could improve on,
or at least match, Samuel’s rather tailored
technique of machine-learning which helped
enable his program to play at county level.

2 Historical Background: Basic Game-Playing
Algorithms

Most standard game-playing programs for two-
person, zero-sum board games such as draughts
and chess use a limited look-ahead
tree[Shannon50a] with mini-max search[Levy91],
usually with some form of tree-pruning such as
alpha-beta cut-off [Knuth75] to reduce the number
of moves considered.

A board evaluation function is used for the
terminal boards at the horizon (or leaf nodes) of
the search tree. The principle of hot-
pursuit[Turing53] is usually used so that the
search-tree is locally extended to ensure that the
boards which are evaluated by the board-
evaluation function are relatively stable boards and
are not so badly effected by the horizon
effect[Berliner73]. This principle essentially
causes all pending takes, for example, to be
completed before a board is considered for the
purposes of static board evaluation. This is
particularly important in draughts since the rules of
the game dictate that take-moves must be carried
out by a player if any are available on a board. For
more details of these issues see the papers of
Turing[Turing53] and Shannon [Shannon50b]
which discuss algorithms for playing computer
chess, which all equally apply to draughts.

The static board evaluation function is essentially a
weighted-sum of features score based on the
various properties of the board. The board features
considered when evaluating a terminal board are
the usual properties thought important by human
players such as: number of pieces, mobilit y count,
centre-control, advancement of pieces, etc.

Thus the evaluated score for a board may be
viewed as a simple linear polynomial, usually
represented as follows:

Board Score = w1 * f1 + w2 * f2 + + wn * fn (1)

The features (f1 .. fn) used in such a board
evaluation function are usually based on the human
strategic knowledge of the game due to decades (or
even centuries) of analysis[Belasco73,
Fortman82]. However, the relative weights (w1 ...
wn) assigned to these features can still be fruitfully
analysed using optimising techniques such as hill -
climbing. This paper reports how a GA can also be
used to optimise and customise these weightings.
Samuel in his first paper presented a very
impressive method for (what he called) generalised
learning using the technique of hill -climbing. This
was certainly a considerable tour-de-force for its
time. Samuel also reported how various board
features could be viewed as being connected in
some way (such as centre control and mobilit y, for
example) and treated as a single feature for the
purposes of the analysis. For practical reasons, the
number of these so-called binary-connected terms
which Samuel considered had to be limited and
somewhat hard-coded into the program.

In his second paper, Samuel [Samuel67] presented
a novel method of further grouping features
together using what he called “signature tables” .
This allowed the connectivity between features to
be further extended to include tertiary and even
hierarchical groupings. It is believed by the authors
that the nature of the GA approach to this search
space enables the connectivity of the various
features to be captured and produced in a fairly
direct manner.

3 A Genetic Algorithm for Optimising the
Board Evaluation Function

The approach taken here is to try and evolve a set
of weights for the polynomial in equation (1) with
the weights themselves forming the genetic
material processed by the
GA[Holland75][Goldberg89], as a direct
representation. To this end a draughts playing
program is required to assess the quality of the
candidate solution. A program called DRAFT5
was pressed into service. DRAFT5 is a descendant

of a draughts playing program which was written
by one of the authors almost 20 years ago as an
undergraduate AI project[Chisholm76], to
investigate various methods of achieving better
rote-learning techniques, such as partial-board
matching during end-games. This program has
been extended, tuned, translated and ported over
the years. DRAFT5 has been the main engine of
the research reported here. DRAFT5 is written in
ANSI C and currently runs on UNIX systems and
PCs under MS-DOS. It has a graphical front-end
and can suggest moves for the human opponent.

As with most draughts and chess programs
DRAFT5 was written so that it was able to play
against itself by alternately searching and moving
for black and then for white. This capabilit y was
necessary for the purposes of the rote-learning
experiments mentioned above. This abilit y of
DRAFT5 would enable a pool of individuals with
different weights to play against each other in
some sort of draughts tournament such as the
round-robin format. In practice by simply having a
collection of differing weights in a two-
dimensional array it is possible to effectively have
a pool of ‘players’ with different strategies, due to
each individual using its own set of weights in its
board-evaluation function. (See figure 1 for a
sample set of individuals. Note that the range
figure underneath the feature descriptor indicates
the maximum possible value permitted for that
weight.)

The fitness function used in this GA is simply the
number of wins achieved in a draughts round-robin
(i.e. all -play-all) tournament by that individual in
the pool. This is a measure of the relative fitness of
the individuals in the pool. This clearly introduces
an element of direct competition between the
members of the pool. This can be seen as a similar
model to that used by Rosin and Belew[Rosin95]
except that one gene pool is used here, rather than
the two distinct co-evolving populations (hosts and
parasites) which they use in their GA model.

 --Generation: 6
 Fitness Piece King Mob KMob Back Cent KCent Adv1 DBLSq Near Exch MOVE
 Range: 1200 2000 140 140 140 140 140 140 660 5 140 240

 23 1081 1917 17 25 22 1 110 85 85 4 128 7
 22 416 1564 85 79 131 49 118 65 349 1 104 70
 21 896 1564 17 25 74 49 118 138 230 1 104 70
 20 734 1068 86 91 74 12 69 65 365 5 136 163
 19 786 630 23 137 57 70 35 17 75 1 118 171
 18 896 1564 7 91 74 49 118 138 230 1 104 150
 18 416 1621 23 91 26 49 47 65 85 1 104 150

 ===

Figure 1 - A sample pool of board feature weights

It should be noted that a round-robin(RR)
tournament is used, as opposed to a simple
knockout tournament for example, so that
suff iciently accurate evidence is gathered
regarding the abilit y of an individual program in
the pool. This unfortunately causes a lot more
games to be played per generation, thus slowing
down each experiment, but this RR approach is
thought to be absolutely necessary due to the high
probabilit y of draughts games ending in a draw.
This is a very common feature in draughts
tournaments, even with human players, and
particularly with automatic game-playing programs
such as DRAFT5. For example, in the Tinsley-
Chinook match for the World Draughts
Championship in 1993[Schaeffer93] which was
played over 40 games, there were 33 draws, 6 wins
for Dr. Tinsley and 2 wins for Chinook, leaving
one game not played at the end of the match.

However, it should be noted that draws are not
quite so common in games involving opponents
who are not of this exceptional calibre. The reward
of half a point for a draw was discounted as it was
believed that this would reduce the effectiveness of
searching for aggressive end-game strategies.

In this first set of experiments a simple assortative
selection and cross-over technique was used and
eliti sm was employed to preserve the best “player”
from each generation. The basic GA used is
described in figure 2.

4 Results and Analysis of Initial Experiments

A first batch of experiments were conducted using
the GA described in figure 2. Each experiment was
carried out 10 times in an attempt to minimise the
‘noise’ in the results from DRAFT5.

/* Basic Draughts tournament GA - version 1 */
Max_Number_Of_Generations = 50
Pool_Size = 30
Mutation_Rate = 10

 /* Initialise the pool of weights with random numbers */
 for i = 1 to Pool_Size do
 for j = 1 to Chromosome_length do
 Pool[i, j] = random(allowed range)

/* Carry our generations of RR draughts tournaments with GA */
for g = 1 to Max_Number_of_ Generations do
{ /* Evaluate fitness of Pool of draughts players (using RR matches) */
 for i = 1 to Pool_Size do {
 for j = 1 to Pool_Size do {
 if (i # j) then {
 Copy Pool[i] weights to ‘Player A’ evaluation function
 Copy Pool[j] weights to ‘Player B’ evaluation function
 result = draughts (Player A vs. Player B)
 if result = 1 then Pool[i].fitness = Pool[i].fitness + 1
 if result = 2 then Pool[j].fitness = Pool[j].fitness + 1
 }
 }
 }
 Sort Pool of Players based on the Fitness from RR Draughts Tournament
 Elite = Pool[1] /* Preserve best player */
 Crossover Pool
 for m = 1 to Mutation_Rate do Mutate_Pool
 Pool[Pool_Size] = elite /* Insert elite back in Pool */
 Display and store results
}

Figure 2 - The first GA used for a RR draughts tournament

 --Generation: 50
 Fitness Piece King Mob KMob Back Cent KCent Adv1 DBLSq Near Exch MOVE
 Range: 1200 2000 140 140 140 140 140 140 660 5 140 240
 --
 30 989 1590 74 53 65 22 127 83 385 1 79 203
 29 904 1590 74 5 65 33 127 137 385 1 79 123
 28 904 1590 74 107 65 33 127 92 385 2 79 98
 28 904 1590 133 76 65 35 127 83 473 1 79 98
 26 904 1692 74 126 73 33 127 137 385 1 79 98
 ==

Figure 3 - Sample top-five weights from the final (50th) generation pool

For a pool size of 30, there are approximately 900
games per generation thus giving about 45,000
games played per experiment. It should be noted
that each individual game takes about 2 seconds
and thus each experiment takes approximately 30
hours on a Pentium 90. The search limit for the
look-ahead by DRAFT5 was set to two moves
(plus hot-pursuit) so that these experiments would
be feasible in a reasonable time-scale. Due to the
time consuming nature of the processing a pool
size of more than 30 was not considered.

A sample top-five from the final (50th) generation
pool is shown in figure 3. In passing, it can be seen
that the board feature weights show signs of
convergence. Firstly, perhaps the most
encouraging result from these initial experiments
was the fact that the King Weight was always
approximately 1.5 times the (ordinary) Piece
Weight. This is the generally accepted ratio as
given in many draughts books for human players
and indeed was the ratio which was used by
Samuel in his studies. This means that three
(ordinary) pieces will be exchanged for two kings,
if by so doing some positional advantage is
obtained.

Secondly, the values for the lesser weights such as
mobilit y, centre control, cramping and
advancement were found to be very similar to
those determined by years of fine tuning using
human opponents playing DRAFT5. Many years
of testing and tuning of DRAFT5 against volunteer
opponents had produced considerable success and
best results with similar values for most of these
positional board-feature weights.

Thirdly, DRAFT5 played some games against
human opponents using these GA-calculated
weights with some success. This ‘variant’ of the
draughts program DRAFT5 with automatically
determined weight settings is referred to as
DRAFT5-GA throughout this paper.

5 Measuring the Improvement of DRAFT5-GA

In the area of draughts and chess the success and
abilit y of a human player (and indeed a program) is
usually given by measuring the results obtained
against other players (or programs) in tournaments.
This characteristic of ranking players and the work
of Donnelly et al with the game of
GO[Donnelly94] suggested the following method
of determining a more absolute measure of the
improvement of DRAFT5-GA obtained while
learning using the GA described above in figure 2.

In a second set of experiments, the winner of each
draughts tournament held during each generation
of the GA is preserved in a finalists pool. At the
end of 50 generations, these generation winners
compete against each other in a final all -play-all
tournament to determine whether the GA has been
successful in improving the playing abilit y of
DRAFT5-GA.

The graph in figure 4 shows the number of wins by
generation winners plotted against generation
number. From the graph in figure 4, it can be seen
that there is a general trend of slight improvement,
but that this is superimposed with a lot of local
variabilit y. As with the work of Donnelly et al, it is
felt that one of the main factors affecting
performance is probably the diff iculty of obtaining
reliable fitness information when using the
win/loss results against the other versions of
DRAFT5-GA. This is again partly due to the large
number of drawn games being very common in
draughts.

 6 DRAFT5 versus DRAFT5-GA

A third set of experiments were conducted using a
slight variation of the basic notion described in the
previous section. In this set of experiments
however, the winner of each generation was
entered into a 40 game match against the original,
hand-tuned DRAFT5. The original DRAFT5 uses
the same set of features as DRAFT5-GA with

Figure 4 - Graph of relative fitness improvement

Figure 5 - Fitness Improvement of DRAFT5-GAs v DRAFT5

hand-tuned values for the feature weights. Over the
years DRAFT5 is known to play well from its
performance against many good human players
and other draughts programs. The results of this set
of experiments were also quite promising and are
shown in figure 5. Again there is also a general
trend of improvement with some superimposed
local variability.

7. Conclusions

The major conclusion that can be drawn from this
work is that a relatively unsophisticated GA can
determine a good set of board-evaluation weights
to play draughts without the addition of any
domain specific information, such as specialist
crossover or inoculating the pool with known good
starting points[Surrey96]. To date, this system has
demonstrated a lack of sensitivity to the selection
mechanism employed.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their constructive comments.

References

[Belasco73] A. Belasco, “Chess and Draughts -
How to Play Scientifically”, Foulsham, 1973

[Berliner73] H.J. Berliner, “Some Necessary
Conditions for a Master Chess Program”, Third
International Joint Conference on Artificial
Intelligence, Stanford, CA, 1973.

[Chisholm76] K.J. Chisholm, “DRAFT5 - A
Learning Draughts Program”, B.Sc. Project Report,
University of Edinburgh, 1976.

[Donnelly94] P. Donnelly, P. Corr & D. Crookes,
“Evolving Go Playing Strategy in Neural
Networks”, AISB Workshop on Evolutionary
Computing, Leeds, England, 1994.

[Fortman82] R. Fortman, “Basic Checkers”,
Available from the American Checkers Federation,
1982.

[Goldberg89] D.E. Goldberg, “Genetic Algorithms
in Search, Optimization & Machine Learning”,
Addison-Wesley, 1989.

[Holland75] J.H. Holland, “Adaption in Natural and
Artificial systems”, University of Michigan Press,
Ann Arbor, 1975.

[Knuth75] D.E. Knuth & R.W. Moore, “An
Analysis of Alpha-Beta Pruning”, Artificial
Intelligence, Volume 6, No. 4, 1975.

[Lake94] R. Lake, J. Schaeffer & P. Lu, “Solving
Large Retrograde-Analysis Problems Using a
Network of Workstations”, Advances in Computer
Chess VII, (Ed. H.J. van den Herik et al),
University of Limberg, Netherlands, pages 135-162,
1994.

[Levy91] D. Levy & M. Newborn, “How
Computers Play Chess”, Computer Science Press,
1991.

[Rosin95] C.D Rosin & R.K. Belew, “Methods for
Competitive Co-evolution: Finding Opponents
Worth Beating”, Proceedings of the Sixth
International Conference on Genetic Algorithms, pp
373-380. Morgan Kaufmann, 1995.

[Samuel59] A.L. Samuel, “Some Studies in
Machine Learning Using the Game of Checkers”,

IBM Journal of Research and Development, Vol. 3,
No. 3, 1959.

[Samuel67] A.L. Samuel, “Some Studies in
Machine Learning Using the Game of Checkers II -
Recent Progress”, IBM Journal of Research and
Development, Vol. 11, No. 6, 1967.

[Schaeffer92] J. Schaeffer, J. Culbertson, B.K.
Treloar, P. Lu & D. Szafron, “A World
Championship Calibre Checkers Program”,
Artificial Intelligence, Vol. 53, pp 273-289, 1992.

[Schaeffer93] J. Schaeffer, N. Treloar, P. Lu & R.
Lake, “Man Verses Machine for the World
Checkers Championship”, AI Magazine, Vol. 4,
No. 2, pp 28-35, 1993.

[Shannon50a] C.E. Shannon, “Programming a
Digital Computer for Playing Chess”, Philosophy
Magazine, Vol. 41, 1950.

[Shannon50b] C.E. Shannon, “Automatic Chess
Player”, Scientific American, Vol. 182, No. 48,
1950.

[Surrey96] P.D. Surrey & N.J. Radcliffe,
“Inoculation to Initialise Evolutionary Search”,
AISB Workshop on Evolutionary Computing,
University of Sussex, 1996.

[Turing53] A.M. Turing, “Digital Computers
Applied to Games”, Faster Than Thought (Ed.
B.V. Bowden), pp 186-310, 1953.

